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Study Objectives: Automated sleep staging has been previously limited by a combination of  clinical and physiological heterogeneity. Both factors are in 
principle addressable with large data sets that enable robust calibration. However, the impact of  sample size remains uncertain. The objectives are to investigate 
the extent to which machine learning methods can approximate the performance of  human scorers when supplied with sufficient training cases and to 
investigate how staging performance depends on the number of  training patients, contextual information, model complexity, and imbalance between sleep stage 
proportions.
Methods: A total of  102 features were extracted from six electroencephalography (EEG) channels in routine polysomnography. Two thousand nights were 
partitioned into equal (n = 1000) training and testing sets for validation. We used epoch-by-epoch Cohen’s kappa statistics to measure the agreement between 
classifier output and human scorer according to American Academy of  Sleep Medicine scoring criteria.
Results: Epoch-by-epoch Cohen’s kappa improved with increasing training EEG recordings until saturation occurred (n = ~300). The kappa value was further 
improved by accounting for contextual (temporal) information, increasing model complexity, and adjusting the model training procedure to account for the 
imbalance of  stage proportions. The final kappa on the testing set was 0.68. Testing on more EEG recordings leads to kappa estimates with lower variance.
Conclusion: Training with a large data set enables automated sleep staging that compares favorably with human scorers. Because testing was performed on a 
large and heterogeneous data set, the performance estimate has low variance and is likely to generalize broadly.
Keywords: sleep stages, EEG, machine learning, big data.

INTRODUCTION
Overnight polysomnography (PSG) with electroencephalogra-
phy (EEG) is the primary diagnostic test for evaluating patients 
with sleep problems.1 The current standard for sleep staging 
is visual data review by certified sleep technicians following 
standardized rules of the American Academy of Sleep Medicine 
(AASM),1 largely based on the original Rechtschaffen and 
Kales (R&K) criteria.2 Automated sleep staging, if rigorously 
proven to provide information equivalent to human scoring, 
could substantially increase the utility and reach of sleep anal-
ysis in medical and research settings, by saving time and over-
coming problems of scorer dependence.

The performance ceiling for an automated method judged 
against AASM or R&K is set by the inter-rater reliability 
(IRR) between human scorers. In the case of epoch-by-epoch 
comparison, IRR is usually measured by Cohen’s kappa for 
two scorers or Fleiss’ kappa for more than two scorers.3 These 
kappa values reflect the degree of agreement between scorers 
above the chance level. IRR between human raters is imper-
fect. For AASM, IRR was 0.76 among eight European centers3 
and 0.63 among nine international centers.4 For R&K, it was 
0.68 among eight European centers.3 IRR may vary accord-
ing to the clinical and pathophysiological complexity of the 
data set.

Many studies have reported computer programs that attempt 
to replicate human scoring in the literature.5–17 However, there is 
a general lack of external validation: few studies have convinc-
ingly demonstrated that algorithm performance can generalize 

to “all comers”. Most prior studies have analyzed data from 
fewer than 100 individuals. Insufficient sample size leads to 
several important limitations. Staging algorithms trained on 
small data sets generalize poorly, that is, they exhibit variable 
performance on new cases because small data sets do not allow 
algorithms to account for the wide within- and between-patient 
variability inherent in real-world clinical settings. In addition, 
for machine learning methods which require training, it is diffi-
cult to split small data sets into training and independent testing 
sets, a crucial step in validation that mitigates the risk of over 
fitting (over-confidence in performance).

In the Big Data era, sleep research has the opportunity to 
benefit from large and heterogeneous data sets.18 Potential ben-
efits include (1) an automated staging system trained on a large 
and diverse set of patients has the potential to be robust, in the 
sense of performing reliably on EEG data from new patients; 
(2) large data sets provide the opportunity to take full advan-
tage of machine learning methods that have achieved human-
level performance on other pattern recognition tasks such as 
computer vision19; (3) large data sets allow validation, that is 
precise (low variance) and accurate (unbiased) estimates of 
performance on large testing sets that are independent of the 
training data.

Here, we present an automated EEG-based sleep staging 
system developed on a clinical data set of 2000 patients, split 
into 1000 patients for training and the other 1000 patients 
for testing (validation). We investigate how the following 
factors affect the performance of automated sleep staging: 

Statement of Significance
In the Big Data era, sleep research has the opportunity to benefit from large and heterogeneous data sets. However, how the performance of  automated 
sleep staging scales with the data set size remains uncertain. The investigation of  these questions provides several important observations that can 
generalize broadly, including contextual information, classifier complexity, and the precision of  validation performance. The results suggest that the factors 
contributing to heterogeneity, such as stage transition frequency, should be further explored to continue improving staging performance.
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number of training patients, contextual information between 
epochs, model complexity, and imbalance between sleep 
stage proportions. We also study the variance in testing per-
formance as a function of the number of patients in the test-
ing set.

