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Abstract

Background: There is an immense scientific interest in the human microbiome and its effects on human physiology,

health, and disease. A common approach for examining bacterial communities is high-throughput sequencing of 16S

rRNA gene hypervariable regions, aggregating sequence-similar amplicons into operational taxonomic units (OTUs).

Strategies for detecting differential relative abundance of OTUs between sample conditions include classical statistical

approaches as well as a plethora of newer methods, many borrowing from the related field of RNA-seq analysis. This

effort is complicated by unique data characteristics, including sparsity, sequencing depth variation, and nonconformity

of read counts to theoretical distributions, which is often exacerbated by exploratory and/or unbalanced study designs.

Here, we assess the robustness of available methods for (1) inference in differential relative abundance analysis and (2)

beta-diversity-based sample separation, using a rigorous benchmarking framework based on large clinical 16S

microbiome datasets from different sources.

Results: Running more than 380,000 full differential relative abundance tests on real datasets with permuted

case/control assignments and in silico-spiked OTUs, we identify large differences in method performance on a

range of parameters, including false positive rates, sensitivity to sparsity and case/control balances, and spike-in

retrieval rate. In large datasets, methods with the highest false positive rates also tend to have the best detection power.

For beta-diversity-based sample separation, we show that library size normalization has very little effect and that the

distance metric is the most important factor in terms of separation power.

Conclusions: Our results, generalizable to datasets from different sequencing platforms, demonstrate how the choice of

method considerably affects analysis outcome. Here, we give recommendations for tools that exhibit low false positive

rates, have good retrieval power across effect sizes and case/control proportions, and have low sparsity bias. Result output

from some commonly used methods should be interpreted with caution. We provide an easily extensible framework for

benchmarking of new methods and future microbiome datasets.
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Background
Technical advances in DNA sequencing have allowed for

the collection of high-dimensional biological data on an

unprecedented scale. This development has ignited a

surge of scientific opportunities and interest in the

human microbiome and its effects on human physiology,

health, and disease [1, 2]. A common approach to

microbiome studies is the amplification of hypervariable

regions of bacterial 16S rRNA genes from biological

samples, sequencing of amplicons in a high-throughput

fashion, and grouping of sequences into operational taxo-

nomic units (OTUs) [3–5] for downstream applications.

A common statistical analysis of OTU data is differen-

tial relative abundance (DA) testing, a serial univariate

test of each OTU between two sample groups, e.g., phe-

notypes, compartments, or time-points. This relatively

simple endeavor is complicated by certain characteristics

of the data, in particular three major points. First, the

OTU count matrix is sparse, with often between 80 and

95% of the counts being zero [6, 7]. Second, the library

sizes (sum of counts in each sample; also referred to as

sequencing depth) vary significantly, sometimes by

several orders of magnitude, making it nonsensical to

compare counts directly between samples, since they

each represent a different fraction of the composition of

a given sample. Third, as is well known from ecological

literature, the variances of these count distributions are

greater than their means, a phenomenon known as over-

dispersion [8, 9]. In the RNA-seq field which is based on

similar sequencing technology, explicit modeling of this

mean-variance relationship has been attempted [10, 11].

The aim of this work is to benchmark the many options

investigators face when analyzing 16S amplicon-based

sequencing data. Previous work with similar objectives has

focused on the practice of rarefaction [12, 13], i.e., resam-

pling reads within each sample to equal amounts to over-

come the differences in sequencing depths. This work

attempts three separate benchmarks of inference robust-

ness, all based on real datasets generated from clinical

samples, obtained from different compartments in the

human microbiome, including the gut, hypopharynx, and

vagina, covering a wide range of human ecological niches.

First, we have quantified the false discovery rate of the

most popular differential relative abundance (DA) methods

by randomly assigning case/control status to samples, thus

creating an empirical null distribution, and testing each

OTU for differential relative abundance. Second, we have

simulated in silico spiking of known magnitudes and

examined how well these can be recovered. We have used

a range of multiplicative and additive spike-in magnitudes

applied to OTUs from different relative abundance tertiles

to explicitly control the range of OTUs to be recovered.

Furthermore, as the microbiome field is currently in a state

where many projects are exploratory and not explicitly

designed, we have examined the effect of the case/control

proportion. The included methods are well-established

choices for data analysis in many fields. The Welch two-

sample t test is the default choice for comparing two

sample means, while the Wilcoxon rank sum test is a

nonparametric alternative. Negative binomial generalized

linear models (GLM) have long been a popular option in

ecology for modeling count data such as species observa-

tion counts [14], by adding an additional parameter to

account for the aforementioned overdispersion. From the

field of RNA-seq, which have faced many of the same data

analysis challenges, we have included two widely used

packages estimating counts parametrically, also utilizing

the negative binomial distribution, DEseq2 [15] and edgeR

[16], as well as baySeq [17], using an empirical Bayes

method for parameter estimation. From the field of micro-

bial ecology, metagenomeSeq [7] has been designed with

microbial marker surveys in mind, using a normalization

procedure and a zero-inflated gaussian (ZIG) mixture

model, designed to handle sequence depth issues and

sparsity, as well as an alternative zero-inflated log-normal

model with included parameter shrinkage (feature model)

[18]. The ALDEx2 method has been developed with

emphasis on the compositional nature of sequencing data,

implementing Monte Carlo sampling of Dirichlet distribu-

tions and averaging p values across resamples [19]. In

addition, we have implemented a simple custom permuta-

tion test, based on the null distribution of a test statistic

defined as log mean counts in cases
mean counts in controls

� �2
obtained through ran-

dom permutations of samples as cases/controls. Finally, we

have quantified the effect of normalization, transformation,

and choice of distance measure on the beta-diversity

separation of samples with a known biological grouping.

