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Logistic regression analysis of high-dimensional data, such as natural language text, poses computational
and statistical challenges. Maximum likelihood estimation often fails in these applications. We present a
simple Bayesian logistic regression approach that uses a Laplace prior to avoid overfitting and produces
sparse predictive models for text data. We apply this approach to a range of document classification
problems and show that it produces compact predictive models at least as effective as those produced
by support vector machine classifiers or ridge logistic regression combined with feature selection. We
describe our model fitting algorithm, our open source implementations (BBR and BMR), and experimental
results.
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1. INTRODUCTION

Maximum likelihood logistic regression is a mainstay for sta-
tisticians. This approach enjoys a body of supporting theory and
algorithms, features prominently in commercial statistical soft-
ware, and its predictive accuracy is often competitive with that
of newer techniques.

However, new applications have emerged that pose computa-
tional and statistical challenges to maximum likelihood logistic
regression. In these applications the number of predictor vari-
ables is large (104 and up) and usually exceeds the number of
observations. Examples of such “short, fat” data sets include
text categorization (our focus in this article), gene expression
analysis, adverse event monitoring, longitudinal clinical trials,
and some business data mining tasks.

The logistic regression model is often capable of providing
highly accurate predictions in these applications. Computing
the maximum likelihood fit of a logistic regression model on
these data sets is often impossible, since standard software re-
lies on matrix inversion. Even when this barrier is overcome,
numerical ill-conditioning can result in a lack of convergence,
large estimated coefficient variances, poor predictive accuracy,
and/or reduced power for testing hypotheses concerning model
assessment (Pike, Hill, and Smith 1980). Exact logistic re-
gression suffers from many of the same problems (Greenland,
Schwartzbaum, and Finkle 2000). Furthermore, although max-
imum likelihood has desirable asymptotic properties (Hadji-
costas 2003), it often overfits the data, even when numerical
problems are avoided.

Computational efficiency, both during fitting and when the
fitted model is used for prediction, is also a problem. Most
logistic regression implementations make use of matrix inver-
sion, which in practice limits the number of predictor vari-
ables. Although feature selection (Kittler 1986; Mitchell and

Beauchamp 1988) reduces memory and computational require-
ments, it introduces new problems. First, the statistical founda-
tion of most feature selection methods is unclear. This makes
it difficult to, for instance, choose the number of features for a
given task in a principled way. Second, the most efficient fea-
ture selection methods consider each feature in isolation and
may choose redundant or ineffective combinations of features.
Finally, it is typically unclear how to combine heuristic feature
selection methods with, for instance, domain knowledge.

In this article we describe a Bayesian approach to logistic re-
gression that avoids overfitting, has classification effectiveness
similar to that of the best published methods, and is efficient
both during fitting and at prediction time. The key to the ap-
proach is the use of a prior probability distribution that favors
sparseness in the fitted model, along with an optimization al-
gorithm and implementation tailored to that prior. By “sparse-
ness,” we mean that the posterior point estimates for many of
the model parameters are zero.

We begin in Section 2 by describing how supervised learn-
ing is used in language processing, the motivating area for our
work. In Section 3 we present the basics of our Bayesian ap-
proach to logistic regression, and in Section 4 we present the
fitting algorithm. We describe the data sets and methods that
we use in our experiments in Section 5, and give our experi-
mental results in Section 6. We find that the sparse classifiers
that we describe are competitive with state-of-the-art text cat-
egorization algorithms, including widely used feature selection
methods. Finally, in Section 7 we present directions for future
work.

© 2007 American Statistical Association and
the American Society for Quality

TECHNOMETRICS, AUGUST 2007, VOL. 49, NO. 3
DOI 10.1198/004017007000000245

291



292 ALEXANDER GENKIN, DAVID D. LEWIS AND DAVID MADIGAN

2. TEXT CATEGORIZATION AND STATISTICAL
LANGUAGE PROCESSING

Text classification algorithms choose which of a set of classes
to assign to a text. When those classes are of interest to only one
user, we often refer to text classification as filtering or routing.
When the classes are of more general interest (e.g., Library of
Congress headings), we instead refer to text categorization.

The study of automated text categorization dates back more
than 40 years (Maron 1961). In the last decade statistical ap-
proaches have dominated the research literature and, increas-
ingly, operational practice. Statistical supervised learning ap-
proaches to text categorization induce (“learn”) a classifier (i.e.,
a rule that decides whether or not a document should be as-
signed to a category) from a set of labeled documents (i.e., doc-
uments with known category assignments). Depending on the
category scheme, a categorization task may be framed as one
or more binary and/or polychotomous classification problems.
Sebastiani (2002) provided a broad overview of statistical ap-
proaches to text classification.

Documents to be classified are typically represented as vec-
tors of numeric feature values derived from words, phrases, or
other characteristics of documents. The dimensionality of these
vectors ranges from 103 to 106 or more. Early text categoriza-
tion researchers therefore focused on learning algorithms that
were both computationally efficient (for speed) and restricted
in the classifiers that they could produce (to avoid overfitting).
Examples include naive Bayes (Maron 1961; Lewis 1998) and
the Rocchio algorithm (Rocchio 1971). Feature selection was
often used to discard most features from the document vectors.

Greater computing power and new regularization approaches
now allow learning of less-restricted classifiers both efficiently
and with little overfitting. Example approaches include support
vector machines (Joachims 1998; Zhang and Oles 2001; Lewis,
Yang, Rose, and Li 2004), boosting (Schapire and Singer 2000),
and ridge logistic regression (Zhang and Oles 2001). But, these
methods still require selecting features and/or stopping fitting
short of convergence if they are to produce compact (and thus
efficient) classifiers.

Many of the characteristics of text categorization (e.g., short,
fat data sets with murky relationships between features and
class labels) are shared by other language processing applica-
tions. Indeed, as in text categorization, statistical techniques
have displaced, or at least supplemented, the once-dominant
knowledge engineering approach across all of computational
linguistics. We briefly discuss other language processing tasks
in which the approach described in this article might prove ap-
plicable.

As mentioned earlier, text categorization is just one of a range
of text classification tasks. Supervised learning approaches have
been applied to more personalized text classification tasks, such
as sorting user e-mail and alerting users to news stories of in-
terest. Filtering of text streams (for junk email, pornography,
or proprietary information) straddles topical and personalized
classification and in some cases must deal with an adversary
attempting to evade classification (Madigan 2005). Authorship
attribution (Mosteller and Wallace 1964; Madigan et al. 2005a;
Madigan, Genkin, Lewis, and Fradkin 2005b) is an unusual

classification task in which choosing training data, defining fea-
tures, and even specifying the number of classes are tricky is-
sues.

