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Abstract 

The concept of averaging over classifiers is fundamental to the 
Bayesian analysis of learning. Based on this viewpoint, it has re
cently been demonstrated for linear classifiers that the centre of 
mass of version space (the set of all classifiers consistent with the 
training set) - also known as the Bayes point - exhibits excel
lent generalisation abilities. However, the billiard algorithm as pre
sented in [4] is restricted to small sample size because it requires 
o (m2 ) of memory and 0 (N . m2 ) computational steps where m 
is the number of training patterns and N is the number of random 
draws from the posterior distribution. In this paper we present a 
method based on the simple perceptron learning algorithm which 
allows to overcome this algorithmic drawback. The method is al
gorithmically simple and is easily extended to the multi-class case. 
We present experimental results on the MNIST data set of hand
written digits which show that Bayes point machines (BPMs) are 
competitive with the current world champion, the support vector 
machine. In addition, the computational complexity of BPMs can 
be tuned by varying the number of samples from the posterior. 
Finally, rejecting test points on the basis of their (approximative) 
posterior probability leads to a rapid decrease in generalisation er
ror, e.g. 0.1% generalisation error for a given rejection rate of 10%. 

1 Introduction 

Kernel machines have recently gained a lot of attention due to the popularisation 
of the support vector machine (SVM) [13] with a focus on classification and the 
revival of Gaussian Processes (GP) for regression [15]. Subsequently, SVMs have 
been modified to handle regression [12] and GPs have been adapted to the problem 
of classification [8]. Both schemes essentially work in the same function space that is 
characterised by kernels (SVM) and covariance functions (GP), respectively. While 
the formal similarity of the two methods is striking the underlying paradigms of 
inference are very different. The SVM was inspired by results from statistical/PAC 
learning theory while GPs are usually considered in a Bayesian framework. This 
ideological clash can be viewed as a continuation in machine learning of the by 
now classical disagreement between Bayesian and frequentistic statistics. With 



regard to algorithmics the two schools of thought appear to favour two different 
methods of learning and predicting: the SVM community - as a consequence of the 
formulation of the SVM as a quadratic programming problem - focuses on learning 
as optimisation while the Bayesian community favours sampling schemes based on 
the Bayesian posterior. Of course there exists a strong relationship between the two 
ideas, in particular with the Bayesian maximum a posteriori (MAP) estimator being 
the solution of an optimisation problem. Interestingly, the two viewpoints have 
recently been reconciled theoretically in the so-called PAC-Bayesian framework [5] 
that combines the idea of a Bayesian prior with PAC-style performance guarantees 
and has been the basis of the so far tightest margin bound for SVMs [3]. In practice, 
optimisation based algorithms have the advantage of a unique, deterministic solution 
and the availability of the cost function as an indicator for the quality of the solution. 
In contrast, Bayesian algorithms based on sampling and voting are more flexible and 
have the so-called "anytime" property, providing a relatively good solution at any 
point in time. Often, however, they suffer from the computational costs of sampling 
the Bayesian posterior. 

In this contribution we review the idea of the Bayes point machine (BPM) as an 
approximation to Bayesian inference for linear classifiers in kernel space in Section 
2. In contrast to the GP viewpoint we do not define a Gaussian prior on the length 
Ilwllx: of the weight vector. Instead, we only consider weight vectors of length 
Ilwllx: = 1 because it is only the spatial direction of the weight vector that matters 
for classification. It is then natural to define a uniform prior on the resulting ball
shaped hypothesis space. Hence, we determine the centre of mass ("Bayes point") of 
the resulting posterior that is uniform in version space, i.e. in the zero training error 
region. While the version space could be sampled using some form of Gibbs sampling 
(see, e.g. [6] for an overview) or an ergodic dynamic system such as a billiard [4] 
we suggest to use the perceptron algorithm trained on permutations of the training 
set for sampling in Section 3. This extremely simple sampling scheme proves to be 
efficient enough to make the BPM applicable to large data sets. We demonstrate 
this fact in Section 4 on the well-known MNIST data set containing 60 000 samples 
of handwritten digits and show how an approximation to the posterior probability of 
classification provided by the BPM can even be used for test-point rejection leading 
to a great reduction in generalisation error on the remaining samples. 