Multivariate analysis and choice of distance measure in

particular are currently being debated in microbial ecology

as claims of inherent clustering of vaginal [20] and gut

microbiomes [2] have been made. The robustness of these

claims has been shown to be sensitive to data analysis

choices [21], visualization choice [22], and copy number

estimation procedures [23]. Ecology has a long tradition

for multivariate analysis of species tables, and many of the

currently available tools have therefore been adapted from

this field, such as the Bray-Curtis dissimilarity measure

[24]. Microbial ecology has seen the development of

measures exploiting phylogenetic information in the

sequencing reads. Here, we include the weighted and

unweighted UniFrac [25, 26]. Additionally, we included the

Jensen-Shannon divergence, which plays a key role in

enterotyping and clustering of vaginal microbiomes. The

Euclidean distance is known to be unsuited for ecological

distance measurements due to what has been termed the

“double zero” problem, the fact that it is not possible to
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distinguish if a species is absent from two samples due to

undersampling [7, 27]. It has been included as a baseline,

since many early papers explored microbiomes using

Euclidean-driven principal component analysis.

Results

Study design and data characteristics

The study was divided into three parts (Fig. 1), namely

(1) false positive rate (FPR) testing, (2) spike-in retrieval

testing, and (3) beta-diversity optimization. We used

seven large datasets: three for the FPR tests and spike-in

retrieval tests (labeled A1-A3), one simulated set (labeled

A4) for assessing the effect of spike-in independent sam-

ple strata, and three for the beta-diversity optimization

tests (labeled B1–B3). The datasets and their characteristics

are presented in Additional file 1: Table S1. The datasets

are characterized by having high degrees of sparsity, large

variation in library sizes, and an overdispersed mean-

variance relationship (Additional file 2: Figure S1).

False positive rates

We found striking differences in the FPR of the tested

methods using identical permutations of the three large

datasets A1–A3 (Additional file 3: Figure S2A). A total

of 17,550 full DA tests were analyzed. Generally, many

methods were robust, with FPR close to or below 0.05,

as expected under the null hypothesis. However, edgeR,

metagenomeSeq ZIG (unfiltered, see below), and espe-

cially baySeq displayed very high FPRs, indicating that

models did not fit well to the data. Intriguingly, baySeq,

edgeR, and negative binomial GLMs performed worse

under balanced conditions, i.e., 50% cases and 50%

controls, than under unbalanced conditions with only

10% cases. Most methods had low variance of FPR

across iterations, but metagenomeSeq ZIG and especially

baySeq showed considerable variation within parameter

sets. To ensure that observed differences in FPRs

between balanced conditions were not due to inherent

biological signals or sample structures in the datasets

used, we repeated the analysis in an additional simulated

dataset (A4, n = 5850), based on within-OTU count

permutation, retaining the biological distribution of

OTU count data but breaking within-sample characteris-

tics. With the exception of baySeq, no major deviations

were observed from the results obtained with dataset A3

(Additional file 3: Figure S2B).

Next, we investigated the effect of OTU sparsity on

test inference (Fig. 2) and observed that the sparsity of

any given OTU had different effects when applying the

different methods, in the feces dataset A1. OTU-wise p

values from non-spiked single DA runs with 50% cases,

selected by the median FPR, depended to some extent

on the percentage of zeroes in the OTU in question.

The methods edgeR, negative binomial GLM, metagen-

omeSeq ZIG (unfiltered), and especially baySeq displayed

biased results at high sparsity, meaning that many zeroes

lead to lower p values, irrespective of any signal in the

data. This effect was to some extent ameliorated for meta-

genomeSeq by its filtering step, which essentially removes

most of the sparse OTUs after the model has been esti-

mated, as demonstrated in Fig. 2. The feature model did

not exhibit this inflation. DESeq2 in particular exhibited a

conservative estimation of p values at high sparsity and t

tests, and Wilcoxon and the permutation tests were all

very robust across the range. The ALDEx2 method was

very conservative and showed a narrow band of p values

resembling a Gaussian distribution around 0.5, regardless

of sparsity.

Spike-in retrieval tests

A total of 175,500 spiked DA analyses from datasets

A1–A3 were considered. The spike-ins were performed

Fig. 1 Spike-in approach and analysis flowchart. Left, a theoretical sample where the count data for OTU A is multiplied by 3 before rescaling to

original sequencing depth. Right, flowchart of the simulation study, yielding FPR and AUC for each method, dataset, and set of variables, as well

as R2 values for all combinations of normalization, transformation, and distance in the beta-diversity optimization
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by increasing the raw counts of random OTUs in cases,

either multiplicatively or additively (see Fig. 1), by a

range of spike-in magnitudes, in order to measure the

relative retrieval performance between methods.

Additional file 4: Figure S3A shows the area under the

curve (AUC) value distributions of the receiver operating

characteristics (ROC) curve when using p values to

discriminate between multiplicatively spiked and non-

spiked OTUs in the feces dataset A1, for all the

methods, case proportions, and magnitudes. We found

that most methods improved detection power as the

spike-in magnitudes increase, though both Wilcoxon

and metagenomeSeq ZIG (filtered) did not exhibit this

property to the same extent as the others. The multi-

plicative spike-in AUC distributions for the other two

datasets A2 and A3 (Additional file 4: Figure S3B, S3C)

showed very similar characteristics. Overall, the best

performance in terms of AUC was exhibited by the

sequencing-specific methods edgeR, metagenomeSeq

ZIG, and baySeq, as well as the assumption-free permu-

tation test. The mid-level in performance was represented

by negative binomial GLM, DESeq2, and ALDEx2, whereas

t tests and Wilcoxon performed the worst. The robustness

of these methods varied greatly, with some tests yielding

AUC values below 0.5, in case of the t tests and Wilcoxon

even with a median value below 0.5 in the unbalanced tests

with case proportions at 10%. The most robust test was the

permutation test and metagenomeSeq feature model, which

only very rarely fell below 0.5 in AUC.

