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Summary 

Perturbation biology is a powerful approach to developing quantitative models of cellular behaviors 

and gaining mechanistic insights into disease development. In recent years, large-scale resources for 

phenotypic and mRNA responses of cancer cell lines to perturbations have been generated. However, 

similar large-scale protein response resources are not available, resulting in a critical knowledge gap 

for elucidating oncogenic mechanisms and developing effective cancer therapies. Here we generated 

and compiled perturbed expression profiles of ~210 clinically relevant proteins in >12,000 cancer 

cell-line samples in response to >150 drug compounds using reverse-phase protein arrays. We show 

that integrating protein response signals substantially increases the predictive power for drug 

sensitivity and aids in gaining insights into mechanisms of drug resistance. We build a systematic 

map of protein-drug connectivity and develop an open-access, user-friendly data portal for 

community use. Our study provides a valuable information resource for a broad range of quantitative 

modeling and biomedical applications. 

 

   

Highlights 

 A large collection of cancer cell line protein responses to drug perturbations 

 Perturbed protein responses greatly increase predictive power for drug sensitivity 

 Build a systematic map of protein-drug connectivity based on response profiles  

 Develop a user-friendly, interactive data portal for community use 
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Introduction 

Cancer is a highly heterogeneous disease encompassing many tissue types and diverse oncogenic 

drivers, with treatment responses that are often variable in distinct tumor contexts. Over the last 

decade, extensive efforts have been made to characterize the tremendous heterogeneity of human 

cancers at the molecular level (Berger et al., 2018; Hutter and Zenklusen, 2018; Jiang et al., 2019; 

Liu et al., 2018; Taylor et al., 2018). A real challenge in cancer research, however, is to obtain a 

systematic understanding of causality and mechanisms underlying the behaviors of cancer cells with 

the eventual goal of improving patient outcomes (Wise and Solit, 2019). To address this challenge, 

perturbation experiments provide a powerful approach in which cells are modulated by perturbagens, 

and downstream consequences are monitored (Korkut et al., 2015; Molinelli et al., 2013; Ng et al., 

2018). The longitudinal data thus obtained provide considerably greater information content of both 

the basal biological network wiring and its associated changes under stress, thereby leading to a 

deeper understanding of mechanisms underlying cell survival under stress. Recently, large-scale 

compendia of the phenotypic and cellular effects of perturbed cancer cell lines have been established. 

For example, large-scale pharmacologic perturbation studies, cell viability measurement upon 

different drug treatments across many cell lines, have been published (Barretina et al., 2012; Basu et 

al., 2013; Garnett et al., 2012; Iorio et al., 2016); several studies have built genome-wide “cancer 

dependency” maps across a large number of cell lines using loss-of-function siRNA, shRNA, or 

CRISPR/cas9 screens (McDonald et al., 2017; Tsherniak et al., 2017); a “connectivity map” of 

profiled mRNA responses of cancer cell lines to diverse perturbations using an efficient, robust RNA 

measurement platform, L1000 has been developed (Subramanian et al., 2017). These studies provide 

valuable resources for gaining a systems-level understanding of cancer mechanisms and phenotypes. 

However, similar large-scale resources for analysis and integration of protein responses of perturbed 

cancer cell lines have yet to be established. This knowledge gap is even more striking, considering 

that proteins comprise the basic functional units in biological processes and represent the major 

targets for cancer therapy. 

 

To fill this gap, we generated and compiled a large compendium of perturbed protein expression 

profiles of cancer cell lines in response to a diverse array of clinically relevant drugs using reverse-

phase protein arrays (RPPAs). As a quantitative antibody-based assay, RPPA can assess a large 

number of protein markers in many samples in a cost-effective, sensitive, and reproducible manner 
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(Hennessy et al., 2010; Nishizuka et al., 2003; Tibes et al., 2006). We have applied this technology to 

quantify protein expression levels of large patient cohorts (e.g., The Cancer Genome Atlas) (Akbani 

et al., 2014; Zhang et al., 2017) and cancer cell lines (e.g., MD Anderson Cell Line project and Cancer 

Cell Line Encyclopedia) (Ghandi et al., 2019; Li et al., 2017). The current antibody repertoire covers 

key oncogenic pathways such as PI3K/AKT, RAS/MAPK, Src/FAK, TGFβ/SMAD, JAK/STAT, 

DNA damage repair, Hippo, cell cycle, apoptosis, histone modification, and immune-oncology. 

Compared with proteome-wide mass spectrometry approaches, our RPPA-based approach has 

several advantages. First, although the number of protein markers in RPPA readout is much smaller 

(~200), this highly select protein set is enriched in therapeutic targets and biomarkers, thereby greatly 

increasing the ability to generate clinically relevant hypotheses and make translational impacts. 