METHODS

Data Set
The Partners Institutional Review Board approved retrospec-
tive analysis of our database without requiring additional con-
sent for use of the clinically acquired data. PSG was performed 
according to AASM practice standards and scored by experi-
enced technologists. Six EEG leads were subjected to analysis: 
bilateral frontal (F3 and F4), central (C3 and C4), and occipital 
(O1 and O2). Deidentified PSG exports (European Data Format 
of raw signals) were randomly selected without regard to indi-
cation and divided into a training set of 1000 patients and a 
testing set of 1000 patients without overlap.

Table 1 shows the clinical characteristics of the train-
ing and testing sets, which were similar to each other at the 
group level but heterogeneous across individual variables that 
might directly or indirectly impact sleep staging, such as age, 
body mass index, apnea-hypopnea index, and type of study. 
Approximately two-thirds of each set were diagnostic PSGs, 
with the remaining evenly divided between split night and con-
tinuous positive airway pressure titrations.

Sleep Stage Labeling by Human Scorers
EEG signals were scored in nonoverlapping 30-second epochs 
according to AASM standards as one of five stages: wake (W), 
rapid eye movement (REM), non-REM stage 1 (N1), non-
REM stage 2 (N2), and non-REM stage 3 (N3).1 In total, seven 

scorers annotated the data set but one scorer per EEG record-
ing. Of the 2000 patients, we found 1617 patients with matched 
scorer information. In the training set, scorer S1 annotated 
412 patients; S2, 304 patients; S3, 56 patients; S4, 17 patients; 
S5, 10 patients; S6, 5 patients; and S7, 2 patients. In the test-
ing set, the proportions were similar: scorer S1 annotated 432 
patients; S2, 300 patients; S3, 36 patients; S4, 19 patients; S5, 
10 patients; S6, 10 patients; and S7, 4 patients.

Preprocessing and Feature Extraction

Artifact Removal
We prespecified voltage threshold to identify EEG epochs for 
exclusion. Epochs with absolute amplitude larger than 500 μV 
were removed to avoid EEG contamination by movement arti-
fact; epochs with no EEG (0 μV for more than 5 seconds) were 
also removed. Epochs with a maximum spectral power larger 
than 3000 times the median spectral power were found to be 
typically contaminated by 60 Hz power line noise and were also 
removed. The total amount of data removed by these proce-
dures was about 6.7%.

Feature Extraction
Features were extracted from each 30-second epoch in both 
time and frequency domains. Features from the time domain 
included line length, a measure of the amplitude and frequency 
of oscillations in the EEG20; kurtosis, which measures the pres-
ence of extreme values, arising for example from K-complexes 
and eye movements21; and sample entropy, which measures sig-
nal irregularity.

Frequency domain or “spectral” features were derived from 
the spectrogram of each epoch. Because the duration of each 
epoch (30 seconds) is relatively long compared to transient 
events such as sleep spindles and K-complexes (about 1sec-
ond), the spectrum for the whole epoch may not capture these 
events. Therefore, we further segmented each 30-second epoch 
into 29 subepochs of 2 seconds long with 1-second overlap. For 
each 2-second subepoch, we used the multitaper method22 to 
estimate the power spectral density (PSD).

Other than the multitaper method, there are several PSD esti-
mation alternatives, such as the fast Fourier transform (FFT) 
and periodogram. The FFT applies directly to the EEG signal 
without considering its underlying randomness, producing 
noisy estimates of the PSD. The periodogram is the Fourier 
transform of the autocovariance of the EEG signal, but this esti-
mate does not converge to the true PSD even given infinitely 
long signal. In contrast, the multitaper method overcomes these 
disadvantages. It utilizes multiple mutually orthogonal win-
dows (tapers), the Slepian sequences, to produce multiple peri-
odograms of the windowed signal, and then takes the average as 
the estimated PSD. The multitaper method presents an optimal 
bias-variance trade-off.22

To further reduce noise in spectral features, we averaged 
spectrograms from contralateral channels, that is, F3-M2 and 
F4-M1, C3-M2 and C4-M1, O1-M2 and O2-M1. For each 
averaged spectrogram, we extracted the 95th percentile (robust 
version of maximum), minimum, mean, and standard deviation 
(SD) of the relative band power over all 29 subepochs from 
three bands: delta (0.5–4 Hz), theta (4–8 Hz), and alpha (8–12 
Hz), as well as their ratios: delta/theta, delta/alpha, and theta/

Table 1—Clinical Characteristics of  the Training and Testing Sets.