The foregoing applications treat documents as atomic units
converted to feature vectors. Other tasks process language di-
rectly as a sequence of linguistic units. The goal may be linguis-
tic analysis, such as finding the syntactic structure of a sentence
or the meaning of an ambiguous word, or may be application-
oriented, such as finding all the names of companies in a set of
documents. Still other tasks involve transducing language from
one form to another, as in optical character recognition, speech
recognition, machine translation, and summarization. A range
of statistical approaches have been applied to such tasks, some
that are explicitly sequential (many flavors of Markov models)
and others that convert sequential data into vectors. Good texts
on statistical language processing include those of Manning and
Schütze (1999) and Jurafsky and Martin (2000). The use of text
in data mining has been discussed by Weiss, Indurkhya, Zhang,
and Damerau (2005) and Berry (2004).

3. THE MODEL

We are interested in learning classifiers, y = f (x), from a set
of training examples D = {(x1, y1), . . . , (xi, yi), . . . , (xn, yn)}.
For text categorization, the vectors xi = [xi,1, . . . , xi,j, . . . , xi,d]T

consist of transformed word frequencies from documents
(Sec. 5.1). The values yi ∈ {+1,−1} are class labels encod-
ing membership (+1) or nonmembership (−1) of the vector in
the category.

Concretely, we are interested in conditional probability mod-
els of the form

p(y = +1|β,xi) = ψ(βTxi) = ψ

(∑
j

βjxi,j

)
. (1)

In what follows we use the logistic link function

ψ(r) = exp(r)

1 + exp(r)
, (2)

thereby producing a logistic regression model.
For a text categorization problem, p(y = +1|xi) will be an

estimate of the probability that the ith document belongs to the
category. The decision of whether to assign the category can be
based on comparing the probability estimate with a threshold
or, more generally, by computing which decision gives optimal
expected utility.

For a logistic regression model to make accurate predictions
for future inputs, we must avoid overfitting the training data.
One Bayesian approach to avoiding overfitting involves a prior
distribution on β specifying that each βj is likely to be near 0.
Next we describe several such priors.

3.1 Gaussian Priors and Ridge Logistic Regression

Perhaps the simplest Bayesian approach to the logistic re-
gression model is to impose a univariate Gaussian prior with
mean 0 and variance τj > 0 on each parameter βj,

p(βj|τj) = N(0, τj) = 1√
2πτj

exp

(−β2
j

2τj

)
, j = 1, . . . ,d.

(3)
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The mean of 0 encodes our prior belief that βj will be near 0.
The variances τj are positive constants that we must specify.
A small value of τj represents a prior belief that βj is close to
0. A large value of τj represents a less-informative prior be-
lief. In the simplest case we let τj equal τ for all j. We assume
a priori that the components of β are independent, and hence
the overall prior for β is the product of the priors for each of
its component βj’s. Finding the maximum a posteriori (MAP)
estimate of β with this prior is equivalent to ridge regression
(Hoerl and Kennard 1970) for the logistic model (Santner and
Duffy 1989, sec. 5.4; le Cessie and van Houwelingen 1997).

This Gaussian prior, although favoring values of βj near 0,
does not favor the βj’s being exactly equal to 0. Absent un-
usual patterns in the data, the MAP estimates of all βj’s will be
nonzero. Previous authors have used feature selection to obtain
sparse text classifiers with a Gaussian prior (Zhang and Oles
2001; Zhang and Yang 2003).

3.2 Laplace Priors and Lasso Logistic Regression

To produce a prior favoring sparse solutions, we again as-
sume that βj arises from a Gaussian distribution with mean 0
and variance τj,

p(βj|τj) = N(0, τj), j = 1, . . . ,d. (4)

Further assume, a priori, that the τj’s arise from an exponential
distribution with density

p(τj|γ ) = γj

2
exp

(
−γj

2
τj

)
, γ > 0. (5)

Integrating out τj then gives an equivalent nonhierarchical
double-exponential (Laplace) distribution with density

p(βj|λj) = λj

2
exp(−λj|βj|), (6)

where λj = √
γ j > 0. In what follows, we assume that λj equals

λ for all j. As before, the prior for β is the product of the priors
for its components. At 0, the first derivative of this density is
discontinuous. The distribution has mean 0, mode 0, and vari-
ance 2/λ2.

Figures 1 and 2 show the effect of hyperparameter settings
on the MAP logistic regression parameters on a particular data
set with eight predictor variables. Figure 1 shows the effect of
a Gaussian prior distribution on each parameter, with all Gaus-
sians having the same variance. When that variance is small,
the resulting MAP estimates are small, approaching 0 as the
variance approaches 0. When that variance is large, the MAP
estimates are similar to the maximum likelihood estimates. The
vertical dashed line corresponds to a variance of .01. Figure 2
shows the equivalent picture for the Laplace prior. As with the
Gaussian prior, the MAP estimates range from all zeroes to the
maximum likelihood estimates. However, unlike the Gaussian
case, intermediate choices for the prior variance lead to MAP
estimates where some components of β are 0 whereas others
are not. The vertical dashed line corresponds to a variance of
.27, giving a posterior mode where two of the parameters are 0.
Hastie, Tibshirani, and Friedman (2001) showed similar plots
for linear regression.

Tibshirani (1996) introduced the LASSO for linear regres-
sion as an alternative to feature selection for producing sparse

Posterior Modes with Varying Hyperparameter—Gaussian

Figure 1. MAP estimates of logistic regression parameters for
Gaussian priors with specified variances. The vertical dotted line
shows estimates with mean 0, variance .01, and Gaussian prior on each
parameter.

models. The lasso estimate was defined as a least squares es-
timate subject to a constraint on the sum of absolute values
of the coefficients. Tibshirani observed that this was equiva-
lent to a Bayesian MAP estimate using a Laplace prior, as

Posterior Modes with Varying Hyperparameter—Laplace

Figure 2. MAP estimates of logistic regression parameters for
Laplace priors with specified variances. The data set is the same as in
Figure 1. The vertical dotted line shows estimates with mean 0, vari-
ance .27, Laplace prior on each parameter.