Statistically speaking, this more focused assessment also substantially reduces the burden of multiple 

testing, a major challenge in identifying significant hits from unbiased proteomic searches. Second, 

one RPPA slide can measure up to 1,000 samples simultaneously. Thus, the high-throughput and 

cost-effectiveness make RPPA a practical platform for assessing a large number of samples 

(e.g., >10,000), which is simply not feasible for alternative proteomic approaches. Third, protein-

level responses, particularly changes in post-translational modifications, more likely reflect how 

cancer cells rewire their signaling pathways to adapt and survive a specific drug treatment, as most targeted 

therapies act by modulating protein phosphorylation and activity. The superior ability of RPPA to 

quantify some key post-translationally modified proteins has the potential to capture such adaptive 

responses and can provide stronger predictors of therapy response or resistance mechanisms (Mertins 

et al., 2014). Indeed, our recent studies have demonstrated the value of RPPA-based adaptive 

responses in the rational design of combination therapies (Fang et al., 2019; Iavarone et al., 2019; Korkut 

et al., 2015; Krepler et al., 2017; Krepler et al., 2016; Kwong et al., 2015; Molinelli et al., 2013; Muranen 

et al., 2012; Sun et al., 2017; Sun et al., 2018), with several of these translated to the clinic 

(NCT01623349, NCT03586661, NCT02208375, NCT02338622, NCT03162627; NCT03579316, 

NCT03565991, NCT03801369, NCT03544125) with patient benefit. 

 

Results 

A large, high-quality collection of perturbed protein expression profiles of cancer cell lines 

To generate a high-quality resource of perturbed protein responses, we measured RPPA-based protein 

expression profiles of cancer cell lines in response to >150 preclinical and clinical therapeutics (often 
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across multiple time points), generated normalized RPPA data (including baseline level p0 and post-

treatment level p1) and protein response to perturbation (Δp = p1 - p0) profiles using a standardized 

data processing pipeline, and made the data public through a user-friendly data portal (Figure 1A). 

In total, this compendium contains RPPA profiles (~210 total and phosphorylated protein markers) 

of 15,867 samples (12,222 drug-treated samples and 3,647 control samples). The cancer cell lines 

come from several lineages, including breast, ovarian, uterus, skin, blood, and prostate; and the drug 

compounds target a broad range of cancer-related processes, including PI3K/mTOR signaling, 

ERK/MAPK signaling, RTK signaling, EGFR signaling, TP53 pathway, genome integrity, cell cycle, 

antipsychotic drugs, and chromatin remodeling (Figure 1B). Due to time and cost constraints and the 

clinical relevance of different drugs, instead of profiling all possible perturbations across all cell-line 

and drug combinations, we took a more pragmatic approach in which some cell lineages and drug 

groups were more frequently profiled but still represent an extensive survey of drug perturbations 

(Figure 1B). Our sample set is highly enriched in responses from a subset of common, well-

characterized cancer cell lines that have rich molecular profiling and drug response data in public 

resources (Figure 1C). For example, >1,500 drug-treated samples were from MCF7, and >250 drug-

treated samples were from BT20, SKBR3, MDA-MB-468, BT549, UACC812, BT474, SKOV3, and 

HCC1954 (Figure S1A). For drug treatment, 86.2% of the samples were treated with monotherapy, 

and ~1,700 samples were treated with double or triple-drug combinations (Figure S1B). Among the 

drug compounds used, 23 compounds have >150 treated samples, with lapatinib (485 samples, HER2 

inhibitor), GSK690693 (453 samples, AKT inhibitor), and AZD8055 (424 samples, mTOR inhibitor) 

being the top three (Figure S1C). Importantly, for many of the therapeutic targets, we profiled 

multiple targeting agents, including those that target different members of the same pathway, to 

increase our ability to identify on-target activity. To assess overall data quality, we compared protein 

response (Δp) correlations of technical replicate samples (n = 2,771 pairs) to those of randomly 

selected sample pairs. We found that replicate samples showed much higher correlations across 

protein markers (mean R = 0.87) than random pairs (mean R = 0.059) (Figure 1D), indicating high 

reproducibility of our RPPA data.  

 

To further confirm the quality of the RPPA data output, we sought to validate our protein response 

data using independent mRNA response data from the connectivity map (Subramanian et al., 2017). 

Since this analysis is for different molecules (protein vs. RNA) and across different platforms (RPPA 
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vs. L1000), we employed the Goodman-Kruskal’s gamma (ɣ) correlation to conduct a robust 

assessment. Based on the same cell lines perturbed by the same compounds (n = 46 unique cell-line-

drug perturbations), we first converted the original continuous response scores into categorical 

response groups (i.e., upregulated, neutral, and downregulated) and then compared the mRNA-

protein response concordance by calculating mRNA-protein response association and sample-sample 

association (Figure 2A). We observed that the matched mRNA-protein responses from the same 

condition were highly associated with each other (median ɣ = 0.63), which is significantly higher 

than that from the randomly shuffled background distribution (paired Student’s t-test, p = 5.8×10-5, 

Figure 2B). Then, we tested whether the sample-sample association inferred from the RPPA-based 

protein responses were preserved in the L1000-based mRNA responses. Among the significant 

sample-sample associations identified by either platform (FDR < 0.01), the RPPA-based ɣ scores 

showed a strong, positive correlation with the L1000-based ɣ scores (Pearson’s correlation, R = 0.65, 

p = 5×10-6). Further, categorized RPPA-based associations are highly consistent with L1000-based 

associations (Fisher’s exact test, p = 2.3×10-3). These cross-molecule, cross-platform, and cross-study 

comparisons strongly support a high quality of the protein response data. 