Variable Training seta Testing seta

Age (years) 52 (40–62) 51 (40–62)

% Male 52.3 55.4

BMI 31 (26–35) 30 (26–35)

ESS 7 (4–12) 8 (4–12)

TST (minutes) 374.5 (329.3–417.3) 379.3 (329–421)

N1 (%) 13.7 (8.2–21.7) 13.3 (7.9–21.2)

N2 (%) 52.3 (44.5–60.1) 52.5 (44.4–60.5)

N3 (%) 15.4 (7.6–22.4) 15.7 (8.1–22.3)

REM (%) 14.7 (8.8–20.6) 15.1 (9.9–20)

Efficiency (%) 83.6 (73.2–90.0) 83.5 (73–90.4)

AHI (/hour)b 4.0 (1.2–16.2) 4.1 (1.8–15.1)

PLMS (/hour) 5.5 (1.6–15.7) 5.9 (1.7–16.4)

aValues are median (interquartile range), except sex.
bUsing 4% desaturation criteria.
AHI = apnea-hypopnea index; BMI = body mass index; ESS = Epworth 
sleepiness scale; PLMS = periodic leg movement during sleep; REM = 
rapid eye movement.
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alpha, where a small positive number was added to the denom-
inator during implementation to avoid dividing by zero. The 
kurtosis of the spectrogram in the delta, theta, alpha, and sigma 
(12–20 Hz) bands were also extracted to measure transient 
bursts such as sleep spindles.

There were 102 features in total, summarized in Table 2. All 
features were log-transformed using sign( ) log( )x x +1  to ren-
der the distributions closer to Gaussian. Finally, each feature 
was standardized to zero mean and unit SD across all epochs in 
each patient, so that the features were on the same scale.

Sleep Stage Classifier
We used the extreme learning machine (ELM)23 to create an 
automated algorithm that classifies each EEG epoch into one 
of the five sleep stages. ELM is a feed-forward neural network 
with one input layer, one hidden layer, and one output layer. 
The input layer has d = 102  nodes, one for each EEG feature. 
The hidden layer has L nodes, with a hidden weight matrix 
A d L∈ ×  and bias b L∈  in the connection from the input 

nodes. They are generated randomly and then fixed. The output 
layer has K = 5  nodes, where the one with the largest activa-
tion indicates the sleep stage classification result. The output 
nodes are connected to the hidden nodes with weight matrix 
β ∈ ×L K  Mathematical details are given in the appendix.

ELM classifiers have several advantages in the Big Data 
context (here, a large number of sleep-wake epochs, N).  
First, compared to kernel-based classifiers such as support vector 
machines (SVM), ELM explicitly decomposes the kernel function 
by random projection, which avoids storing the kernel matrix (with 

size N 2 ) during training. For example, in our case, there were 
N = 848 815,  epochs from the 1000 training patients. Assuming 
each floating point number requires 8 bytes, kernel-based SVM 
would require about 8 5 8 10 5 22 12N B TB= × =. .  to store the 
kernel matrix during training, whereas ELM requires about 8Nd 
= 661 MB to store the feature matrix. The large memory con-
sumption of storing the kernel matrix in SVM can be reduced by 
computing the matrix elements on the fly, however, at the cost 
of longer computation time, which does not scale to large data 
sets as in our case. Second, ELM can utilize “extreme logistic 
regression”,24 which gives a conditional probability of each stage 
for each epoch, and the maximum probability can be interpreted 
as confidence. This is in contrast to random forest where the 
probability is obtained less directly, as the proportion of classes 
in the trees or leaf nodes. Finally, ELM has a closed form solu-
tion (Appendix, equation (2)), thus iteration can be avoided and 
training time remains manageable. This is in contrast to machine 
learning classifiers that must be trained iteratively, such as neural 
networks. In the Supplementary Material, we provide experimen-
tal comparisons with other classifiers in terms of both staging 
performance and testing time.

RESULTS

Automated Staging Improves With Increasing Numbers of 
Training Patients
We first investigated how the number of training patients influ-
ences sleep staging performance according to the bias-var-
iance theory in statistics.25 Here, bias, also known as model 

Table 2—Extracted Features.

Domain Feature Number Formula

Time Line length 6

 
( / ( ))1 1 11

1
N x xi ii

N
− −+=

−∑
Kurtosis 6  

Sample entropy 6  

Frequency 95th percentile, min, mean, standard deviation of  
relative delta band power

3 × 4 Delta power/total power between 0.5 Hz and 20 Hz

95th percentile, min, mean, standard deviation of  
relative theta band power

3 × 4 Theta power/total power between 0.5 Hz and 20 Hz

95th percentile, min, mean, standard deviation of  
relative alpha band power

3 × 4 Alpha power/total power between 0.5 Hz and 20 Hz

95th percentile, min, mean, standard deviation of  
delta-theta power ratio

3 × 4 Delta power/theta power

95th percentile, min, mean, standard deviation of  
delta-alpha power ratio

3 × 4 Delta power/alpha power

95th percentile, min, mean, standard deviation of  
theta-alpha power ratio

3 × 4 Theta power/alpha power

kurtosis of  delta band spectrogram 3 Computed over the whole spectrogram (time-frequency 
domain) of  each bandkurtosis of  theta band spectrogram 3