TECHNOMETRICS, AUGUST 2007, VOL. 49, NO. 3



294 ALEXANDER GENKIN, DAVID D. LEWIS AND DAVID MADIGAN

presented earlier. Since then, the use of constraints or penal-
ties based on the absolute values of coefficients has been used
to achieve sparseness in logistic regression and many other
data-fitting tasks (Girosi 1998; Tipping 2001; Figueiredo and
Jain 2001; Figueiredo 2003; Efron, Hastie, Johnstone, and Tib-
shirani 2004; Madigan and Ridgeway 2004). Zou and Hastie
(2005) discussed some of the limitations of the lasso and a par-
ticular generalization.

4. FINDING THE MAP ESTIMATE

Ideally we would use the posterior distribution of β to com-
pute a posterior predictive distribution for a desired ynew, given
the corresponding xnew (Mallick, Ghosh, and Ghosh 2005). In
many practical tasks, however, efficiency requires that we base
predictions on a point estimate of β . This simplification does
not necessarily lead to less-accurate predictions (Smith 1999).

For the logistic regression model, with the priors that we have
discussed, no inexpensive computational procedure for finding
the posterior mean seems to exist. Hence we focus on posterior
mode estimation.

The posterior density for β with the logistic link on data set
D is

L(β) = p(β|D) ∝
(

n∏
i=1

1

1 + exp(−βTxiyi)

)
p(β), (7)

where p(β) is the prior on β and i indexes the training exam-
ples in D. For Gaussian priors with mean 0 and variance τ on
the βj’s, the log posterior (ignoring the normalizing constant) is
given by

l(β) = −
n∑

i=1

ln
(
1 + exp(−βTxiyi)

)

−
d∑

j=1

(
ln

√
τ j + ln 2π

2
+ β2

j

2τj

)
, (8)

and for Laplace priors with mean 0 and variance 2/λ2
j , we have

l(β) = −
n∑

i=1

ln
(
1 + exp(−βTxiyi)

)

−
d∑

j=1

(ln 2 − lnλj + λj|βj|), (9)

with j = 1, . . . ,d indexing the features in both cases. The
MAP estimate is then the β that maximizes l(β) [or minimizes
−l(β)].

4.1 The Logistic Model From an
Optimization Standpoint

The negated log-posterior for a logistic regression model is
convex with either the Gaussian or Laplace prior, and a wide
variety of convex optimization algorithms are applicable. For
maximum likelihood logistic regression, the most common op-
timization approach in statistical software is some variant of
the multidimensional Newton–Raphson method implemented

through iteratively reweighted least squares (Dennis and Schn-
abel 1989; Hastie and Pregibon 1992). Newton algorithms have
the advantage of converging in very few iterations. Further-
move, the matrix of second derivatives that they compute has
other uses, for example, in finding asymptotic confidence inter-
vals for parameters.

For high-dimensional problems such as text categorization,
however, Newton algorithms have the serious disadvantage of
requiring O(d2) memory, where d is the number of model
parameters. Consequently, various alternate optimization ap-
proaches have been explored for maximum likelihood and MAP
logistic regression in the large-d case (Kivinen and Warmuth
2001; Zhang and Oles 2001; Malouf 2002; Jin, Yan, Zhang,
and Hauptmann 2003; Komarek and Moore 2003).

4.2 The CLG Algorithm for Ridge Logistic Regression

We based our implementation on the CLG algorithm (Zhang
and Oles 2001), a cyclic coordinate descent (Luenberger 1984,
sec. 7.9) optimization algorithm tuned for fitting a logistic
model with a Gaussian prior, due to its efficiency and ease of
implementation. In this section we describe the CLG algorithm
in detail.

A cyclic coordinate descent algorithm begins by setting all
variables to some initial value. It then sets the first variable
to a value that minimizes the objective function, holding all
other variables constant. This is a one-dimensional optimiza-
tion problem. The algorithm then finds the minimizing value
of a second variable, while holding all other values constant
(including the new value of the first variable). Then the third
variable is optimized, and so on. When all variables have been
traversed, the algorithm returns to the first variable and starts
again. Multiple passes are made over the variables until some
convergence criterion is met.

When fitting a ridge logistic regression model, the one-
dimensional problems involve finding βnew

j , the value for the
jth parameter that gives the minimum value for −l(β), assum-
ing that the other βj′ ’s are held at their current values. Finding
this βnew

j is equivalent to finding the z that minimizes

g(z) =
(

n∑
i=1

f
(
ri + (z − βj)xijyi

)) + z2

2τj
, (10)

where the ri = βTxiyi are computed using the current value of
β and so are treated as constants, f (r) = ln(1 + exp(−r)), and
Gaussian penalty terms not involving z are constant and thus
omitted.

The βnew
j that gives the minimum value of g(·) does not

have a closed form, so an optimization procedure must be used
even for this one-dimensional problem. Zhang and Oles used a
method related to the one-dimensional Newton method (Press,
Teukolsky, Vetterling, and Flannery 1992).

The classic Newton method would approximate the objective
function g(·) by the first three terms of its Taylor series at the
current value of the parameter being optimized (βj for us). This
approximation is

g̃(z) = g(βj) + g′(βj)(z − βj) + 1

2
g′′(βj)(z − βj)

2

≈ g(z), (11)
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where for a ridge logistic regression model, we have

g′(βj) = dg(z)

dz

∣∣∣∣
z=βj

=
(

n∑
i=1

−xijyi
1

1 + exp(ri)

)
+ βj

τj
. (12)

and

g′′(βj) = d2g(z)

d2z

∣∣∣∣
z=βj

=
(

n∑
i=1

x2
ij

exp(ri)

(1 + exp(ri))2

)
+ 1

τj
. (13)

The approximation in (11) has its minimum at

β
(new)
j = arg min

z
g(z) = βj − g′(βj)

g′′(βj)
. (14)

The increment that we must add to βj to reach β
(new)
j is then

�βj = β
(new)
j − βj = − g′(βj)

g′′(βj)
. (15)

Note that because g̃′′(z) = g′′(z) is strictly positive (assuming
that xij �= 0 for some i), we know that we have a minimum.