 

Predictive power and mechanistic insights for drug sensitivity by protein responses 

Our previous study demonstrated that RPPA-based baseline protein levels showed considerable 

predictive power for drug sensitivity in cancer cell lines (Li et al., 2017). To assess the predictive 

power of protein responses for drug sensitivity, we integrated our perturbed RPPA data and drug 

sensitivity data available in GDSC (Iorio et al., 2016) and identified seven drugs whose sensitivity 

and protein expression data were available in at least six different cell lines. Then, for each drug, we 

defined three types of protein markers that may be informative about drug sensitivity: (i) p0: the 

baseline expression of a protein shows a significant correlation with the sensitivity to the drug across 

cell lines (Pearson correlation, p < 0.05); (ii) Δp only: the protein response shows a significant 

correlation with drug sensitivity (Pearson correlation, p < 0.05); and (iii) Δp|p0: given p0, the protein 

response shows additional information content in predicting drug sensitivity (see STAR Methods). 

Across all the drugs, the numbers of Δp-informative (Δp only + Δp|p0) protein markers were 

significantly higher than those of p0-based markers (paired t-test, p = 1.38×10-3, n = 7 drugs, Figure 

3A). We next focused on two representative drugs, pictilisib (PI3K inhibitor), and talazoparib (PARP 

inhibitor), with markedly different targets, for which a large number of cell lines have drug sensitivity 
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data (Iorio et al., 2016; Seashore-Ludlow et al., 2015). We found that across cell lines, baseline 

proteins (p0) and protein response (Δp) showed distinct sets of proteins whose levels significantly 

correlated with drug sensitivity (Pearson correlation, p < 0.05), respectively; and there were 

additional proteins where Δp correlated with drug sensitivity when considering the information 

content of p0 (Δp|p0). When combining Δp and Δp|p0, the number of informative protein responses 

increased dramatically compared to baseline protein levels: pictilisib, from 17 to 27; and talazoparib, 

33 to 52 (Figure 3B, 3C). Considering the potential noise of drug sensitivity data, we further 

validated this pattern, either using independent public drug sensitivity data or generating in-house 

drug sensitivity data (Figure S2). The correlations of baseline protein levels or protein responses 

with drug sensitivity between the different resources are highly correlated, despite the assessment of 

independent cell line sets (Figure 3D, Figure S2). These results not only further support the high 

quality of the RPPA expression data, but also suggest that changes in protein levels on therapeutic 

challenge provide substantial additional information content beyond that provided by baseline protein 

levels for predicting treatment responses. 

 

To demonstrate how protein response could help elucidate drug resistance mechanisms and suggest 

therapy combinations, we focused on MEK inhibitors (MEKi), using cobimetinib as an illustration 

example and considering both baseline (p0) and protein response levels (Δp) (Figure 4). Cell lines 

were divided into MEKi-resistant (OVCAR432: RAS pathway WT, OVCAR3: RAS pathway WT, 

and OAW28: MAP2K4 mutant) and MEKi-sensitive (OV90: BRAF mutant, CAOV3: RAS pathway 

WT, ES2: BRAF and MEK mutant, OVCAR5: KRAS mutant, JHOM1: RAS pathway WT, and 

OVCAR8: KRAS mutant) based on response to multiple MEK inhibitors in our and publicly available 

data (CTRPv2 and GDSC). As expected, cell lines with aberrations in the RAS/MAPK pathway have 

a higher propensity to RAS/MAPK baseline pathway activity and sensitivity to MEKi, as indicated 

by low BIM and high EGFR, DUSP4, transglutaminase, pYB1, p90RSK, pMAPK, pMEK, and pJun 

(Pohl et al., 2005) (Figure 4A). There was also a suggestion that cell state and, particularly, decreased 

epithelial characteristics, or epithelial-mesenchymal transition (EMT) (low E-cadherin, beta-catenin, 

RAB25, ERalpha, GATA3, high EPPK1, N-cadherin, AXL, PAI-1, and fibronectin) were associated 

with sensitivity to MEKi. The EMT characteristics were likely mediated, at least in part, by effects 

of the RAS/MAPK pathway activation noted above (Shao et al., 2014).  