Kurtosis of  alpha band spectrogram 3

Kurtosis of  sigma band spectrogram 3

Total 102 For each 30-second epoch
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underfitting, refers to error arising from overly low model 
complexity of the classifier relative to the data complexity. 
Variance, also known as overfitting, refers to error due to 
overly high model complexity relative to the data complexity. 
For classifiers with high variance (overfitting), adding more 
training samples improves generalization ability and therefore 
testing performance. For classifiers with high bias (underfit-
ting), adding training samples does not substantially improve 
performance on the testing set. Rather, increasing model com-
plexity or reducing data complexity is necessary to improve 
performance.

We conducted experiments with increasing numbers of train-
ing patients, ranging from 10 to 1000. The total testing set con-
sisted of 1000 patients, randomly chosen and fixed from the 
entire data set. The training set and testing sets had no patients 
in common. For each number of training patients, training was 
repeated five times with different training patients (except when 
all training patients are used) and different randomly generated 
hidden weights and bias in ELM. For each repetition, the test-
ing Cohen’s kappa was computed using the confusion matrix 
derived from all epochs pooled over all 1000 testing patients.

To assess statistical significance of improvements in testing 
performance, we compared the testing performance on adjacent 
numbers of training patients using the Mann-Whitney U test. 
The comparison was carried out on the kappa values for each 
testing patient from five repetitions, thus having 5000 samples.

ELM has two parameters that influence model training: L, the 
number of nodes in the hidden layer; and C, a regularization 
parameter. Larger values of L lead to higher model complexity. 
Larger values of C lead to more bias and less variance. In this 
subsection, ELM was trained using fixed values of L = 2000  
and C = 0 .

Figure 1A shows the training Cohen’s kappa with increas-
ing numbers of training patients, and the Cohen’s kappa on 
the testing set, where the mean and SD were computed from 
the five repetitions (Figure 1B will be described in the next 
subsection). Based on the comparison of adjacent cases, the 
curves can be divided into two phases: in phase I, the number 
of training patients was less than 300 and adding more training 
patients led to significant improvement in the testing perfor-
mance (p-values: 10 vs. 50: 1.1 × 10−243, 50 vs. 100: 3.4 × 10−8, 
100 vs. 200: 6.9 × 10−7, 200 vs. 300: 0.04, not significant in 
other cases, Mann–Whitney U test). In phase II, the number of 
training patients was more than 300 and adding more training 
patients did not yield further significant improvement.

In phase I, the training kappa was higher than the testing 
kappa. This indicated low bias and high variance (overfitting). 
In other words, the complexity of the classifier was high com-
pared to the training data complexity, so that the classifier fit its 
extra complexity to noise rather than signal. Increasing from 10 
to 300 training patients improved the testing kappa from 0.485 
to 0.608.

The confusion matrices when trained with 10 and 300 patients 
are shown in Figure 2A and B, respectively. Rows in the con-
fusion matrix represent sleep stages assigned by the human 
scorer, while columns represent stages assigned by the classi-
fier. Figure 2 shows the repetition with testing kappa closest to 
the mean value over five repetitions.

Comparing Figure 2B to Figure 2A, increasing the train-
ing patients from n = 10 to n = 300, staging accuracy was 
improved for all stages except stage N3 (Mann–Whitney U test 
on 1000 accuracy values from each testing patient; p-value: W 
6.6 × 10−96, N1 1.6 × 10−124, N2 3.7 × 10−82, N3 9.7 × 10−4, R 
1.4 × 10−30). Therefore, in phase I, the generalization ability of 
the classifier was limited by the amount of training data.

Phase II is of particular interest in the context of Big Data. 
Confusion matrices for the classifier trained with 300 versus 
1000 patients are shown in Figure 2B and C. The improvement 
was relatively small as training patient number increases, com-
pared with phase I (Mann-Whitney U test on 1000 accuracy 
values from each testing patient; p-value: W n.s., N1 4.3 × 10−3, 
N2 n.s., N3 n.s., R 0.011). The saturation indicates high bias 
and low variance (underfitting) regime. In other words, when 
adding more patients, heterogeneity becomes a dominating 
factor, indicating that model complexity may be insufficient to 
describe the complexity of the data. Other factors potentially 
contributing to saturation and methods that further improve 
performance in phase II are described in subsequent sections.

Contextual Information Improves Sleep Staging Performance
The classifier developed so far assigns stages independent of 
other epochs. This approach occasionally leads to excessive 
transitions in the hypnogram relative to human scorer, as seen 
in the example shown in the middle panel of Figure 3. In con-
trast, human scorers have access to and may take into account 
contextual information from neighboring epochs.1,26 Thus, we 
next explore whether using contextual information can further 
improve sleep staging performance on the testing set.