In CLG, Zhang and Oles modified the update in (15) in three
ways. First, as in most applications of Newton’s method, con-
vergence requires avoiding large updates in regions where a
quadratic is a poor approximation to the objective. Zhang and
Oles specified a value �j > 0 that |�βj| is not allowed to exceed
on a single iteration. This is similar to the trust region approach
to Newton’s method (Dennis and Schnabel 1989). Zhang and
Oles presented several alternative update rules for adapting the
width, 2�j, of the trust region from iteration to iteration. We
used the update

�new
j = max(2|�βj|,�j/2), (16)

where �j is the trust region half-width used with βj on the cur-
rent pass through the coordinates, �βj is the update made to βj

on this pass, and �new
j is the trust region half-width to be used

on the next pass.
Second, instead of using a truncated Taylor series [eq. (11)]

as their quadratic approximation in Newton’s method, CLG
uses

ĝ(z) = g(βj) + g′(βj)(z − βj) + 1

2
G(βj)(z − βj)

2

≈ g(z), (17)

where

G(βj) =
(

n∑
i=1

x2
ijF(ri,�j|xij|)

)
+ 1

τj
.

Zhang and Oles allow F(r, δ) to be any convenient function that
satisfies (for δ > 0)

F(r, δ) ≥ sup
|�r|≤δ

f ′′(r + �r)

= sup
|�r|≤δ

exp(r + �r)

(1 + exp(r + �r))2
.

In words, F(ri,�j|xij|) is an upper bound on the second deriva-
tive of f for values of ri reachable by updates in the trust region.
For the logistic model, Zhang and Oles used

F(r, δ) = min

(
.25,

1

2 exp(−δ) + exp(r − δ) + exp(−r − δ)

)
.

In our implementation, we used

F(r, δ) =
⎧⎨
⎩

.25, if |r| ≤ δ
1

2 + exp(|r| − δ) + exp(δ − |r|) , otherwise.

Using ĝ(·), (15) gives the following update for a Gaussian
prior:

�vj = − ĝ′(βj)

ĝ′′(βj)

=
∑n

i=1(xijyi)/(1 + exp(ri)) − βj/τj∑n
i=1 x2

ijF(ri,�j|xij|) + 1/τj
. (18)

Applying the trust region restriction then gives the actual update
used in CLG,

�βj =
⎧⎨
⎩

−�j if �vj < −�j

�vj if −�j ≤ �vj ≤ �j

�j if �j < �vj.
(19)

Third, instead of iterating β
(new)
j = βj + �βj to convergence,

CLG does this only once before going on to the next βj′ . The

optimal value of β
(new)
j during a particular pass through the co-

ordinates depends on the current values of the other βj′ ’s. These

are themselves changing, so there is little reason to tune β
(new)
j

to high precision. We simply want to decrease g(·), and thus
decrease −l(β), before going on to the next βj′ .

Summarizing, Figure 3 presents pseudocode for our imple-
mentation of CLG. Zhang and Oles presented several possibil-
ities for the convergence test. Our code declares convergence
when (

∑n
i=1 |�ri|)/(1 + ∑n

i=1 |ri|) ≤ ε, where
∑n

i=1 |�ri| is
sum of the changes in the linear scores of the training examples
between the beginning and end of a pass through the coordi-
nates, and ε is a user specified tolerance. The optimization is
considered to converge if the change is small either in absolute
terms or as a fraction of the magnitude of the linear scores. The
experiments that we report here use ε = .0005, but larger values
can be used with only a minimal impact on effectiveness.

Some implementation details are worth noting. Like Zhang
and Oles, we maintain for each training document the value,
ri, of the dot product between the current β and xi. Each time
that a parameter βj in β is updated, the affected values of ri

are updated. Only the ri’s for examples in which xij �= 0 are
affected by a change in βj, and because text data are sparse,
the vast majority of the xij’s are equal to 0. Therefore, we can
update the ri’s very efficiently by storing the vectors in inverted
index form, that is, as an array of triples (j, i, xij), sorted by j,
containing entries for all and only the nonzero values of xij.

TECHNOMETRICS, AUGUST 2007, VOL. 49, NO. 3
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Algorithm 1: CLG (Zhang and Oles 2001)
(1) initialize βj ← 0,�j ← 1 for j = 1, . . . ,d; ri ← 0 for i = 1, . . . ,n
(2) for k = 1,2, . . . until convergence
(3) for j = 1, . . . ,d
(4) compute tentative step �vj [eq. 18]
(5) �βj ← min(max(�vj,−�j),�j) (limit step to trust region)
(6) �ri ← �βjxijyi, ri ← ri + �ri for i = 1, . . . ,n
(7) βj ← βj + �βj

(8) �j ← max(2|�βj|,�j/2) (update size of trust region)
(9) end
(10) end

Figure 3. The Zhang and Oles CLG algorithm with our choice of trust region update.

4.3 Modifying CLG for the Laplace Prior

We modified the CLG algorithm to fit lasso logistic regres-
sion models as well. Because the log-posterior density corre-
sponding to a Laplace prior lacks finite first and second deriv-
atives when one or more βj’s are 0, some special handling is
necessary.

With the Laplace prior, the Zhang–Oles tentative update is
defined only for βj �= 0 and is

�vj = − ĝ′(βj)

ĝ′′(βj)

=
∑n

i=1 xijyi/(1 + exp(ri)) − λj sgn(βj)∑n
i=1 x2

ijF(ri,�j|xij|)
, (20)

where sgn(βj) is +1 for βj > 0 and −1 for βj < 0. This update
has two problems: It is undefined at βj = 0, and it is not guar-
anteed to decrease the objective if it would change the sign of
βj. [The necessary condition on F(·) does not hold for intervals
that span 0.]

We solve the second problem simply by setting β
(new)
j to 0

if the update would otherwise change its sign. To deal with the
first problem, when the starting value of βj is 0, we attempt
an update in both directions and see whether either one suc-
ceeds. That is, if setting sgn(βj) to +1 in (20) yields a �vj > 0,
or setting sgn(βj) to −1 yields a �vj < 0, we then accept the
corresponding update; otherwise, we keep βj at 0. Note that at
most one update direction can be successful, due to the convex-
ity of g(·). The resulting CLG-lasso algorithm is identical to
the CLG (Fig. 3), except that the computation of �vj is done as
shown in Figure 4.

4.4 Selecting the Hyperparameter

The Gaussian and Laplace priors both require a prior vari-
ance, σ 2

j , for parameter values. (The actual hyperparameters are

τj = σ 2
j for the Gaussian and λj = √

2/σj for the Laplace.) We
tried two approaches to setting the prior variance. The first was
simply

σ 2
j = d

u
= dn

/ n∑
i=1

‖xi‖2
2, (21)

where d is the number of predictor features (plus 1 for the con-
stant term) and u is the mean squared Euclidean norm of the

training examples (after feature selection, if any). This heuris-
tic was loosely inspired by a similar heuristic used to choose the
regularization parameter in SVM_Light (Sec. 5.3.1). We call the
value chosen in this way the norm-based value of the hyperpa-
rameter.