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 4, 2020. ; https://doi.org/10.1101/2020.07.03.186908doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.03.186908


8 
 

Adaptive responses (Δp) to cobimetinib demonstrated a greater dynamic range in terms of sensitivity 

and resistance to MEKi than baseline data. Sensitivity to cobimetinib was associated with evidence 

for a greater cobimetinib-induced decrease in RAS/MAPK pathway activity (decreased DUSP4, 

transglutaminase, FOXM1, p90RSK, pMAPK, pYB1, pS6, and pJun, and increased BIM), and 

decreased cell cycle progression (decreased pRB, cyclinB1 CDK1, PLK1, cdc25c, and CHK1, and 

increased p16, p21, and p27), likely as a consequence of RAS/MAPK signaling inhibition (Figure 

4B). Further, there was a marked shift to an epithelial phenotype, as indicated by increased EMA, 

EPPK1, Claudin1, and beta-catenin (Figure 4B). Many of the associations with sensitivity to 

cobimetinib were identifiable in the pre-treatment samples, with the associations markedly 

accentuated and extended in cobimetinib-treated samples. The marked increase in BIM in response 

to MEKi has been identified previously and provides a biomarker for response to combined inhibition 

of MEKi and BCL2 family members (Cragg et al., 2008; Iavarone et al., 2019). We also performed 

a similar analysis using trametinib (Figure S3) and observed a marked overlap of potential 

biomarkers despite the analysis of different cell lines and different MEK inhibitors. Importantly, the 

key adaptive pathway-level changes associated with drug sensitivity include cell cycle inhibition in 

sensitive cell lines (t-test, p = 4.1 ×10-4, Figure 4C) and PI3K/Akt signaling activation in resistant 

cell lines (t-test, p = 0.015, Figure 4C). Together, the results argue that (i) sensitivity to RAS/MAPK 

pathway inhibition is associated with baseline pathway activity and cell state, and (ii) adaptive 

responses to RAS/MAPK pathway inhibition in resistant cells could be overcome by PI3K inhibitors 

(although the toxicity of combinations of RAS/MAPK and PI3K pathway inhibitors has to be 

considered). 

 

A systematic “protein-drug” connectivity map 

To systematically evaluate the utility of our protein response data, we built a protein-drug 

connectivity map based on the RPPA data. In this map, each node represents a protein or a drug, 

protein-drug connections are based on whether the drug treatment caused a significant change of the 

protein, and drug-drug connections are based on whether the two drugs caused similar protein 

responses (Figure 5A). As expected, drugs for the same target are clustered together: for example, 

several MEK inhibitors and mTOR/PI3K inhibitors are highly connected, highlighting their similar 

downstream protein responses. This map also identifies novel connections: a PARP inhibitor showed 

both similar and opposite relationships with some drugs, suggesting potential additive or agonistic 
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effects that could direct the development of rational drug combinations. Indeed, based on assessment 

of functional proteomics changes as assessed by RPPA, we have validated synergistic activity of 

PARP inhibitors and inhibition of PI3K pathway, MEK, ATR, and WEE1 inhibitors in preclinical 

and clinical studies (Fang et al., 2019; Shen et al., 2015; Sun et al., 2017; Sun et al., 2018). 

 

We next studied protein-protein relationships in the map. For any given drug treatment, we classified 

proteins into perturbed proteins and other proteins. We found that perturbed proteins are more likely 

to interact than other proteins, based on the STRING database (Szklarczyk et al., 2019) (t-test, p = 

3.2 ×10-6), suggesting that proteins co-perturbed by a drug tend to be involved in the same biological 

processes and to interact as part of a signaling cascade (Figure 5B). This global assessment using 

prior protein interaction knowledge supports the utility of the approach to drive biological discoveries.  

 

Using drug-centered protein neighborhoods, we initially focused on signaling through tyrosine 

kinases and their downstream networks: selumetinib (target: MEK) (Figure 6A), AZD8055 (target: 

mTOR) (Figure 6B), GSK1838705A (target: IGF1R/ALK) (Figure 6C), and sapatinib (target: 

EGFR/ERBB2) (Figure 6D), and demonstrated a marked overlap in protein networks in inhibitor-

perturbed cells. Interestingly, the Hsp90 inhibitor (gamitrinib) protein neighborhood (Figure S4A), 

demonstrated similarities to that of the tyrosine kinase pathway inhibitors, potentially due to a role 

of Hsp90 in stabilizing multiple members of the tyrosine kinase signaling pathway. Indeed, the 

similarities in the protein networks argue that the major effects of Hsp90 are likely attributable to its 

effects on tyrosine kinase signaling pathways (Lee et al., 2017). In contrast, rabusertib (target: Chk1) 

(Figure S4B), and chlorpromazine (target: autophagy) (Figure S4C) demonstrated distinct protein 

neighborhoods consistent with markedly different mechanisms of action.  