Contextual information from neighboring epochs can be 
accounted for using hidden Markov models (HMMs). Here, 
the hidden states are the “true” stages provided by human scor-
ers in the training data, while the observations are the “noisy” 
stages predicted by the classifier on the same data. The HMM 
decoding algorithm27 finds the most probable sequence of 
hidden states using the stage transition matrix (describing the 
probability of transitioning from one state to any other) and the 
emission matrix for the observations (describing the probability 
distribution of the stages assigned by the ELM classifier as a 
function of the underlying true stage). The transition matrix was 
estimated using the sleep stages in the labeled training data. The 
emission matrix was generated by counting the pairs of sleep 
stages labeled by human scorers and the classifier on the same 
epochs.

The predicted hypnogram after smoothing is shown in the 
bottom panel of Figure 3. By taking into account contex-
tual information, on average, the HMM decoding algorithm 
improved staging performance for both the training and testing 
kappa, as shown in Figure 1B. For the case of 1000 training 
patients, the overall performance on the 1000 testing patients 
was significantly improved from 0.615 to 0.666 (confirmed by 
Mann–Whitney U test on kappa values of each testing patient 
and five repetitions; p-value 1.3 × 10−92).

On the other hand, for 74 of the 1000 testing patients (7.4%), 
HMM smoothing led to worse performance. In Figure 4, we show 
the patient with the largest decline in the Cohen’s kappa. This 
patient has highly fragmented sleep compared to the patient in 
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Figure 3. In this case, HMM smoothing tended to eliminate frag-
mentation and therefore did not capture this phenotype. A zoomed 
version of Figures 3 and 4 are provided in Supplementary Figure 2 
in the supplementary material to further illustrate both cases.

Increasing Model Complexity Improves Sleep Staging 
Performance
Another way to further improve performance on testing patients 
in phase II, according to bias-variance theory, is to increase 
model complexity in order to meet data complexity. The model 
complexity of the ELM classifier is positively related to the 
number of hidden nodes L and negatively related to the regu-
larization parameter C, as shown in Figure 5.

The confusion matrix obtained using C = 0 and L = 20 000,  
hidden nodes is shown in Figure 2D. The comparison to 
Figure 2C (C = 0 and L = 2000) confirms that more com-
plex classifiers should be used to deal with increasing data 

complexity in the big data context (Mann–Whitney U test on 
1000 accuracy values from each testing patient; p-value: W 
0.016, N1 1.8 × 10−21, N2 0.04, N3 n.s., R 8.7 × 10−6).

Accounting for Stage Imbalance During Training Improves 
Performance
Stage N2 generally occupies 50% or more of total sleep time. 
During training, the fitting error for sleep stage N2 plays a 
dominating role, which makes the classifier best at predicting 
N2 but weaker at identifying other stages. Therefore, we next 
explored whether we could further improve testing performance 
by taking this imbalance into consideration while training the 
classifier.

Sleep stages can be balanced by weighting them differently 
in the objective function, as in the weighted ELM algorithm28; 
mathematical details are given in the Appendix. The resulting 
confusion matrix for the 1000 testing patients, when trained 
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Figure 1—(A) Cohen’s kappa for different numbers of  training patients and the fixed 1000 testing patients. The testing Cohen’s kappa was 
computed using the confusion matrix of  all epochs from all 1000 testing patients. The mean and standard deviation of  the kappa values from 
five repetitions are displayed. The ** or * markers indicate adjacent cases that exhibit a statistically significant improvement in the kappa sta-
tistic, based on Mann-Whitney U test (<0.01 or <0.05, respectively). (B) Cohen’s kappa values after HMM smoothing, which will be described 
in the next subsection. HMM = hidden Markov model.
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with 1000 patients using weighted ELM is shown in Figure 2E. 
Comparing Figure 2E to Figure 2C (no weighting), the accuracy 
of sleep stages W, N1, N3, and R were improved; accuracy for 
stage N2 dropped since weighting does not change the model 
complexity of the classifier (Mann-Whitney U test on 1000 
accuracy values from each testing patient; p-value: W n.s., N1 
7.5 × 10−45, N2 4.7 × 10−96, N3 2.5 × 10−25, R 1.3 × 10−17).

Combining Strategies Maximizes Automated Staging 
Performance
The best performance was achieved by combining all 1000 
training patients, a complex model (L = 20,000 hidden nodes, 
C = 0), compensation for class imbalance by weighted ELM 
training and contextualization via HMM smoothing. Based on 
epochs pooled from all 1000 testing patients in the repetition 
with testing kappa closest to the mean value over five repeti-
tions, the overall Cohen’s kappa was 0.684 and the accuracy 
was 76.9% (Figure 2F). In the following text, we use “overall” 
kappa to refer to this Cohen’s kappa.