We repeated these analyses with additive spiking

(Additional file 5: Figure S4A, S4B, S4C), yielding very

similar results, albeit with lower variance in the distribu-

tions. We found that the methods exhibited the same

hierarchy of performance across the three datasets as in

the multiplicative spike-in tests. The best performing

models were saturated already at magnitude 10, render-

ing magnitude of change 20 unnecessary.

Finally, we considered a mixed spike-in setup (Add-

itional file 6: Figure S5). In this setup, methods were not

as clearly separated in AUC values, although the same

general hierarchy was retrieved. The highest AUC values

were found in the methods edgeR, metagenomeSeq ZIG,

negative binomial GLMs, and the permutation test.

Figure 3 shows the median AUC values vs the median

FPRs, illustrating the overall performance of the various

methods in the three datasets, at the highest magnitude

(20) with multiplicative spiking.

Subsets and simulated data

We repeated the FPR (n = 11,700) and spike-in tests (n

= 117,000) to examine the relative performance of the

various methods in small- and medium-sized datasets by

FPR = 0.417 FPR = 0.206 FPR = 0.019 FPR = 0.501 FPR = 0.039 FPR = 0.314 FPR = 0.133

FPR = 0.015 FPR = 0.025 FPR = 0.033 FPR = 0.028 FPR = 0 FPR = 0.001 FPR = 0.052
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Fig. 2 OTU sparsity vs. p value. Scatterplots of OTU sparsity vs p value with panels representing each differential relative abundance test method

in feces dataset A1, with 50% cases. Colored line represents the LOESS regression on data. False positive rate (FPR) is defined as the fraction of

OTUs with p< 0.05. Each differential relative abundance test represents the median FPR for that method, out of all 150 permutations. Contour lines indicate

point density and can be compared to a hypothetical null distribution of p values demonstrated in the final panel (“Random uniform”)
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subsetting datasets A1–A3, yielding datasets of lower

sparsity (A1s–A3s and A1m–A3m) (Additional file 1:

Table S1). We found that the performance hierarchy was

very similar across all six subsets with regard to both

FPR and spike-in AUC (Fig. 4). There were some devia-

tions from the larger sets, especially metagenomeSeq

ZIG and the permutation test performed worse in the

subsets, whereas edgeR kept a high AUC but with much

lower FPR. The distributions of FPR and AUC under all

parameter combinations can be seen in Additional file 7:

Figure S6A–D.

In the simulated dataset A4, the AUC results (n =

58,500, Additional file 8: Figure S7A–C) were nearly

identical to those from dataset A3, on which it was

based, except for baySeq, which performed worse in

dataset A4, but with very high variability.

Spike-in retrieval sensitivity to sparsity

We examined the effect of OTU sparsity on the ability of

the various methods to retrieve spiked OTUs, expressed

as the p value quantile of a spiked OTU within all p values

from a dataset, for each method, which should ideally be

as low as possible. Additional file 9: Figure S8A–C shows

that almost all methods had better detection power at low

sparsity (many positive samples), but the patterns of satur-

ation were quite different. Additional file 9: Figure S8A

shows that most methods were primarily dependent on

the number of positive samples, with the lines from the

differently sized datasets following each other closely.

Notably, Wilcoxon tests were negatively influenced by

zero-inflation, meaning that the detection power was

decreased with dataset size for the same number of posi-

tive samples. For the smaller datasets, metagenomeSeq

ZIG and baySeq did not show better performance with

more positive samples. The filtered metagenomeSeq ZIG

and feature model had several OTUs with quantiles of 1,

since p values were filtered or not computed and therefore

set to a value of 1. Additional file 9: Figure S8B shows

sensitivity to case proportion, where almost all methods

had better performance across the range with more

balanced group sizes, though the effect was greatest for

metagenomeSeq feature model and the t test. Finally, in

Additional file 9: Figure S8C, we see that most methods

saturate faster with high spike-in magnitude. Notably, the

Wilcoxon test gains little from increased magnitudes.

Overall, the metagenomeSeq feature model seemed to
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saturate at the lowest number of positive samples for

across these figures, although it required at least two posi-

tive samples in each group to compute a p value, most

evident in Additional file 9: Figure S8B.

Beta-diversity optimization

We studied the effects of library size normalization,

count transformation, and distance metric on the ability

to separate biologically relevant groups in beta-diversity

analyses (Fig. 5). All analyses were significant with p <

0.001, but with large differences in R
2 values. In the

feces dataset B1, the optimal separation was found in

log transformed counts using 10−5 as pseudocount

with weighted UniFrac, yielding an Adonis R2 value of

0.367. In the HMP dataset B2, the optimal was non-

transformed weighted UniFrac, with an R
2 value of

0.166. In the feces dataset B3, TMM normalization

was not possible due to high sparsity, and this method

was omitted from the analysis. The optimal separation

was found in log transformed counts using 10−5 as

pseudocount with weighted UniFrac, yielding an R
2

value of 0.145. As a sensitivity analysis to include

TMM, we agglomerated closely related OTUs, thereby

reducing the number of OTUs and the sparsity, which

did not materially change the results, see Additional

file 10: Figure S9.

Across all three datasets, several characteristics were

very similar. The most important factor was the choice

of distance metric, with the weighted UniFrac metric

scoring the highest in terms of separation power in all

three datasets. The transformation applied to (normal-

ized) counts was of less importance. In the feces dataset

B1, log transformations with very small pseudocounts

were best, whereas the untransformed counts were opti-

mal in the HMP oral dataset B2. In both cases, the effects

were large. The effect of library size normalization was by

far the lowest, especially between no normalization, CSS,

DESeq2, and TMM normalization, which essentially did

not matter in terms of separation in any of the three data-

sets. TSS was the normalization type with the highest

impact, but it mostly changed the optimal transformation

choice, rather than improve or deteriorate the separation

power as such. These effects were very apparent when

comparing the optimal combinations of normalization,

transformation, and distance with the poorest for each

dataset, as described above, visualized with principal
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coordinates analysis (PCoA) plots in panels B and C of

each dataset subplot.