We also tested choosing the hyperparameter by partial 10-
fold cross-validation on the training set. For each category, we
randomly separated the training set into 10 portions and did
2 runs of training on 9 portions and testing on the 10th (val-
idation) portion. (Preliminary experiments showed that using
two folds gave results very similar to those using all 10 folds,
and was of course 5 times faster.) In each run we tested values
for the Laplace hyperparameter λj from the range 0.01–316 by
multiples of

√
10, or values for the Gaussian hyperparameter

τj from the range .0001–10,000 by multiples of 10. For each
choice of the hyperparameter, we computed the sum of log-
likelihoods for the documents in the validation portions and
chose the hyperparameter value that maximized this sum. We
call this the cross-validated value of the hyperparameter.

4.5 Implementation

We have publicly released an open-source C++ imple-
mentation of the foregoing algorithms, Bayesian binary re-

Algorithm 2: Computation of �vj in CLG-lasso
(4.1) if βj = 0
(4.2) s ← 1 (try positive direction)
(4.3) compute �vj by formula (20)
(4.4) if �vj ≤ 0 (positive direction failed)
(4.5) s ← −1 (try negative direction)
(4.6) compute �vj by formula (20)
(4.7) if �vj ≥ 0 (negative direction failed)
(4.8) �vj ← 0
(4.9) endif
(4.10) endif
(4.11) else
(4.12) s ← βj/|βj|
(4.13) compute �vj by formula (20)
(4.14) if s(βj + �vj) < 0 (cross over 0)
(4.15) �vj ← −βj

(4.16) endif
(4.17) endif

Figure 4. Computation of �vj in the CLG-lasso algorithm.
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gression (BBR), at http://bayesianregression.org, and have
used it in a wide variety of applications. We have also de-
veloped an extension of the algorithms to polytomous lo-
gistic regression (Madigan et al. 2005a,b) and provide an
implementation, Bayesian multinomial regression (BMR), at
http://bayesianregression.org. Both BBR and BMR include an
“autosearch” capability for hyperparameter selection. Similar
algorithms for logistic regression have been developed by She-
vade and Keerthi (2003), Krishnapuram, Hartemink, Carin, and
Figueiredo (2005), and others.

5. METHODS

We tested lasso logistic regression on five text categorization
data sets. In this section we discuss how texts were represented
as numeric vectors, what documents and category labels were
used, and how effectiveness was measured and tuned. We also
discuss two state-of-the-art text categorization approaches used
as benchmarks: support vector machines (SVMs), and ridge lo-
gistic regression combined with feature selection.

5.1 Text Representation

Representing a document for statistical classification has
two major aspects: text processing and term weighting. Text
processing breaks the character string into tokens, that is, indi-
vidual terms, such as words or phrases. We used very simple
methods, as described later. Term-weighting methods tabulate
the number of occurrences of each distinct term in a document
and across documents. They then compute a numeric weight for
each term with respect to each document. We represent each
document as a vector of such weights.

We used a form of TF × IDF (term frequency times inverse
document frequency) term weighting with cosine normalization
(Salton and Buckley 1988). This gives term j in document i an
initial unnormalized weight of

xu
ij =

⎧⎨
⎩

0 if n(i, j) = 0(
1 + ln n(i, j)

)
ln

|D| + 1

n(j) + 1
, otherwise,

where n(j) is the number of training documents that contain
term j, n(i, j) is the number of occurrences of term j in document
i, and |D| is the total number of training documents. Increment-
ing the IDF numerator and denominator by 1 is a variant of IDF
weighting that gives terms occurring only on the test set a de-
fined IDF value. All experiments separate the data into training
and test sets, and all IDF weights are based on the training set.

Then, to reduce the impact of document length, we “cosine-
normalize” the feature vectors to have a Euclidean norm of 1.0.
The final weights are

xij = xu
ij√∑

j′ xu
ij′ × xu

ij′
.

The summation is over all terms in the corpus, but, of course,
most xij = 0.

In addition to one parameter for each term, our vectors in-
clude a constant term, 1.0 (which is omitted from cosine nor-
malization). A constant term is usual in statistical practice but
is often omitted in text categorization studies. The experiments
here use a Gaussian or Laplace prior on the model parameter
for the constant term, just as for the other model parameters.

5.2 Data Sets

Our experiments used five standard text categorization test
collections. Three of these—ModApte, RCV1-v2, and
OHSUMED—each contain on the order of 100 distinct binary
classification problems corresponding to predicting expert hu-
man indexing decisions. The other two—WebKB Universities
and 20 Newsgroups—are based on a smaller number of binary
classifications of uncertain quality but are included because
they are widely used in published research.

5.2.1 ModApte. Our first collection was the ModApte
subset of the Reuters-21578 collection of news stories (Lewis
2004) available at (http://www.daviddlewis.com/resources/
testcollections/reuters21578/ ). The ModApte subset contains
9,603 training documents and 3,299 test documents. Docu-
ments in the ModApte data set belong to 0 or more of a set
of “topic” categories corresponding to news areas of economic
interest. We used the 90 topic categories that have at least 1
positive training example and 1 positive test example on the
ModApte subset.

Text processing used Lemur (see http://www-2.cs.cmu.edu/˜
lemur/ ), which performed a simple tokenization into words (us-
ing its TrecParser module), discarded words from the SMART
stopword list of 572 words (available at ftp://ftp.cs.cornell.edu/
pub/smart/english.stop or as part of the RCV1-v2 data set),
and applied the Lemur variant of the Porter stemmer (Porter
1980, 2003) to remove word endings. All stems from text in
the <TITLE> and <BODY> SGML elements were combined
to produce raw TF weights. There were 21,989 unique terms in
the ModApte data set, 18,978 of which occured in the training
set and thus potentially had nonzero parameters in a classifier.

5.2.2 RCV1-v2. The second data set was RCV1-v2, a
test categorization test collection of 804,414 newswire stories
based on data released by Reuters, Ltd. (available at http://trec.
nist.gov/data/reuters/reuters.html). We used the LYRL2004
training/test split (Lewis et al. 2004) of RCV1-v2, which con-
tains 23,149 training documents and 781,265 test documents.
However, for efficiency we took a fixed, random, roughly 10%
subset (77,993 documents) of the test documents as our test set
in all experiments.