 

As described above, the MEKi protein neighborhood is strongly associated with signaling through 

the MAPK and mTOR pathways, cell cycle progression, and cell state. There is also a strong 

association with apoptotic balance (BIM, BAX, and MCL1). Based on extensive validation of the 

relationships between these pathways and RAS/MAPK signaling, the association with multiple other 

proteins in the neighborhood map in Figure 6A are likely valid. Given that the MAPK pathway is a 

key regulator of the TSC1/2 complex that is upstream of mTORC1 signaling, it is not surprising that 

the protein neighborhood of mTOR inhibitor AZD8055 (Figure 6B) is highly related to the 
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selumetinib protein neighborhood. The most marked differences between the MEK and mTOR 

inhibitor protein neighborhoods are represented in the upper components of the PI3K and MAPK 

pathway that appear relatively independent of each other. Interestingly, the IGF1R/ALK inhibitor, 

GSK1838705A, protein neighborhood encompasses components of both the MEK and mTOR 

protein neighborhoods, consistent with the IGF1R having input into both pathways. While the strong 

link to the PI3K pathway was expected, the link between the IGF1R and MAPK pathway has been 

less studied. The pan-EGFR family inhibitor, sapatinib, neighborhood reflects EGFR family receptors 

being the key regulators of the PI3K and MAPK pathways in epithelial cells (Akbani et al., 2014). 

The EGFR family has a stronger link than either mTOR or MEK inhibitors to the DNA damage repair 

pathway (i.e., 53BP1, Rad50, XRCC1, pChk1/2, and BRCA2), consistent with recent studies (Russo 

et al., 2019; Wang et al., 2013).  

 

A user-friendly data portal for protein responses of perturbed cell lines 

To facilitate the utilization of our protein response data by a broad biomedical community, we 

provided unrestricted access to the data through a user-friendly portal, called “Cancer Perturbed 

Proteomics Atlas” for fluent data exploration and analysis, which can be accessed at 

http://bioinformatics.mdanderson.org/main/:CPPAOverview. The data portal provides four 

interactive modules: “Data Summary,” “My Protein,” “Connectivity Map,” and “Analysis” (Figure 

7i). The “Data Summary” module provides detailed information about each sample (including cell 

line, compound, dose, time, and culture conditions) (Figure 7ii). The datasets can be easily 

downloaded through a tree-view interface. “My protein” module provides annotation of RPPA 

protein markers, including the corresponding genes, and antibody information (Figure 7iii). The 

“Connectivity Map” provides an interactive approach to exploring the map, through which protein-

drug and drug-drug connectivity can be examined through different visual and layout styles (Figure 

7iv). The “Analysis” module provides three common analyses through which users can explore 

protein responses associated with a drug/compound, including protein response (Δp) rank (Figure 

7v), volcano plots for the correlations between protein responses and drug sensitivity (Figure 7vi), 

and box plots for differential protein responses between sensitive and resistant cell lines (Figure 

7vii). Collectively, this effort provides a valuable platform that enables researchers to explore, 

analyze, and visualize RPPA-based protein response data intuitively and efficiently. 
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Discussion 

Understanding the functional consequences of drug treatment is central to identifying patients who 

will likely benefit from specific therapies and to develop effective personalized combination cancer 

therapies. Here we present a large collection of protein responses (including total and post-

translationally modified proteins) upon drug treatments (>12,000 treated samples) using RPPA, the 

same platform employed for protein profiling of TCGA patient samples and CCLE cell line samples. 

Our dataset is several magnitudes larger than previously published studies, and for such a resource, 

data quality is key. We validated the quality of our datasets in several ways. First, we demonstrated 

the high reproducibility of technical replicate samples using the same platform. Second, we 

established a high consistency between RPPA-based protein responses and the independently 

generated L1000 mRNA responses to the same perturbation conditions. Third, we validated 

observed correlations of protein responses with public drug sensitivity data using newly generated 

drug sensitivity data on independent cell line sets. Finally, the quality of our dataset is also 

supported by the meaningful patterns observed on the systematic “protein-drug” connectivity map, 

such as the clustering of similar drugs and higher node connectivity of perturbed proteins annotated 

in the STRING protein interaction database. Our study represents a unique, high-quality 

compendium of protein responses of cancer cell lines to a diversity of compound perturbations 

available for use by the wider community. 