We denote n-tuples by italic bold letters (e.g. x = (Xl, ... ,xn )), vectors by roman 
bold letters (e.g. x), random variables by sans serif font (e.g. X) and vector spaces 
by calligraphic capitalised letters (e.g. X). The symbols P, E and I denote a prob
ability measure, the expectation of a random variable and the indicator function, 
respectively. 

2 Bayes Point Machines 

Let us consider the task of classifying patterns X E X into one of the two classes 
y E Y = {-1, + 1} using functions h : X ~ Y from a given set 1t known as the 
hypothesis space. In this paper we shall only be concerned with linear classifiers: 

1t={xf-tsign((¢(x),w)x;) IWEW}, W={wEK I Ilwllx:=1}, (1) 

where ¢ : X ~ K ~ i~ is known I as the feature map and has to fixed beforehand. 
If all that is needed for learning and classification are the inner products (., .)x: in 
the feature space K, it is convenient to specify ¢ only by its inner product function 

1 For notational convenience we shall abbreviate cf> (x) by x. This should not be confused 

with the set x of training points. 



k : X X X -t IR known as the kernel, i.e. 

"Ix, x' EX: k (x, x') = (¢ (x) , ¢ (x')}JC . 

For simplicity, let us assume that there exists a classifier2 w* E W that labels all 
our data, i.e. 

PYlx=x ,w=w' (y) = Ih_.(x)=y. (2) 

This assumption can easily be relaxed by introducing slack variables as done in the 
soft margin variant of the SVM. Then given a training set z = (x, y) of m points 
Xi together with their classes Yi assigned by hw' drawn iid from an unknown data 
distribution Pz = PYIXPX we can assume the existence of a version space V (z), i.e. 
the set of all classifiers w E W consistent with z: 

(3) 

In a Bayesian spirit we incorporate all of our prior knowledge about w* into a 
prior distribution Pw over W. In the absence of any a priori knowledge we suggest 
a uniform prior over the spatial direction of weight vectors w. Now, given the 
training set z we update our prior belief by Bayes' formula, i.e. 

Pzmlw=w (z) Pw (w) 0:1 PYIX=Xi,W=W (Yi) Pw (W) 
Pw1zm=z (W) = = -=-=~~----''-'-----':'::''''':'----:~c-'-

Ew [PzmIW=w (Z)] Ew [0:1 PY1X=Xi,W=W (Yi)] 

ifwEV(Z) { 
Pw(w) 

~w(V(z)) 
otherwise 

where the first line follows from the independence and the fact that x has no depen
dence on w and the second line follows from (2) and (3). The Bayesian classification 
of a novel test point x is then given by 

Bayesz (x) = argmaxyEy Pw1zm=z ({hw (x) = y}) 

= sign (EWlzm=z [hw (x)]) 

= sign (Ew1zm=z [sign ((x, W}dD 
Unfortunately, the strategy Bayesz is in general not contained in the set 1-l of 
classifiers considered beforehand. Since Pw1zm=z is only non-zero inside version 
space, it has been suggested to use the centre of mass w crn as an approximation for 
Bayesz , i.e. 

wcrn 

sign (Ew1zm=z [(x, W}JCl) 

sign ((x, wcrn}d , 

EWlzm=z [W] . (4) 

This classifier is called the Bayes point. In a previous work [4] we calculated Wcrn 

using a first order Markov chain based on a billiard-like algorithm (see also [10]). 
We entered the version space V (z) using a perceptron algorithm and started play
ing billiards in version space V (z) thus creating a sequence of pseudo-random 
samples Wi due to the chaotic nature of the billiard dynamics. Playing billiards 
in V (z) is possible because each training point (Xi, Yi) E z defines a hyperplane 
{w E W I Yi (Xi, w}JC = O} ~ W. Hence, the version space is a convex polyhedron 
on the surface of W. After N bounces of the billiard ball the Bayes point was 
estimated by 

1 N 

\Vcrn = N LWi. 
i=1 

2We synonymously call h E 11. and w E W a classifier because there is a one-to-one 

correspondence between the two by virtue of (1) . 