In Table 3, we compare human versus automated sleep 
parameters which commonly appear in clinical reports for the 

1000 testing patients. While differences were detectable by sta-
tistical significance testing, which were unlikely to be clinically 
significant (with the large sample size, we were overpowered 
to detect small differences as significant). For all parameters, 
automated staging obtained values similar to those by human 
scorers.

The performance of automated staging varied across testing 
patients. The histogram of Cohen’s kappa values for all 1000 
testing patients is shown in Figure 6. Among the 1000 test 
patients, 523 had higher kappa values than the overall kappa 
0.684. The tail at the left side was heavier than the right side 
(skewness = −1.2).

Evaluating Interscorer Difference in the Testing Set
In such a large data set, it is important to evaluate potential bias 
introduced by the sleep stages being scored by different human 
scorers. Specifically, we investigated whether the labels pre-
dicted by the classifier mimic the scoring of a particular scorer.

Since each patient recording was scored by only one scorer, 
we cannot evaluate the within-patient IRR. To give an estimate 
of IRR, we present the testing kappa from patients scored by 
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Figure 2—The confusion matrix of  the fixed 1000 testing patients when trained with (A) 10 patients and 2000 hidden nodes; (B) 300 patients 
and 2000 hidden nodes; (C) 1000 patients and 2000 hidden nodes; (D) 1000 patients and 20,000 hidden nodes; (E) 1000 patients, 2000 
hidden nodes and weighted training samples; and (F) 1000 patients, 20,000 hidden nodes, weighted training samples and smoothing. For 
each confusion matrix, the repetition with kappa value closest to the mean kappa value over five repetitions is shown. Values are given as 
percentages, which sum to 100 across rows (human scoring). The color is white for 100% and black for 0%.
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different scorers in Figure 7. We observed no specific relation-
ship between the number of scored records per scorer (a proxy 
for experience) and the kappa value. In other words, the clas-
sifier does not appear to specialize in reproducing labels pro-
duced from scorers who scored the most cases. Scoring more 
patients does not mean the classifier learns different features 
or patterns. Applying Kruskal–Wallis H test, followed by post 
hoc Dunn’s test with Bonferroni correction, the kappa value 
between classifier output and those labeled by S2 is signifi-
cantly higher than that of S1 and S3. For the other scorers, the 
classifier matched their scores to a similar extent. On the other 
hand, if excluding scorer S2, the Kruskal–Wallis H test reveals 
no significant difference among the rest six scorers.

To further explain fluctuations in agreement among scor-
ers, we checked the Spearman correlation between the median 
testing kappa (median line in each box in Figure 7) and the 
median value of various stage percentages in patients scored by 
the corresponding scorer. We found that only N1 is significant 
(α = 0.05) with correlation −0.82. In other words, the percent-
age of scored N1 is negatively related to how well the classifier 
can learn from the scorer.

The Variance of Performance Estimates Reduces With the Size 
of the Testing Set
We have seen how the number of training patients affects sleep 
staging performance in Figure 1. Here, we investigate how the 
number of testing patients affects the variance of the perfor-
mance estimate. To do this, the 1000 testing patients were first 

partitioned into nonoverlapping subsets, where four subsets 
were randomly selected. We computed four kappa values by 
pooling epochs from each subset. Then, we recorded the mean 
and SD of the four kappa values.

In Figure 8, we show the mean and SD of the testing kappa 
values, when each subset contains 5, 10, 15 … 250 patients. It 
is observed that the SD is negatively correlated with the size 
of the testing subsets (Spearman correlation −0.60, p-value 
4.4 × 10–6). In other words, smaller testing sets lead to estimates 
with higher variance (less precision). Thus, with a small testing 
set, we cannot be confident about the performance of a sleep 
staging algorithm. Precise validation requires a testing set of at 
least several hundreds of testing patients.

DISCUSSION
This study investigated the impact of four factors on automated 
sleep staging using a large-scale data set consisting of full-night 
EEG recordings from 1000 training and 1000 testing patients. 
Two strengths of our study are the large sample size and that 
the sample is a heterogeneous clinical population rather than a 
healthy or homogeneous population. Despite this heterogene-
ity, we find that a sufficiently complex machine learning algo-
rithm, coupled with sufficiently large training data, is able to 
achieve testing Cohen’s kappa comparable to those previously 
reported between human scorers (IRR).3,4 Specifically, our best 
performing model achieved an IRR between human scorer and 
algorithm at 0.68, solidly in the range of prior reports of human 
scorer IRR values in the range 0.63–0.76.