Discussion
We conducted extensive benchmarking of the most popu-

lar available methods for differential relative abundance

testing of large microbiome datasets. The main character-

istics of each method in terms of FPR, AUC, balance

sensitivity, and computational burden are summarized in

Additional file 11: Table S3. We found that several

methods, including edgeR, metagenomeSeq ZIG, and bay-

Seq, had high false positive rates when testing randomly
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permuted data, often grossly overestimating the OTU-

wise differences between two groups, which indicates that

assumptions made by the models were not met by the

data. Intriguingly, the methods with the highest FPR also

had the highest AUC values for recovering our spiked

OTUs. Thus, the p values obtained from these methods

are very well suited to distinguish differentially abundant

OTUs from non-differentially abundant OTUs, but are

not meaningful in relation to normal thresholds for sig-

nificance (i.e., 5%), instead representing an arbitrary classi-

fier value. This problem could potentially be solved by

setting a more restrictive significance threshold, although

the value of this threshold would need to be set empiric-

ally for each dataset, for instance through a permutation

similar to the setup of this study. Even then, for some of

the methods, especially metagenomeSeq ZIG and baySeq,

we found that p values varied greatly with the sparsity of a

given OTU, meaning that this empirical cutoff value

should not be the same in all OTUs but, to some extent,

depend on the sparsity of that OTU to accurately reflect

the null distribution. It has to be noted that baySeq was

run with the default negative binomial prior distribution,

but allows the user to define a custom parameterization

for the prior, which could improve the performance of

baySeq in this regard. We have not explicitly addressed

pre-inference filtering, which is a common practice to

reduce the strain of correction for multiple inference.

However, we have examined the effects of metagenome-

Seq ZIG’s recommended filtering step. We found that this

filtering removed the most sparse/rare OTUs, which ame-

liorates the abovementioned dependence of p values on

sparsity. However, it is a very conservative filtering, which

could also be applied to any of the other methods, and

does not fix the underlying problems with the fit of the

statistical model. Indeed, many rare OTUs could be truly

differentially abundant in many types of studies. We have

analyzed crude p values across all methods, and not expli-

citly corrected p values for multiple inference, leaving the

expected null FPR at 0.05. This correction is a necessary

step in most situations and is often done by controlling

the false discovery rate using the Benjamini-Hochberg

approach [28] or the familywise error rate using, e.g., the

Bonferroni correction [29]. However, this step is inde-

pendent of model choice and should be applied regardless

of which method is used to obtain p values, which makes

it irrelevant in our study setup.

The inclusion of a permutation test is not meant as a

recommendation or novel method, but it proves an

interesting comparison as it is simple, extremely robust,

and has good detection power, such that it far outper-

forms the other simple methods—t test and Wilcoxon. It

should be noted that the many ties in sparse data may

disproportionately limit the maximum statistical power

of rank-based tests such as the Wilcoxon test (illustrated

in Additional file 12: Figure S10), which was also evident

in Additional file 9: Figure S8A–C.

Furthermore, under some circumstances, the t test

produced AUC values that were below 0.5, i.e., worse

than random performance. As can be seen from the

contour lines in Fig. 2, this occurred due to the t test

producing too low p values at extreme levels of sparsity,

where only one sample was positive, which overpowered

the p value decrease from the weaker spike-in magni-

tudes as these were selected to represent low, medium,

and high levels of sparsity. Naturally, this phenomenon

can be attributed to unmet distributional assumptions in

the data.

The AUC statistic is usually employed as a measure of

separation, e.g., how well does a certain biomarker

distinguish between healthy and sick. However, it can

also be used as a scale-independent enrichment statistic,

as in the present study. Importantly, at low spike-in

magnitudes, AUC values should not be expected to be

close to 1 but should rather be used to compare power

between different methods.

We repeated the analyses in small- and medium-sized

datasets, since many researchers opt for smaller, balanced

designs when testing specific experimental hypotheses.

These results showed that some methods performed

worse (permutation test, metagenomeSeq ZIG), while

others improved (edgeR) when compared to the results

from the large datasets. This phenomenon may be linked

to the decreased sparsity of these smaller sets, as described

in Additional file 1: Table S1, due to a lower amount of

rare taxa compared to common taxa, in addition to the

differences in statistical power of the methods given low

sample sizes, which may limit real-world applications.

Previously, the optimal library size normalization for

beta-diversity measures have been thoroughly discussed,

and count transformations have been recognized as im-

portant approaches for optimally separating biologically

meaningful groups [7, 13, 30–32]. Our results highlight

(See figure on previous page.)

Fig. 5 The effect of normalization, transformation, and distance metric on beta-diversity separation. a Datasets B1–B3 (vertical panels) with all com-

binations of library size normalizations (horizontal panels) and count transformations (color) applied prior to the calculation of distances and use of

Adonis permanova model. Effect of design variable in question (B1—age; B2—tongue versus palate; B3—age group) measured as model R2 value.

The highest and lowest R2 values (yielding best and worst separation, respectively) are demonstrated in subplots b–g for each dataset as principal

coordinate analysis plots, colored by design variable, with overlaid prediction ellipses (B1—subplot (b, c); B2—subplot (d, e); B3—subplot (f, g)).

CSS cumulative sum scaling, TMM trimmed mean of M values, TSS total sum scaling
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the importance of carefully considering which normali-

zations, count transformations, and distance metrics

should be applied to identify the best separation in the

beta-diversity space. In particular, the relative impact of

these three factors has been elucidated. Generally, we

found that library size normalization is the least important

of the three. Especially the difference between no

normalization, CSS, DESeq2, and TMM normalizations

was negligible in all three datasets. TSS normalization was

the most different from the others, but mostly changed

the optimal transformation choice rather than improve or

deteriorate the separation, which highlights the import-

ance of choosing an appropriate pseudocount relative to

the scale of the data when using log transformations.