Although this algorithm shows excellent generalisation performance when compared 

to state-of-the art learning algorithms like support vector machines (SVM) [13], its 

effort scales like 0 (m 2 ) and 0 (N . m2 ) in terms of memory and computational 
requirements, respectively. 

3 Sampling the Version Space 

Clearly, all we need for estimating the Bayes point (4) is a set of classifiers W drawn 

uniformly from V (z). In order to save computational resources it might be advan
tageous to achieve a uniform sample only approximately. The classical perceptron 
learning algorithm offers the possibility to obtain up to m! different classifiers in ver

sion space simply by learning on different permutations of the training set. Given 
a permutation II : {I, ... , m} -+ {I, ... , m} the perceptron algorithm works as 
follows: 

1. Start with Wo = 0 and t = O. 

2. For all i E {I, ... , m}, if YII(i) (XII(i), Wt) K. :::; 0 then Wt+! = Wt + YII(i) XII (i) 
and t ~ t + 1. 

3. Stop, if for all i E {I, ... ,m}, YII(i) (XII(i), Wt) K. > O. 

A classical theorem due to Novikoff [7] guarantees the convergence of this procedure 

and furthermore provides an upper bound on the number t of mistakes needed until 

convergence. More precisely, if there exists a classifier WSVM with margin 

( ) . Yi(Xi,WSVM)K. 
'Y% WSVM = mIll 

(Xi ,y;)E% IlwsVM 11K. 

then the number of mistakes until convergence - which is an upper bound on 

the sparsity of the solution - is not more than R2 (x) y;2 (WSVM), where R (x) 
is the smallest real number such that V x Ex: II ¢ (x) II K. :::; R (x). The quantity 

'Y% (WSVM) is maximised for the solution WSVM found by the SVM, and whenever 
the SVM is theoretically justified by results from learning theory (see [11, 13]) the 

ratio d = R2 (x) 'Y;2 (WSVM) is considerably less than m, say d« m. 

Algorithmically, we can benefit from this sparsity by the following "trick": since 

m 

W = 2: QiXi 
i=l 

all we need to store is the m-dimensional vector o. Furthermore, we keep track of 

the m-dimensional vector 0 of real valued outputs 

m 

0i = Yi (Xi, Wt)K. = 2: Qjk (Xi, Xj) 

j=l 

of the current solution at the i-th training point. By definition, in the beginning 0 = 

0=0. Now, if 0i :::; 0 we update Qi by Qi +Yi and update 0 by OJ ~ OJ +Yik (Xi, Xj) 

which requires only m kernel calculations. In summary, the memory requirement of 

this algorithm is 2m and the number of kernel calculations is not more than d·m. As 
a consequence, the computational requirement of this algorithm is no more than the 

computational requirement for the evaluation ofthe margin 'Y% (WSVM)! We suggest 
to use this efficient perceptron learning algorithm in order to obtain samples Wi for 

the computation of the Bayes point by (4). 



(a) (b) (c) 

Figure 1: (a) Histogram of generalisation errors (estimated on a test set) using 
a kernel Gibbs sampler. (b) Histogram of generalisation errors (estimated on a 
test set) using a kernel perceptron. (c) QQ plot of distributions (a) and (b). The 
straight line indicates that both distribution are very similar. 

In order to investigate the usefulness of this approach experimentally, we compared 
the distribution of generalisation errors of samples obtained by perceptron learning 
on permuted training sets (as suggested earlier by [14]) with samples obtained by 
a full Gibbs sampling [2]. For computational reasons, we used only 188 training 
patterns and 453 test patterns of the classes "I" and "2" from the MNIST data set3 . 