1 2 3 4 5 6 7

time (h)

N3
N2
N1

R
W

N3
N2
N1

R
W

N3
N2
N1

R
W

human:

computer before smoothing: accuracy 66.8%, Cohen's kappa 0.574

computer after smoothing: accuracy 81.1%, Cohen's kappa 0.750

Figure 3—Hypnograms before and after HMM smoothing for the patient with largest post-smoothing improvement in the Cohen’s kappa. 
HMM = hidden Markov model.
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Figure 5—(A) Training and testing performance with different values of  the regularization parameter C; (B) with different numbers of  hidden 
nodes L. The mean and standard deviation of  kappa values over five repetitions are shown in both panels.
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Figure 4—Hypnograms before and after HMM smoothing for the patient with largest post-smoothing decline in the Cohen’s kappa. HMM = hid-
den Markov model.
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We found that testing performance, as a function of training 
data size, can be divided into two phases (Figure 1). In phase 
I, the generalization ability of the classifier is limited by the 
amount of training data: sleep staging algorithms trained on 
small numbers of patients (here, <300) generalize poorly to test 
cases. Increasing the number of training cases improves stag-
ing performance from 0.485 to 0.608. In phase II, that is, with 
larger numbers of training patients, data complexity becomes 
a dominating factor: the complexity of the classifier limits 
its ability to fully model the complexity of the data, leading 
to diminishing returns with increasing size of the training set: 
increasing the number of patients from 300 to 1000 improves 
testing performance only from 0.61 to 0.62. To further improve 
testing performance, contextual information between epochs 
was used so that classification results were modified to account 
for neighboring epochs, which improved testing performance 
from 0.62 to 0.67.

We then increased model complexity by changing the param-
eters in the automated staging algorithm to allow greater model 
complexity (Figure 5) and accounted for class imbalance in the 
training data. The final testing performance considering all the 
above factors was 0.684 ± 0.0002, measured by Cohen’s kappa 
based on the confusion matrix obtained from all epochs from all 
1000 testing patients and 76.9% measured by accuracy.

When dealing with large-scale sleep data, limitations in auto-
mated scoring performance can be related to the noise and sub-
jectivity of the scorers.29 A trained classifier should satisfy two 
conditions. First, it should learn the general scoring pattern, 
or core features, across all scorers, instead of the pattern of a 
particular scorer. In Figure 7, the classifier indeed has similar 
agreement with all scorers, except a higher agreement with S2 
compared to S1 and S3. To explain this, we did a correlation 

analysis which revealed that S2 tends to score less N1 than S1 
and S3. This is consistent with the fact that the scorers have 
higher level of subjectivity when scoring N1, making N1 the 
stage with least agreement with the classification algorithm 
(Figure 2). Second, the trained classifier should have a kappa 
value independent of the number of patients scored by the 
scorer. This is evident in Figure 7, where the scorers are sorted 
in descending order of number of cases while the median line 
in each box does not follow descending order.

The large-scale data set also enables us to check the variance 
of the performance obtained on small testing sets (Figure 8). 
We found that performance estimates obtained from small-scale 
testing sets is subject to large variance. Similar observations 
have been reported previously in the study by Liang et al.10 
In their work, the performance on 17 testing subjects from 
the same data set reaches Cohen’s kappa of 0.79 using deci-
sion tree. The same decision tree is then applied to another two 
subjects from a public sleep data set, has Cohen’s kappa 0.68, 
exhibiting large variance.

Related Works
Some representative prior studies with less than 100 patients are 
summarized in Supplementary Table 1. Our results suggest that 
these studies may be subject to several important limitations 
due to small sample sizes: overfitting due to small training sets; 
high variance estimates of model performance due to small test-
ing sets; and in several cases, limited scope due to testing only 
on healthy subjects rather than a heterogeneous population.

The largest prior study in the literature and hence the one most 
comparable to ours is the Somnolyzer 24 × 7 system,6 which was 
validated using 590 recordings from the SIESTA project.30 The 
SIESTA data set covers different genders, age groups, healthy 

Table 3—Sleep Parameter Comparison Between Human Scorer and Classifier.

Sleep Parameter Human Classifier Sig.a

Mean STD Mean STD

Sleep latency (minutes) 23.4 23 25.3 23.6

REM latency (minutes) 175.4 95.2 158.1 91.7 *

N1 latency (minutes) 24.4 24.8 27.7 27 *

N2 latency (minutes) 37.1 38.2 35.9 29.9

N3 latency (minutes) 77.5 66.2 75.8 63.6

Sleep efficiency (%) 83.5 14.1 83.1 11.3

Total sleep time (minutes) 358.8 75.8 356.5 66.3

NREM time (minutes) 302.7 62.7 294 51.6 *

REM time (minutes) 59.3 31.6 65.6 31.8 *

Awake time (minutes) 69.5 58.4 71.9 47.6

N1 time (minutes) 54.9 37.3 46.4 25 *

N2 time (minutes) 189.5 60.9 181.7 45.2 *

N3 time (minutes) 62.5 36.6 69.1 28.3 *

*p-value < .05
aSignificance after Holm-Bonferroni multiple test correction.
NREM = nonrapid eye movement; REM = rapid eye movement.
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controls, and various sleep disorders and is labeled according to 
R&K scoring conventions. Various spectral features and spin-
dle features were extracted from EEG, electrooculography, and 
electromyogram. An expert system was trained from half of the 
recordings and then tested on the other half of the recordings. Each 
node of the decision tree in the expert system had an linear discri-
minant analysis classifier with a predefined set of features. On the 
testing set, the Somnolyzer 24 × 7 obtained Cohen’s kappa values 
of 0.69 and 0.67 when compared to two scorers, respectively, and 
0.71 when compared to consensus scores. These results are com-
parable to our best model (Cohen’s kappa = 0.68).