Count transformations did not necessarily improve separ-

ation but was very impactful in all cases. The effect of a

log transform is down-weighting of high-abundant taxa

and up-weighting of low-abundant taxa, which is a pivotal

consideration in terms of expected abundance levels of

taxonomic differences between groups in a study. The

most important factor was the choice of distance metric.

In all of our examples, the best separation was found with

the weighted UniFrac metric. However, this study was not

designed to infer which distance metric is best, as this will

depend on the data, but rather the relative importance of

these three factors. It should also be noted that R2 values

for presence/absence distance metrics such as unweighted

UniFrac may be inherently limited by sparsity and rare

taxa. Additionally, the problems with increasing sparsity

in large datasets observed in the taxon-wise DA tests

should not affect beta-diversity tests, since pairwise

sample-wise distances do not depend on taxa absent from

both samples.

It is a strength of the study that we, through a large

amount of computations, have generated results from

combinations of parameters of relevance to the field,

namely statistical method, normalization method, case/

control ratio, sample size, and spike-in magnitude. It is

also a strength of this study that our analyses are

conducted on large and biologically diverse human

microbiome data. Many large-scale microbiome studies

are being conducted and planned presently, with diverse

human ecological niches represented. Thus, it is import-

ant to survey different body sites, since the uniquely

different microbial compositions present may influence

the distributional characteristics of the resulting datasets.

While the results presented here derive from biological

data, our results from the spike-in analyses rely on in

silico spike-ins, rather than actual biological signals or

wet-lab spike-ins. This approach is both a strength and a

limitation, in that it allows very precise manipulation

and complete control throughout the experiment, as

well as the opportunity for nearly limitless repetition to

examine well-resolved distributions of the parameters of

interest. Conversely, it does not represent an actual bio-

logical signal, and manipulating the data may skew certain

distributional qualities present, such as the inherent count

ratios between OTUs. Though not feasible in this study, fu-

ture studies could conduct wet-lab spike-ins to track and

compare detection power between packages. However,

great care must be taken to control the relative concentra-

tions of original content vs. spike-in content, especially in

the case of rare OTUs. Hence, this approach also poses

many potential issues that may lead to skewed data not

accurately reflecting true biological changes.

In previous studies, the best way to account for variation

in library sizes has been discussed with a primary focus on

the procedure of rarefying counts that is random within-

sample resampling of counts without replacement to an

even sequencing depth across all samples [12]. This preva-

lent approach has been criticized due to discarding of valid

data, but others argue that it can be the optimal method in

some situations, as uneven library sizes disproportionately

affects unweighted distance measures and presence/

absence analyses [13]. Since the topic of rarefaction already

has been debated in detail, and is currently regarded

unfavorably, we chose not to include it in this study.

Conclusion
This study represents an independent attempt to bench-

mark various methods for differential relative abundance

analysis of count-based microbiome datasets, using real

biological large-scale datasets. The results presented here

warrant an increased awareness of the potential for spuri-

ous findings in differential relative abundance analyses. 16S

data poses problems to both parametric and nonparametric

statistical models, and new methods should explicitly

account for sparsity, which is increased in large datasets.

Considering the results presented here as a whole, we

recommend researchers choose tools for detecting DA that

exhibit low false positive rates, that have good retrieval

power across effect sizes and case/control proportions, and

that are not biased for these parameters at differing levels

of (high) sparsity: metagenomeSeq feature model and the

basic permutation test both fulfill these criteria for large

and small datasets, and edgeR for small datasets. When

exploring beta diversity of microbiome data, analysts should

carefully consider their choice of count transformation and

distance metric, the latter having the largest impact on

results. We have provided all source code and source data

necessary to reproduce the results presented in this study,

including random seeds for random processes. This will

allow other investigators to verify and expand upon our

results and aid in selecting the optimal analysis methods

given the unique characteristics of their own data. The

comparisons can easily be extended to analysis methods

not covered in this paper, ensuring that computation time,

rather than coding time, should be the main limiting factor.

Thorsen et al. Microbiome  (2016) 4:62 Page 9 of 14



Methods
Sample collection and preparation

For dataset A1, A2, A3, and B1, the primary sample

materials were collected from the COpenhagen Pro-

spective Studies on Asthma in Childhood 2010 (COP-

SAC2010) mother-child cohort, following 700 children

and their families from pregnancy into childhood, as

previously described in detail [33]. In this study, we used

fecal samples collected at ages 1 week (n = 95), 1 month

(n = 361), and 1 year (n = 622); vaginal swabs collected at

week 36 of pregnancy (n = 670); and hypopharyngeal

aspirates (n = 144) collected at acute wheezy episodes in

children with persistent wheeze aged 1–3 years, using a

soft suction catheter passed through the nose. DNA was

extracted using MoBio PowerSoil kits on an EpMotion

5075, amplified using a two-step PCR reaction with for-

ward and reverse 16S V4 primers, and sequenced using

250bp paired-end sequencing on an Illumina MiSeq. A

full description of the laboratory workflow and the bio-

informatics pipeline is available in the Additional file 13.

To examine effects in smaller datasets, we subset data-

sets A1, A2, and A3 into 16 (small) and 50 samples

(medium) by random sampling with recorded random

seeds, resulting in datasets A1s–A3s and A1m–A3m.

Additionally, we created a simulated dataset A4 by inde-

pendent resampling of all OTUs across samples, without

replacement, of dataset A3.

Additionally, for dataset B2, we used public data from the

Human Microbiome Project [34], testing separation ability

between the tongue dorsum (n = 316) and hard palate (n =

301) 16S V3-5 samples (http://hmpdacc.org/HMQCP/).

For dataset B3, we used data from Pop et al. [35],

downloaded from Bioconductor (http://bioconductor.org/

packages/release/data/experiment/html/msd16s.html), test-

ing separation between age groups 0–6 months (n = 112),

6–12 months (n = 308), 12–18 months (n = 173), 18–

24 months (n = 146), and 24–60 months (n = 253).