We used all 103 RCV1-v2 “topic” categories in our exper-
iments. The topic categories in RCV1-v2 are different from
those in Reuters-21578 and cover a broader range of news
types. Two of the categories have no positive training exam-
ples, and so a default classifier that predicts “no” for all test
documents was assumed. Classifiers were trained for the other
101 categories. Each RCV1-v2 document is known to belong
to at least 1 of the remaining 101 categories, but we did not use
that fact in classification.

Term weights were computed from stemmed token files dis-
tributed with RCV1-v2. A total of 47,152 unique terms were
present in the training set, and 288,062 unique terms were
present in the union of the training set and the 77,993-document
test set.

5.2.3 OHSUMED. The third data set consists of Med-
line records from 1987–1991, formatted for the SMART re-
trieval system and distributed as part of the OHSUMED text-
retrieval test collection (Hersh, Buckley, Leone, and Hickman
1994) (available at ftp://medir.ohsu.edu/pub/ohsumed/ ). Of the
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348,566 OHSUMED records, we used the 233,445 records in
which the title, abstract, and medical subject headings (MeSH)
category fields were all nonempty. We used the 83,944 such
documents from 1987 and 1988 as our training set and the
149,501 such documents from 1989–1991 as our test set. Our
binary classification tasks were to predict the presence or ab-
sence of MeSH (Lowe and Barnett 1994) controlled vocabulary
categories in the records. We used the same 77 categories as
used by Lewis, Schapire, Callan, and Papka (1996).

The text processing was the same as for ModApte. All text
from the .T (title) and .W (abstract) fields was used in comput-
ing TF weights. There were 73,269 distinct terms in the training
set and 122,076 terms in the union of the training and test sets.

5.2.4 WebKB Universities. This data set (http://www.cs.
cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/ ) contains
HTML pages downloaded from university computer science
departments in January 1997. The data set comprises 8,282
pages, each of which is manually classified into exactly 1 of 7
categories: student, faculty, staff, department, course, project,
or other. However, we treated these as seven binary classi-
fication problems. Four universities are represented by a large
number of pages: Cornell (867 pages), Texas (827), Washington
(1,205), and Wisconsin (1,263). Another 4,120 miscellaneous
pages were collected from a range of other universities.

We followed the methodological recommendations from
the foregoing web page. The Rainbow system (available at
http://www.cs.cmu.edu/mccallum/bow) was used to tokenize
the documents. Training was performed on documents from
three of the main universities plus those from miscellaneous
universities, with testing on the pages from the fourth, held-out
university. This was repeated, using each of the four main uni-
versities as a test set once, and the results were averaged. Thus
number of terms in the training set varied, ranging up to 85,600.

5.2.5 20 Newsgroups. The final test collection, 20 News-
groups, consists of roughly equal-sized samples of postings to
20 Usenet newsgroups. Some postings belong to more than 1
newsgroup, and we treated the data set as specifying 20 binary
classification problems. We used the “by date” training/test split
(see http://people.csail.mit.edu/people/jrennie/20Newsgroups/ )
giving 11,314 training documents and 7,532 test documents.

After discarding all header fields except Subject:, text pro-
cessing was the same as for ModApte. There were 102,760 dis-
tinct terms in the training set, and 138,700 terms in the union of
the training and test sets.

5.3 Benchmark Algorithms

We compared lasso logistic regression to two alternatives.
5.3.1 Support Vector Machines. The SVM algorithm for

learning linear classifiers is consistently one of the most effec-
tive approaches to text categorization (Joachims 1998; Zhang
and Oles 2001; Lewis et al. 2004). It produces models with a
form of dual-space sparseness that may or may not translate
into sparseness of linear model coefficients.

We trained a single SVM classifier for each category using
version 5.00 of SVM_Light (Joachims 1998, 2002) (available
at http://svmlight.joachims.org/ ). All software parameters were
left at default values except the regularization parameter C (op-
tion -c). The value of C was selected from the range 10−4–104

(by multiples of 10) using 10-fold cross-validation. The C that
gave the highest cross-validated estimate for the sum of hinge
losses [

∑n
i=1 max(0,−βTxiyi)] was chosen. We found this to

be more effective than the usual approach of maximizing cross-
validated classification accuracy.

5.3.2 Ridge Logistic Regression With Feature Selection.
Ridge logistic regression is widely used in text classification,
but usually only after low-quality features are discarded. We
tested three feature selection methods in combination with ridge
logistic regression, and also evaluated no feature selection.

The feature selection approaches each computed some qual-
ity measure for each feature, ranked features by that measure,
and then used only the top-ranked features when learning a clas-
sifier. A different set of features was chosen for each category.
We tested each method of choosing feature sets with 5, 50, or
500 features, with the same number of features used for all cate-
gories. The constant term was always used, so the total number
of model parameters was 6, 51, and 501. We did not test more
computationally expensive approaches to choosing the number
of features, such as cross-validation.

The first feature quality measure was the chi-squared test for
independence between two variables. This measure chooses the
features that are least independent from the class label and is
widely used in text categorization (Yang and Pedersen 1997;
Sebastiani 2002). The chi-squared measure is based on a 2 × 2
contingency table between a predictor term j and a predicted
category label. Let a be the number of training documents in
the category and containing term j (“true positives”), let b be the
number in the category but not containing j (“false negatives”),
let c be the number not in the category but containing j (“false
positives”), and let d be the number neither in the category nor
containing j (“true negatives”). Let n = a+b+c+d be the total
number of training documents. Then the chi-squared measure is

χ2 = n(ad − bc)2

(a + b)(c + d)(a + c)(b + d)
. (22)

Our second measure, binormal separation (BNS), was the
best measure in a recent study of feature selection for text cate-
gorization (Forman 2003). Forman defined BNS as

B(j) =
∣∣∣∣−1

(
a

a + b

)
− −1

(
c

c + d

)∣∣∣∣, (23)

where  is the standard normal cumulative distribution func-
tion. We used Ackham’s algorithm to compute −1 (Ackham
2004) and, as suggested by Forman, replaced values of −1(0)

by .0005. Forman justified BNS in terms of receiver operating
characteristic analysis.