 

By establishing the connections between a core set of proteins and drug treatment in simplified well-

controlled cell line models, the utility of our protein response dataset is several-fold. First, our dataset 

provides a basis for understanding cause-effect relationships, which is complementary to correlation 

analyses and associations that can be obtained from patient cohorts. Based on these data, it will be 

possible to develop quantitative predictive models of how signaling networks function in intact 

cellular systems. Second, we show that while there is information content in biomarkers at baseline, 

the information content is markedly increased when baseline and response signals are combined. This 

is predicted by systems biology and engineering precepts, wherein, perturbed systems contain more 

information than static analysis. Biomarkers designed to select treatment using baseline data 

frequently have a limited power to predict benefit, and our results suggest that adaptive protein 

responses after initial treatment could be highly informative in terms of treatment response, and clinical 

benefit. Further clinical investigations are warranted to assess the potential benefit gains using such a 
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strategy. Third, since protein responses reflect how cancer cells critically rewire their signaling pathways to 

survive and adapt to the stress of a specific drug treatment, these protein signals provide a strong basis for 

rational design of combination therapies as we have demonstrated previously (Iavarone et al., 2019; Krepler 

et al., 2017; Krepler et al., 2016; Kwong et al., 2015; Molinelli et al., 2013; Muranen et al., 2012; Sun et al., 

2017; Sun et al., 2018).  

 

We recognize some limitations of this study. First, compared with mass spectrometry-based protein 

level or mRNA level readout assays, the number of protein markers that can be effectively monitored 

by the RPPA technology is much smaller. However, the increased sensitivity (particularly for some 

key proteins and phosphoproteins), and cost considerations, make RPPA a practical platform for 

generating such a large resource. In capturing protein responses, RPPA and mass spectrometry are 

complementary because of their different scopes and focuses. Second, although many perturbed 

protein response profiles were generated, some cell lines and drug treatments (including different 

dosages) are still sparsely sampled. Further efforts are required to obtain more compensative sets; 

moreover, machine learning approaches may have the potential to fill some of these gaps. Finally, as 

with other high-throughput technologies, there can be technical measurement errors for individual 

samples, and interesting observations from our study should be followed by further in-depth 

investigations. 

 

We have provided an interactive, user-friendly data portal through which biomedical researchers can 

explore, visualize, and intuitively analyze these data. With this bioinformatics tool, we expect an 

effective translation of the large-scale perturbed protein data into biological knowledge and clinical 

utility. Together with recent efforts that have systematically characterized phenotypic and molecular 

responses to drug treatment, our study provides a rich resource for the research community to 

investigate the behaviors of cancer cells and the dependencies of treatment responses. 
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STAR methods 

Contact for Reagent and Resource Sharing 

Further information and requests for resources and reagents should be directed to and will be fulfilled 

by the Lead Contact, Han Liang (hliang1@mdanderson.org). 

 

Experimental Model and Subject Details 

Cell lines 

We collected cancer cell lines through the MD Anderson Cancer Center (MDACC) CCSG supported 

Cell Line Characterization Core Facility (Houston, TX, USA) and from several outside collaborations. 

All cell lines prepared at MDACC were confirmed by short tandem repeat (STR) analysis in the core 

per institutional policy, and the outside collaborators also routinely confirmed cell lines by STR 

analysis.  

 

RPPA experiments 

Cell line samples were prepared, and antibodies were validated as previously described 

(Hennessy et al., 2010; Li et al., 2017). RPPA data were generated by the RPPA core facility at 

MDACC. RPPA slides were first quantified using ArrayPro (Media Cybernetics) to generate signal 

intensities (level 1), then processed by SuperCurve to estimate the relative protein expression level 

(level 2), and were then normalized by median polish (level 3). RPPA slide quality was assessed by 

a quality control classifier (Ju et al., 2015), and only slides above 0.8 (range: 0-1) were retained for 

further analysis. In total, we generated RPPA data from 15,867 samples, including 12,222 treated cell 

line samples and 3,647 baseline samples (e.g., treated by DSMO) from 8 batches. Through the 

comparison of RPPA signals between post-treatment (p1) and baseline samples (p0), we generated 

8,111 unique protein response (Δp) profiles after combining replicate samples. 

 

Comparison of RPPA-based protein response and L1000-based mRNA response 

To validate our RPPA perturbation data, we downloaded the level-5 data of L1000 phase 1 from the 

GEO database (GSE92742). For a fair comparison, we collected data from the same cell lines 

perturbed by the same compound. In total, 46 “perturbation-cell-line” IDs (60 samples) and 316 

genes/proteins (total proteins only) commonly shared by the two platforms were used in the 

subsequent analyses. For a perturbation-cell-line ID with multiple concentration and/or time points, 
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we adopted the median value across all conditions as the representative response score. As shown in 

Figure 2A, for each platform, we first converted the continuous response to a categorical response: 

up-regulated, down-regulated, or neutral. Random events were defined by the global median  35% 

quantile, calculated from the full matrix. Next, we excluded the random events and computed 

Goodman-Kruskal’s gamma to estimate sample associations across genes. We evaluated the 

concordance between RPPA and L1000 platforms through two analyses. (i) Protein-mRNA response 

associations: for each sample, a gamma (ɣ) association between the two platforms was computed 

across genes/proteins when at least 12 genes showed up-/down-regulation. To generate the 

background distribution, we randomly shuffled protein labels and computed the response associations 

between the shuffled proteins and mRNAs (the seed used for randomization is “1234”). Then, a paired 

Student’s t-test was used to evaluate the statistical significance of the group difference between the 

real and matched randomly shuffled responses. (ii) Sample-sample associations: in our RPPA dataset, 

a perturbation-cell-line ID might have replicate samples. Here, we only retained the one with the best 

protein-mRNA response association from the previous analysis. Next, for samples that showed up-

/down-regulation of >3 genes, gamma associations for every two such samples were computed within 

each platform (within the same batch). Then, Pearson’s correlation between the significant gramma 

associations (FDR < 0.01 for each platform) was used to evaluate the consistency between the protein 

and mRNA responses. 