In Figure 1 (a) and (b) we plotted the distribution over 1000 random samples using 
the kernel4 

k(x,x') = «(x,x'h+1)5 . (5) 

Using a quantile-quantile (QQ) plot technique we can compare both distributions 
in one graph (see Figure 1 (c)). These plots suggest that by simple permutation 
of the training set we are able to obtain a sample of classifiers exhibiting the same 
generalisation error distribution as with time-consuming Gibbs sampling. 

4 Experimental Results 

In our large scale experiment we used the full MNIST data set with 60000 training 
examples and 10000 test examples of 28 x 28 grey value images of handwritten 
digits. As input vector x we used the 784 dimensional vector of grey values. The 
images were labelled by one of the ten classes "0" to "I". For each of the ten classes 
y = {O, ... , 9} we ran the perceptron algorithm N = 10 times each time labelling 
all training points of class y by + 1 and the remaining training points by -1. On 
an Ultra Sparc 10 each learning trial took approximately 20 - 30 minutes. For 
the classification of a test image x we calculated the real-valued output of all 100 
different classifiers5 by 

Ii (x) = 

where we used the kernel k given by (5). (Oi)j refers to the expansion coefficient 

corresponding to the i- th classifier and the j - th data point. Now, for each of the 

3 available at http://wvw .research. att. comryann/ocr/mnist/. 

4We decided to use this kernel because it showed excellent generalisation performance 
when using the support vector machine. 

5For notational simplicity we assume that the first N classifiers are classifiers for the 

class "0", the next N for class "1" and so on. 
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0% 1.46% 
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9% 0.14% 
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Figure 2: Generalisation error as a function of the rejection rate for the MNIST data 
set. The SVM achieved 1.4% without rejection as compared to 1.46% for the BPM. 
Note that by rejection based on the real-valued output the generalisation error 
could be reduced to 0.1% indicating that this measure is related to the probability 
of misclassification of single test points. 

ten classes we calculated the real-valued decision of the Bayes point Wy by 

1 N 

ibp,y (x) = N L: ii+yN (x) . 
i=l 

In a Bayesian spirit, the final decision was carried out by 

hbp (x) = argmaxyE {O, ... ,9} ibp,y (x) . 

Note that ibp ,y (x) [9] can be interpreted as an (unnormalised) approximation of 
the posterior probability that x is of class y when restricted to the function class 
(1). In order to test the dependence of the generalisation error on the magnitude 
maxy ibp,y (x) we fixed a certain rejection rate r E [0,1] and rejected the set of 
r· 10000 test points with the smallest value of maxy ibp,y (x). The resulting plot 
is depicted in Figure 2. 

As can be seen from this plot, even without rejection the Bayes point has excellent 
generalisation performance6 . Furthermore, rejection based on the real-valued out
put ibp (x) turns out to be excellent thus reducing the generalisation error to 0.1%. 
One should also bear in mind that the learning time for this simple algorithm was 
comparable to that of SVMs. 

A very advantageous feature of our approach as compared to SVMs are its adjustable 
time and memory requirements and the "anytime" availability of a solution due to 
sampling. If the training set grows further and we are not able to spend more time 
with learning, we can adjust the number N of samples used at the price of slightly 
worse generalisation error. 

5 Conclusion 

In this paper we have presented an algorithm for approximating the Bayes point by 
rerunning the classical perceptron algorithm with a permuted training set. Here we 

6Note that the best know result on this data set if 1.1 achieved with a polynomial 

kernel of degree four. Nonetheless, for reason of fairness we compared the results of both 

algorithms using the same kernel. 



particularly exploited the sparseness of the solution which must exist whenever the 

success of the SVM is theoretically justified. The restriction to the zero training 

error case can be overcome by modifying the kernel as 

k>.. (x, x') = k (x, x') + A · Ix=x' . 

This technique is well known and was already suggested by Vapnik in 1995 (see [1]). 
Another interesting question raised by our experimental findings is the following: 
By how much is the distribution of generalisation errors over random samples from 

version space related to the distribution of generalisation errors of the up to m! 

different classifiers found by the classical perceptron algorithm? 
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