Another series of studies utilize the Michele Sleep Scoring 
System.16,29,31–33 There are two such studies with more than 
100 patients. Younes et al.16 evaluated the performance of 
automated sleep scoring using frontal channels (F3 and F4) 
versus using central channels (C3 and C4) based on 102 PSG 
recordings. The recordings contain 27 healthy and heteroge-
neous clinical conditions such as 49 obstructive sleep apnea 
(OSA), 14 insomnia, and 23 periodic limb movements (11 
overlaps with OSA). In Yonnes et al.,31 the authors proposed 
odds ratio product as a continuous measure of sleep depth 
to augment the discrete sleep stages defined in R&K and 
AASM. The study was based on 58 training patients and 56 
testing patients (total 114). Although different clinical condi-
tions were included, both of the studies had fewer than 100 
patients in each clinical condition, and thus, given the heter-
ogeneity seen across sleep disorders categories, the external 
validity remains uncertain.

Limitations
Although we have validated our approach on a large and clini-
cally heterogeneous data set, we have not performed validation 
outside a single center. It is thus possible that the population of 
patients seen in our center is not fully representative of popula-
tions elsewhere. Also, many factors contributing to heterogene-
ity could be further explored with even larger data sets, such as 
medication effects, medical comorbidities, specific sleep disor-
ders of varying severity, age-specific effects, etc. It is possible 
that certain physiological EEG features would be more or less 
relevant across subpopulations.

APPENDIX

MATHEMATICAL DETAILS OF EXTREME LEARNING MACHINE
Suppose the features are stored in a matrix X N d∈ × , where 
it has N  rows (epochs) and each row contains d = 102  fea-
tures from each epoch. The hidden layer activation H N L∈ ×  
is computed using sigmoid function:
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where A d L∈ ×  and b L∈  are randomly generated and 
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Figure 8—The precision of  Cohen’s kappa statistics for subsets 
of  1000 testing patients with different sizes. The red dashed line is 
the training Cohen’s kappa. The blue solid line in the middle of  the 
shading is the mean value of  testing Cohen’s kappa from four ran-
domly selected nonoverlapping patient subsets. Shading indicates 
the area of  ±standard deviation.
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gests that the kappa values for S2 is higher than S1 and S3. Other 
scorers have similar kappa values.  ** p-value < .01.

0.0 0.2 0.4 0.6 0.8 1.0
Cohen's kappa

0

1

2

3

4

5

6

7

pe
rc

en
ta

ge
 (

%
)

Figure 6—The histogram of  the Cohen’s kappa of  each testing 
patient. The dashed line at 0.684 indicates the overall Cohen’s 
kappa for all epochs pooled from all testing patients. D

ow
nloaded from

 https://academ
ic.oup.com

/sleep/article/40/10/zsx139/4209286 by guest on 16 August 2022



11SLEEP, Vol. 40, No. 10, 2017 Large-Scale Automated Sleep Staging—Sun et al.

where I L L∈ ×  is an identity matrix; X XF ijij
= ∑ 2  is the 

Frobenius matrix norm; C ≥ 0 is a regularization parameter; 
and Y N K∈ ×  contains the training labels, i.e. the sleep stages 
labeled by the human scorer. Y  is encoded in the “one-vs-all” 
style according to the extreme logistic regression algorithm,24 
where in each row the k-th element is 2 and others are −2 for an 
epoch belonging to sleep stage k , so that the output probability 
can be approximated by sigmoid( )Hβ .

ELM has two parameters: number of hidden nodes L and 
regularization parameter C. Larger L leads to higher model 
complexity since it is the dimensionality of the features in the 
hidden layer. Larger C leads to more bias and less variance, and 
vice versa.

MATHEMATICAL DETAILS OF WEIGHTED EXTREME LEARNING 
MACHINE
Sleep stages can be balanced by weighting them differently in 
the objective function. In weighted ELM,28 each training epoch 
is associated with a weight, which forms a diagonal matrix 

W N N∈ × . Formally, the output weight β  is computed as
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where we have used W N Wii k iii
= ( ) ∑1/ / , that is, the weight 

of epoch i was inversely proportional to the square root of the 
number of epochs belonging to sleep stage Nk , then normal-
ized so that all weights sum to 1.
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