To reduce sparsity of dataset B3, chimeras were

rechecked using USEARCH v7.0.1090 [36] against the

gold database [37], and 3624 chimeras (listed in

Additional file 14: Table S2) were removed from the

OTU table. Since a phylogenetic tree file was not

published along with the OTU table and sample

metadata from this paper, we built one using the

supplied reference sequences as described in the “Bio-

informatics” section of the Additional file 13. Due to

issues with TMM normalization of this dataset (see

the “Results” section), we agglomerated similar OTUs

to reduce the sparsity as a sensitivity analysis. This

was achieved by computing pairwise phylogenetic

distances using the tree and grouping together all

OTUs who were closer to each other than the 0.001

quantile of the distance distribution, see Additional

file 1: Table S1. The OTUs were merged with the

merge_taxa function in the R package phyloseq [38],

using the OTU with the highest sum of counts as

archetype.

Differential relative abundance testing

We selected several widely used methods for differential

relative abundance testing to apply on the datasets, using

built-in library size normalization, default parameters,

and testing as applicable for each method. All tests were

conducted using the statistical software package R [39]

and parallelized using custom bash scripts with GNU

parallel [40]. The source code for all testing procedures

is available in an online repository. The selected

methods and associated transformation steps were as

follows:

� metagenomeSeq ZIG [7]: using raw counts,

cumulative sum scaling (CSS) was applied with

the quantile supplied by cumNormStat. Testing

was done using fitZig.

� metagenomeSeq ZIG, filtered: as above, but

discarding all OTUs below median effective sample

size (supplied by the fitZig model), as recommended

by the authors in the package vignette.

� mgS featureModel: as with metagenomeSeq, but

using fitFeatureModel to test, rather than fitZig.

� baySeq [17]: using raw counts, two models were

defined; no changes and cases vs controls. Library

sizes were supplied to the object. Priors were

estimated with the negative binomial distribution

before estimating likelihoods for cases vs controls.

P values were defined as 1-likelihood.

� DESeq2 [15]: using raw counts, geometric means

were calculated manually and supplied to the

estimateSizeFactors function. Standard testing was

invoked with DESeq.

� edgeR [16]: using raw counts, normalization factors

were calculated with trimmed mean of M values

(TMM), common and tagwise dispersions were

estimated, and testing was done with exactTest.

� Negative binomial generalized linear model (GLM):

using raw counts, a model was fitted to each OTU

with glm.nb from the MASS package [41], using log

(library size) as offset and cases vs controls as the

only dependent variable.

� t test: counts were transformed to relative

abundances, before applying the R built-in t.test

function using default parameters, including the

Welch/Satterthwaite approximation to degrees of

freedom due to possibly unequal variances.

� Log t test: as above, but counts were log

transformed first, with a pseudocount of 1.

� Wilcoxon: counts were transformed to relative

abundances, before applying the R built-in
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Mann-Whitney/Wilcoxon rank sum test with

wilcox.test using default parameters.

� Permutation: a simple custom permutation test was

written and applied to counts normalized to relative

abundances. First, a test statistic was computed as log
mean counts in cases

mean counts in controls

� �2
. Next, 104 permutations of this

test statistic was calculated by random resampling of

all cases and controls without replacement to

empirically estimate the null distribution of each

OTU. The p value associated with an OTU was

calculated as the proportion of permuted test statistics

equal to or greater than the real test statistic.

� ALDEx2 [19]: raw counts were supplied to the aldex

function, using 32 Monte Carlo samples, and both the

Welch t test (we.ep) and Wilcoxon (wi.ep) p values

were used.

If a method did not return a p value for any given

OTU, it was set to 1.

False positive rates

Unannotated OTU tables were tested for FPR by randomly

selecting samples as cases or controls, thus assuring the

null hypothesis, with varying case proportions of 10, 25, or

50%, and subsequently applying all the abovementioned

DA methods. This was repeated 150 times using unique

recorded random seeds, identical between methods. A false

positive was defined as an OTU with a crude p value below

0.05. The FPR was defined as number of false positive

OTUs/total number of OTUs.

Spike-in retrieval performance

Unannotated OTU tables were randomized as described

above. Then, five random OTUs from each relative abun-

dance tertile were modified (“spiked”) with a given magni-

tude, only in cases, to induce a signal in the data. Only

OTUs present in at least one of the assigned case samples

were eligible. Spiking was done either by multiplying

counts by a given magnitude (multiplicative), multiplying

by a range of magnitudes (mixed multiplicative), or adding

the mean proportion of nonzero counts multiplied by a

magnitude to all non-zero counts (additive). After spiking,

samples were rescaled to original sequencing depth. This

was repeated for the magnitudes 0.5, 2, 5, 10, and 20 for

multiplicative and 0.5, 2, 5, and 10 for additive, with the

case/control proportions 10, 25, and 50%. All DA methods

were applied, and p values were obtained as described

above. This was repeated 150 times for all combinations

of case proportion, spike method, magnitude, and method

on each dataset. The area under the receiver operating

characteristic curve (AUC) value was calculated using raw

p values, assuming they were lower in spiked vs. non-

spiked OTUs, with the “pROC” package [42].

Beta-diversity optimization

To assess the effects of normalization, transformation,

and distance metrics on the ability of beta-diversity

analysis to distinguish between groups, we selected data-

sets with less-than-perfect separation by a particular

design variable. Next, datasets were subjected to differ-

ent normalization methods (none (included as baseline),

total sum scaling/relative abundance (TSS), metagenome-

Seq’s cumulative sum scaling (CSS), edgeR’s trimmed

mean of M values (TMM) and DESeq2’s size factors), and

transformations (natural logarithm with pseudocount 1,

0.01, and 0.0001, square root, and cubic root). In case of

pseudocounts below one, all post-transformation values

were corrected by subtracting the log of the pseudocount,

effectively preserving zeroes from the original counts.