Most feature selection measures used in text classifica-
tion (including the two just discussed) take into account only
the presence or absence of terms in documents. Our third
measure—the Pearson product-moment correlation—makes
use of term weights in choosing features. This measure is

rj =
∑n

i=1(xij − x(j))(yi − y)√∑n
i=1(xij − x(j))2

√∑n
i=1(yi − y)2

, (24)

where x(j) is the mean of xij across the training documents and
y is the mean of yi (+1 or −1 class labels) for the category of
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interest across the training documents. We use |rj| as our fea-
ture quality measure. The Pearson product-moment correlation
measures the degree to which there is a linear relationship be-
tween the xij’s for some term j and the yi’s for the category of
interest. It has been used for feature selection in various ma-
chine learning tasks.

5.4 Effectiveness Measure

One effectiveness measure is the number of test set errors
(false negatives + false positives) or, if normalized, the error
rate,

E = false positives + false negatives

|T | , (25)

where |T | is the size of the test set. We also measured effective-
ness of our classifiers using van Rijsbergen’s F measure (van
Rijsbergen 1972, 1979; Lewis 1995). We set the F measure’s
parameter β (not to be confused with the β’s of our logistic
models) to 1.0, giving the measure F1:

F1 = 2 × true positives

2 × true positives + false positives + false negatives
.

(26)

We define F1 to have the value 1.0 if the denominator is 0,
which can occur if no test set documents belong to the class of
interest. We sometimes report the unweighted arithmetic mean
of F1 across the categories for a particular test collection, that
is, the macroaveraged F1.

5.5 Threshold Selection

Logistic regression models produce an estimate of p(y =
+1|β,xi), the probability that vector xi belongs to the category
of interest. For classification, we must convert these estimates to
binary class label predictions. The simplest approach is to pre-
dict y = +1 (assign the category) when p(y = +1|β,xi) ≥ .5.
This minimizes the expected test set error rate when the pre-
dicted probabilities equal the actual probabilities used in a prob-
abilistic labeling. We refer to .5 as the default threshold.

Model inadequacies and finite training data mean that the
probabilities produced by the logistic regression models may
not be well calibrated. Thus we also tested setting the thresh-
old for each category to the highest value that gave the mini-
mum possible number of training set classification errors. We
call these the tuned thresholds.

Maximizing F1 is trickier than minimizing the error rate, be-
cause the optimal expected value of F1 cannot be achieved by
any single preset threshold for all test sets (Lewis 1995). For
simplicity, we used the same thresholds when evaluating by F1
that we used when evaluating by error rate. For linear models
produced by SVM_Light we tried both a default threshold (0),
and a tuned threshold chosen by minimizing number of training
set errors.

6. RESULTS

We evaluated both the raw effectiveness of lasso logistic re-
gression for text categorization and this regression’s ability to
provide more compact classifiers than competing approaches.

6.1 Effectiveness of Lasso Logistic Regression

Our first set of experiments compared the effectiveness of
lasso logistic regression with ridge logistic regression and
SVMs. Each algorithm used all training set features and a reg-
ularization parameter tuned by cross-validation on the training
set. Table 1 compares macroaveraged F1 values for the three
algorithms (with both default and tuned thresholds) on the five
test collections. Lasso logistic regression outperforms ridge lo-
gistic regression under all conditions. With default thresholds,
it outperforms SVMs on four of five data sets, and with tuned
thresholds it outperforms SVMs on three of five data sets.

To test the significance of differences among the algorithms,
we looked at the difference in per-category F1 values be-
tween pairs of algorithms and applied the two-tailed Wilcoxon
matched-pairs signed-ranks test (Table 2). For all categories, we
calculated the differences in F1 values and ranked them from
smallest to largest by absolute value. We then compared the
sum of positive ranks (first method has greater F1) and the sum
of negative ranks (second method has greater F1). Algorithms
significantly better at the p = .05 level are indicated in bold.
By this measure, lasso logistic regression was significantly bet-
ter than ridge logistic regression on ModApte, RCV1-v2, and
OHSUMED and similar to ridge logistic regression on WebKB
and 20 Newsgroups. Lasso logistic regression was significantly
better than SVMs on WebKB, significantlyworse on 20 News-
groups, and tied on the other data sets. Note that these signif-
icance tests require a debatable assumption of independence
among categories.

Table 1. Text categorization effectiveness (macroaveraged F1) on five collections

Test collection

Algorithm Threshold ModApte RCV1-v2 OHSUMED WebKB 20 NG

Lasso Default 48.64 54.75 47.23 46.96 73.24
Ridge Default 37.63 47.72 36.09 45.73 71.47
SVM Default 37.69 44.87 25.28 44.14 75.15

Lasso Tuned 52.03 57.66 51.30 47.28 75.13
Ridge Tuned 39.71 52.42 42.99 46.03 73.67
SVM Tuned 52.09 57.26 49.35 39.50 81.19
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Table 2. Two-tailed Wilcoxon paired signed-ranks test on per-category F-measure values

Sum of ranks

Collection Algorithms Positive Negative p value

ModApte Lasso-ridge 1,667.0 163.0 .000
(90 categories) Lasso-SVM 969.5 921.5 .863

Ridge-SVM 204.5 1,811.5 .000

RCV1-v2 Lasso-ridge 3,925.0 926.0 .000
(103 categories) Lasso-SVM 2,112.0 2,739.0 .267

Ridge-SVM 1,031.0 3,625.0 .000

OHSUMED Lasso-ridge 2,359.0 416.0 .000
(77 categories) Lasso-SVM 1,462.0 1,239.0 .540

Ridge-SVM 599.0 2,102.0 .000

WebKB Lasso-ridge 197.0 128.0 .353
(7 categories) Lasso-SVM 299.0 79.0 .008

Ridge-SVM 228.0 123.0 .182

20 NG Lasso-ridge 156.0 54.0 .057
(20 categories) Lasso-SVM 1.0 209.0 .000

Ridge-SVM 0.0 210.0 .000

NOTE: The number of categories in each test collection is shown in first column.

Figure 5 is a parallel-coordinates plot showing the num-
ber of test set errors for each algorithm on the three data sets
with largest number of categories. Each connected triple of
points shows the number of test set errors made by ridge, lasso,

and SVM for a particular category. This plot serves as a re-
minder that for any given category, most test examples are
clear negatives and are classified similarly by all three algo-
rithms.