 

Analysis of predictive protein markers of drug sensitivity 

We collected drug sensitivity data from two databases: GDSC and CTRPv2. For validation, an in-

house drug screening data set was generated for selected compounds. RPPA perturbation data of the 

same cell line treated with the same compound at different dosages or time points were averaged 

using mean values. The baseline level (p0) and protein response levels (Δp) were tested for 

associations with drug sensitivity (IC50 or AUC score) in univariate linear models. The joint markers 

(Δp|p0) were defined as the predictions of linear regression models, including both baseline and 

protein response for specific antibodies. Predictive markers were selected at a significance level of p 

= 0.05. To identify the differential protein markers of drug sensitivity and resistance, cell lines were 

classified as sensitive or resistant to a specific drug based on the consensus call of CTRPv2, GDSC, 

and in-house datasets. Baseline levels (p0) and protein response levels (Δp) with a significant 
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difference between sensitive and resistant cell lines were identified by Student’s t-test. Pathway-level 

scores (Li et al., 2017) were similarly analyzed. 

 

Construction of a drug-protein connectivity map 

The association of each drug-protein pair was assessed by testing the difference of protein expression 

between baseline (p0) and post-treatment level (p1) based on the paired t-test across cell lines. For 

each drug-drug pair, we used Goodman-Kruskal’s gamma to calculate the associations, as described 

in the comparison between RPPA-based protein response and L1000-based mRNA response data. 

The significantly correlated drug-protein and drug-drug pairs (FDR < 0.1) were used to construct a 

global drug-protein connectivity map. In the connectivity map, proteins were grouped and colored by 

their related protein functional pathways, and drugs were grouped and colored by their targeted genes 

or pathways. For each drug, the network densities were calculated for the two subsets of proteins: (i) 

proteins significantly differentially expressed between p0 and p1 (perturbed proteins), and (ii) other 

proteins (neutral proteins). The network density D of a protein subset with size N was defined as a 

ratio of the number of protein-protein interactions (E) to the number of all possible protein pairs 

(𝐸𝑚𝑎𝑥 = (𝑁2)), i.e., 𝐷 = 𝐸/𝐸𝑚𝑎𝑥 . Protein-protein interaction information was obtained from the 

STRING database (Szklarczyk et al., 2019). A paired Wilcoxon test was performed to assess the 

difference of the network densities between the perturbed and other proteins of all the drugs. For 

Figure 6, the examples of drug-centered connectivity maps were generated separately with colored 

edges (red: up-regulated in post-treatment; blue: down-regulated in post-treatment). The edge widths 

were proportional to the differential expression between baseline (p0) and post-treatment levels (p1). 

All network views were generated by the Rcy3 library and Cytoscape (Otasek et al., 2019; Shannon 

et al., 2003).   

 

Data portal development 

All RPPA, mRNA expression, and drug sensitivity data accompanying the pre-calculated analytic 

results were stored in a CouchDB database. We generated all the analytic results in R before 

loading them into the database. We implemented a user-friendly and interactive web interface 

in JavaScript. Specifically, tabular results were generated by DataTables, box, and scatter plots were 

generated by HighCharts, and interactive network views were implemented by Cytoscape.js library. 
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Figure Legends 

Figure 1. Summary of the perturbed RPPA profiling data in this study 

(A) Overview of the RPPA profiling experiments and data processing of cell line perturbations. 

The pie chart shows the lineage distribution of cancer cell lines (n = 319) profiled. (B) The 

distribution of drug-treated samples by cell lineages and drug groups. The bar plots show the 

numbers of samples profiled for each lineage or drug group, and the size of the circle is 

proportional to the number of samples profiled for each lineage-drug combination. (C) The circles 

show the number of cell lines used in this study that were profiled by GDSC and CCLE. (D) 

Reproducibility of perturbed RPPA data based on technical replicates (n = 2,771 pairs). See also 

Figure S1. 