Finally, selected distance metrics were applied (Bray-Curtis,

Euclidean, Jensen-Shannon Divergence, UniFrac, weighted

UniFrac) to provide beta-diversity distance matrices from

all these combinations. Jensen-Shannon Divergence,

UniFrac, and weighted UniFrac are independent of

normalization by design and were only computed once

per dataset and transformation. We then fitted a

distance-based permutation multiple analysis of vari-

ance (PERMANOVA) model (Adonis from the R pack-

age vegan [43]) to assess the separation power of the

given design variable in the dataset, measured as an R-

squared value. In datasets B1 and B2, where the design

included repeated measurements, these were supplied

to the model in the strata argument. All data handling

and distance calculations were done using the statis-

tical software package R [39] with the add-on package

phyloseq [38]. All plots were produced with the pack-

age ggplot2 [44].

Additional files

Additional file 1: Table S1. Overview of the datasets used in the study.

Sampling and data characteristics of the seven datasets used in the

study, A1–A4 for the false positive rate and spike-in retrieval tests and

B1–B3 for the beta-diversity optimization tests. (XLSX 5 kb)

Additional file 2: Figure S1. Data characteristics for feces dataset A1.

(A) Dot plot overview of the dataset; black if an OTU was present, blank if

not present in a given sample. Sparsity in the dataset is 90.8%. (B) Library

size distribution showing differences of several orders of magnitude. (C)

Mean-variance relationship showing overdispersion, i.e., higher variance

than mean value of a given OTU. (PDF 504 kb)

Additional file 3: Figure S2. A. False positive rate distributions for

datasets A1–A3. Violin plot of distributions of false positive rate (FPR) in

150 iterations for each case proportion in datasets A1–A3 (vertical

panels), analyzed with all differential relative abundance methods

(horizontal panels). FPR is defined as the fraction of OTUs with p < 0.05.

P values were not corrected for multiple testing. Black dots represent

medians in each distribution. B. False positive rate distributions for

dataset A4. Violin plot of distributions of false positive rate (FPR) in 150

iterations dataset A4, analyzed with all differential relative abundance

methods (horizontal panels). FPR is defined as the fraction of OTUs with

p < 0.05. P values were not corrected for multiple testing. Black dots

represent medians in each distribution. (ZIP 649 kb)
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Additional file 4: Figure S3. A. Area under the curve distributions for

multiplicative spike-ins in dataset A1. Violin plot of distributions of area under

the receiver operating characteristic curve (AUC) for spiked vs non-spiked p

values from differential relative abundance (DA) tests. AUC distributions from

150 iterations for each combination of spike-in magnitude and case

proportion (vertical panels) in dataset A1, analyzed with all differential

relative abundance methods (horizontal panels). Black dots represent

medians in each distribution. B. Area under the curve distributions for

multiplicative spike-ins in dataset A2. Violin plot of distributions of

area under the receiver operating characteristic curve (AUC) for

spiked vs non-spiked p values from differential relative abundance

(DA) tests. AUC distributions from 150 iterations for each combination

of spike-in magnitude and case proportion (vertical panels) in dataset

A2, analyzed with all differential relative abundance methods (horizontal

panels). Black dots represent medians in each distribution. C. Area under the

curve distributions for multiplicative spike-ins in dataset A3. Violin plot of

distributions of area under the receiver operating characteristic curve (AUC)

for spiked vs non-spiked p values from differential relative abundance (DA)

tests. AUC distributions from 150 iterations for each combination of spike-in

magnitude and case proportion (vertical panels) in dataset A3, analyzed

with all differential relative abundance methods (horizontal panels). Black

dots represent medians in each distribution. (ZIP 2685 kb)

Additional file 5: Figure S4. A. Area under the curve distributions for

additive spike-ins in dataset A1. Violin plot of distributions of area under the

receiver operating characteristic curve (AUC) for spiked vs non-spiked p

values from differential relative abundance (DA) tests. AUC

distributions from 150 iterations for each combination of spike-in magnitude

and case proportion (vertical panels) in dataset A1, analyzed with all

differential relative abundance methods (horizontal panels). Black dots

represent medians in each distribution. B. Area under the curve distributions

for additive spike-ins in dataset A2. Violin plot of distributions of area under

the receiver operating characteristic curve (AUC) for spiked vs non-spiked p

values from differential relative abundance (DA) tests. AUC distributions from

150 iterations for each combination of spike-in magnitude and case

proportion (vertical panels) in dataset A2, analyzed with all differential

relative abundance methods (horizontal panels). Black dots represent

medians in each distribution. C. Area under the curve distributions for

additive spike-ins in dataset A3. Violin plot of distributions of area

under the receiver operating characteristic curve (AUC) for spiked vs

non-spiked p values from differential relative abundance (DA) tests.

AUC distributions from 150 iterations for each combination of spike-in

magnitude and case proportion (vertical panels) in dataset A3, analyzed

with all differential relative abundance methods (horizontal panels). Black

dots represent medians in each distribution. (ZIP 2183 kb)

Additional file 6: Figure S5. Area under the curve distributions for

mixed multiplicative spike-ins in datasets A1–A3. Violin plot of distributions of

area under the receiver operating characteristic curve (AUC) for spiked vs non-

spiked p values from differential relative abundance tests. AUC distributions

from 150 iterations for each case proportion in datasets A1–A3 (vertical

panels), analyzed with all differential relative abundance methods (horizontal

panels). Black dots represent medians in each distribution. (PDF 588 kb)

Additional file 7: Figure S6. A. False positive rate distributions for

datasets A1s–A3s and A1m–A3m. Violin plot of distributions of false

positive rate (FPR) in 150 iterations for datasets A1s–A3s and A1m–A3m

(vertical panels), analyzed with all differential relative abundance methods

(horizontal panels). FPR is defined as the fraction of OTUs with p < 0.05.