(a) (b) (c)

Figure 5. The number of test set errors for each category. (a) ModApte (90 categories); (b) RCV1-v2 (103 categories); (c) OHSUMED (77
categories). Results are shown for ridge logistic regression, lasso logistic regression, and SVMs on the three test collections with the largest
number of categories. The vertical axes show the logarithm of 1 plus the number of test set errors, plus a small uniform random jitter to separate
the categories. All algorithms use default thresholds, a regularization parameter chosen by training set cross-validation, and no feature selection.
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Table 3. Text categorization effectiveness (macroaveraged F1) on subsets of features

Hyperparameter

Collection Algorithm Number of features CV Norm

ModApte Lasso All (18,978) 52.03 52.58
Ridge All (18,978) 39.71 42.17
Ridge 500 50.14 41.40
Ridge 50 51.72 49.14
Ridge 5 47.04 49.48

RCV1-v2 Lasso All (47,152) 57.66 56.56
Ridge All (47,152) 52.42 52.85
Ridge 500 51.90 50.82
Ridge 50 44.84 46.31
Ridge 5 31.21 32.54

OHSUMED Lasso All (122,076) 51.30 48.92
Ridge All (122,076) 42.99 42.74
Ridge 500 43.46 40.24
Ridge 50 44.27 45.64
Ridge 5 42.40 41.98

WebKB Lasso All (varies) 47.16 44.94
Ridge All (varies) 46.07 42.50
Ridge 500 45.11 42.30
Ridge 50 36.62 36.60
Ridge 5 24.58 24.69

20 NG Lasso All (102,760) 75.13 76.31
Ridge All (102,760) 73.67 76.44
Ridge 500 74.63 73.44
Ridge 50 66.65 66.94
Ridge 5 53.87 53.97

NOTE: Results are for lasso and ridge logistic regression with prior variances chosen using training set cross-
validation (CV) or the norm-based heuristic (norm). Default thresholds were used. Feature subsets of the specified
size were chosen for each category using the BNS criterion.

6.2 Comparing Lasso With Feature Selection

In text categorization, ridge logistic regression is often used
in combination with feature selection,producing sparser and
more effective classifiers. To test this approach, we chose fea-
ture sets of size 5, 50, and 500 features for each category using
each of our three feature selection methods. We fit ridge logistic
regression models to these feature sets and, for completeness,
also fit lasso logistic regression and SVM models. We used de-
fault thresholds, and both norm-based and cross-validated hy-
perparameter settings. We summarize our results as follows:

• Feature selection often (although not always) improved
the effectiveness of ridge logistic regression. BNS beat the
other feature selection methods on macroaveraged F1, so
Table 3 shows results only for BNS. In no case, however,
did feature selection increase the macroaveraged F1 for
ridge logistic regression on a data set to exceed that of
lasso logistic regression with no feature selection.

• In no case did additional feature selection improve the
macroaveraged F1 of lasso logistic regression.

• Although it was not a focus of our experiments, we noted
that feature selection sometimes improved the results of
SVM models with default thresholds, but never improved
the results of SVM models with tuned thresholds. SVMs
built-in regularization is quite effective.

• Our use of cross-validation to choose the lasso hyperpara-
meter on a per-category basis while using fixed feature set
sizes for feature selection (the usual approach in text cat-
egorization research) perhaps gives an unfair unadvantage
to lasso. Note, however, that lasso retains its dominance
even with the (non-cross-validated) norm–based feature
selection approach.

The number of features selected by the lasso varied from cat-
egory to category but was always a small proportion of the full
feature set. Figure 6 shows number of features chosen for each
category on three collections; the other two collections are sim-
ilar. The results shown in Figure 6 are with cross-validated hy-
perparameters. With the norm-based hyperparameter we found
feature set sizes were 2–3 times larger: 2–892 (mean, 93.8;
standard deviation [SD], 167.9) for ModApte, 0–3750 (mean,
625.9; SD, 726.9) for RCV1-v2, and 0–2636 (mean, 241.3; SD,
393.3) for OHSUMED. Thus cross-validation gives a substan-
tial benefit in sparsity. Due to a limitation in the version of the
software used for these experiments, the intercept term was pe-
nalized in the same fashion as other parameters. Unsurprisingly,
in no case did lasso zero-out the parameter for the intercept
term.

We found a strong correlation between the number of positive
training examples and the number of features chosen. Figure 7
shows the relationship for the 90 categories and the 9,603 train-
ing examples of the ModApte collection. The other collections
showed similar patterns.

TECHNOMETRICS, AUGUST 2007, VOL. 49, NO. 3



302 ALEXANDER GENKIN, DAVID D. LEWIS AND DAVID MADIGAN

(a)

(b)

(c)

Figure 6. Number of features selected for each category in three test collections by lasso logistic regression (a) ModApte (21,989 features);
(b) RCV1-v2 (47,152 features); (c) OHSUMED (122,076 features). Hyperparameter values were chosen by training set cross-validation.

In our examples, the SVM models included many more fea-
tures than lasso models. For example, on the RCV1-v2 data
set, lasso with cross-validated hyperparameters produced mod-
els with 3–1,737 features (mean, 294.1; SD, 328.6), whereas
the SVM models had 299–28,481 features (mean, 8,414.5; SD,
5,859.6).

7. SUMMARY

Lasso logistic regression provides state-of-the-art text cat-
egorization effectiveness while producing sparse and thus ef-
ficient models. The approach is also useful in other high-
dimensional data analysis problems, such as predicting adverse
drug events (Hauben, Madigan, Gerrits, and Meyboom 2005).
Recent extensions broaden the range of applicability even fur-
ther. We have already mentioned the extension to polytomous
logistic regression, and other researchers have applied L1 regu-
larization to more complex models (Li and Yang 2004).

Richer prior distributions also may prove useful. Those used
in our experiments, although informative in the statistical sense,
are not based on any knowledge of language or the meaning of
categories. In recent work (Dayanik, Lewis, Madigan, Menkov,
and Genkin 2006), we used textual descriptions of categories,
user suggestions, and published reference materials to build pri-
ors that incorporate the knowledge that some features are likely

to be more useful than others, providing significantly improved
effectiveness.

Meinshausen (2005), Zhao and Yu (2006), and others have
discussed the limitations of the lasso as a feature selection al-
gorithm. Future work will explore alternatives such as Mein-
shausen’s “relaxed lasso.” Several algorithms that estimate
“regularization paths” have emerged in recent years (see, e.g.,
Park and Hastie 2006). These algorithms have the attractive
property of estimating coefficients for all possible hyperpara-
meter values. However, scaling such algorithms to huge appli-
cations remains challenging.
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Figure 7. Number of relevant (positive) examples for a category
versus number of nonzero parameters in fitted lasso model. Fitting was
on all 9,603 ModApte training documents. Hyperparameters were cho-
sen by cross-validation. Axes use logarithmic (base e) scales.
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