P values were not corrected for multiple testing. Black dots represent

medians in each distribution. B. Area under the curve distributions for

multiplicative spike-ins in datasets A1s–A3s and A1m–A3m. Violin plot of

distributions of area under the receiver operating characteristic curve

(AUC) for spiked vs non-spiked p values from differential relative abundance

(DA) tests. AUC distributions from 150 iterations for each multiplicative

spike-in magnitude in datasets A1s–A3s and A1m–A3m (vertical panels),

analyzed with all differential relative abundance methods (horizontal panels).

Black dots represent medians in each distribution. C. Area under the curve

distributions for additive spike-ins in datasets A1s–A3s and A1m–A3m. Violin

plot of distributions of area under the receiver operating characteristic curve

(AUC) for spiked vs non-spiked p values from differential relative abundance

(DA) tests. AUC distributions from 150 iterations for each additive spike-in

magnitude in datasets A1s–A3s and A1m–A3m (vertical panels), analyzed

with all differential relative abundance methods (horizontal panels). Black

dots represent medians in each distribution. D. Area under the curve

distributions for mixed multiplicative spike-ins in datasets A1s–A3s

and A1m–A3m. Violin plot of distributions of area under the receiver

operating characteristic curve (AUC) for spiked vs non-spiked p values

from differential relative abundance (DA) tests. AUC distributions from

150 iterations for mixed multiplicative spike-in magnitudes in datasets

A1s–A3s and A1m–A3m (vertical panels), analyzed with all differential

relative abundance methods (horizontal panels). Black dots represent

medians in each distribution. (ZIP 4027 kb)

Additional file 8: Figure S7. A. Area under the curve distributions for

multiplicative spike-ins in dataset A4. Violin plot of distributions of

area under the receiver operating characteristic curve (AUC) for

spiked vs non-spiked p values from differential relative abundance

(DA) tests. AUC distributions from 150 iterations for each combination

of multiplicative spike-in magnitude and case proportion (vertical

panels) in dataset A4, analyzed with all differential relative abundance

methods (horizontal panels). Black dots represent medians in each

distribution. B. Area under the curve distributions for additive spike-ins in

dataset A4. Violin plot of distributions of area under the receiver operating

characteristic curve (AUC) for spiked vs non-spiked p values from differential

relative abundance (DA) tests. AUC distributions from 150 iterations for each

combination of additive spike-in magnitude and case proportion (vertical

panels) in dataset A4, analyzed with all differential relative abundance

methods (horizontal panels). Black dots represent medians in each distribution.

C. Area under the curve distributions for mixed multiplicative spike-ins in

dataset A4. Violin plot of distributions of area under the receiver operating

characteristic curve (AUC) for spiked vs non-spiked p values from differential

relative abundance (DA) tests. AUC distributions from 150 iterations for each

case proportion (vertical panels) in dataset A4, analyzed with all differential

relative abundance methods (horizontal panels). Black dots represent medians

in each distribution. (ZIP 1831 kb)

Additional file 9: Figure S8. A. Spike-in retrieval as a function of number

of positive samples, by dataset size. Aggregated results across 150 iterations

of multiplicative spike-ins of magnitude 5 with 50% cases, in datasets A1,

A1s, and A1m. Each dot represents a spiked OTU. The Y-axis displays its p

value quantile (0 is lowest p value, 1 is highest p value) within that DA run,

and the X axis shows how many samples are positive (nonzero) for that

OTU. Results from the three datasets are overlaid with different colors and

faceted by statistical method. B. Spike-in retrieval as a function of number

of positive samples, by case proportion. Aggregated results across 150

iterations of multiplicative spike-ins of magnitude 5 with 10, 25, or 50%

cases, in dataset A1. Each dot represents a spiked OTU. The Y-axis displays

its p value quantile (0 is lowest p value, 1 is highest p value) within that DA

run, and the X axis shows how many samples are positive (nonzero) for that

OTU.

Results from the three case proportions are overlaid with different colors,

and faceted by statistical method. C. Spike-in retrieval as a function of

number of positive samples, by spike-in magnitude. Aggregated results

across 150 iterations of multiplicative spike-ins of magnitudes 0.5, 2, 5, 10,

and 20 with 50% cases, in dataset A1. Each dot represents a spiked OTU.

The Y-axis displays its p value quantile (0 is lowest p value, 1 is

highest p value) within that DA run, and the X axis shows how

many samples are positive (nonzero) for that OTU. Results from the

different spike-in magnitudes are overlaid with different colors, and

faceted by statistical method. (ZIP 16398 kb)

Additional file 10: Figure S9. The effect of normalization,

transformation, and distance metric on beta-diversity separation in the

modified dataset B3. Dataset B3 modified by grouping of several OTUs,

reducing the dataset to 8770 OTUs. All combinations of library size

normalizations (horizontal panels) and count transformations (color)

applied prior to calculation of distances and use of Adonis permanova

model. Effect of age group measured as model R2 value. The highest and

lowest R2 values (yielding best and worst separation, respectively) are

demonstrated in subplots B & C as principal coordinate analysis plots,

colored by design variable, with overlaid prediction ellipses. CSS

cumulative sum scaling, TMM trimmed mean of M values, TSS total

sum scaling. (PDF 124 kb)
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Additional file 11: Table S3. Summary of benchmark performance for

included tools. (PDF 32 kb)

Additional file 12: Figure S10. The lowest obtainable p values from a

Wilcoxon rank sum test depend on sample size and sparsity. Overview of

the lowest p value theoretically obtainable using optimal conditions for a

given sample size and level of sparsity. Optimal conditions refer to (a)

50% cases, i.e., n1 = n2, (b) only nonzero counts in one of the groups,

limited by level of sparsity, (c) no ties between nonzero counts. One

sided p values from normal approximation shown. Since the p value only

depends on the rank distribution, the actual count values do not matter.

Color of the lines indicates level of sparsity; dotted red line corresponds

to p = 0.05. (PDF 9 kb)

Additional file 13: Supplementary methods. (DOCX 15 kb)

Additional file 14: Table S2. Chimeras removed from dataset B3.

(XLSX 49 kb)
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