 

Figure 2. Comparison between the RPPA-based protein responses and the L1000-based 

mRNA responses  

(A) Overview of the comparison method (see STAR Methods for details). (B) Boxplots of protein-

mRNA response associations between the RPPA and L1000 platforms using the same 

perturbations (e.g., the same cell line and the same compound, n = 46). The gamma associations 

from the real responses (green box) were compared to those from the randomly shuffled 

background distribution (grey box). The P-value is based on a paired Student’s t-test. The vertical 

line in the box is the median, the bottom, and top of the box are the first and third quartiles, and 

the whiskers extend to 1.5 IQR of the lower quartile and the upper quartile, respectively. (C) 

Scatter plot showing the correlation of sample-sample gamma associations from the RPPA (x-axis) 

and L1000 (y-axis) platforms. Only significant data points (gamma associations) with FDR < 0.01 

in either platform are shown. Pearson’s correlation coefficient and associated P-value are shown.  

 

Figure 3. Comparison of the predictive power of protein markers for drug sensitivity 

(A) Summary of predictive markers based on baseline protein expression (p0) and protein response 

(Δp) using drug response data from GDSC. Given a specific drug, three types of predictive markers 

were identified: (i) proteins whose p0 level is significantly correlated with drug sensitivity; (ii) 

proteins whose Δp level is significantly correlated with drug sensitivity; and (iii) proteins whose 

Δp level is significantly correlated with drug sensitivity given the p0 contribution. These protein 

markers were identified based on both Δp only, and Δp|p0, and are called Δp shared. (B, C) 
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Heatmaps showing different types of protein markers for GDC0941/pictilisib (B) and 

BMN673/talazoparib (C). In each panel, the heatmap shows Pearson’s correlation coefficients of 

different protein levels with sensitivity to the drug of interest; the bar plot shows the number of 

predictive protein markers in each category. The protein markers of baseline (p0) and protein 

response (Δp) were selected at a significance level of p = 0.05 in univariate correlation. The joint 

protein markers, labeled as “Δp|p0,” represent linear regression models, including both p0 and Δp 

levels for a specific protein. The coefficients in the heatmap for joint markers indicate the 

correlation of the prediction value of the linear model with the real value of drug sensitivity. The 

proteins identified by Δp only or “Δp|p0” are marked by Δp total. (D) The scatter plots summarize 

the comparisons of Pearson’s correlation coefficients of drug sensitivity and baseline level (p0, 

left) as well as protein response (Δp, right) using two independent data sets. See also Figure S2. 

   

Figure 4. Differentially expressed protein markers between cobimetinib-sensitive and 

resistant cell lines  

(A, B) Heatmaps showing baseline (A) and perturbed protein expressions (B) with significant 

differences between sensitive and resistant cell lines (q < 0.05). Each protein marker is annotated 

by whether it is a dual marker (i.e., significant both in p0 and Δp), BCL-2 family member, or 

belongs to a specific pathway. (C) Cartoon summary of baseline protein levels and adaptive protein 

responses to MEK inhibitors between the two cell groups. The difference of pathway scores 

between the two groups was assessed based on a Student’s t-test. See also Figure S3. 

 

Figure 5. A “drug-protein” connectivity map based on protein response signals 

(A) A global view of the drug-protein connectivity map with highlighted examples of drug-drug 

correlation networks (i.e., MEK inhibitors, mTOR, PI3K inhibitors, and neighboring drugs of a 

PARP inhibitor). Red/blue edges represent positive/negative drug-drug correlations, respectively. 

Proteins were grouped and colored by their related functional pathways. The drugs were grouped 

and colored by their targeted genes or pathways. (B) Comparison of node connectivity between 

perturbed and neutral proteins in the protein interaction network. P-value was computed based on 

a paired Wilcoxon test.   
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Figure 6. Examples of drug-centered protein connectivity maps 

(A-D) Drug-protein connectivity maps for individual drugs: selumetinib (A), AZD8055 (B), 

GSK1838705A (C), and sapitinib (D). In the network view, the edge color indicates the response 

direction of protein markers (red/blue: up/down-regulated in post-treatment). The proteins (nodes) 

of the same functional pathways are highlighted in the same colors. See also Figure S4. 

 

Figure 7. A snapshot of the data portal for the perturbed RPPA data  

The CPPA portal (i) contains four modules: the “Summary” module (ii); the “My protein” module 

(iii); the “Network Visualization” module (iv); and the “Analysis” module, which offers protein 

perturbation analysis (v), correlation analysis of drug and protein response (vi), and differential 

expression analysis of protein response in sensitive and resistant cell lines (vii).  
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Supplementary Figures  

Figure S1. Summary of the perturbed RPPA profiling data in this study, related to Figure 1. 

(A) Cell lines associated with the largest sample sizes. (B) Sample numbers by different types of 

compound perturbations. (C) Compounds associated with the largest sample sizes. 

 

Figure S2. Confirmation of predictive protein markers for selected drugs, related to Figure 

3  

(A-C) Pictilisib (drug response data from CTRPv2) and (D) talazoparib (drug response data from 

in-house experiments). The analysis was based on drug sensitivity data independent from Figure 

3. (A, D) The heatmaps show Pearson’s correlation coefficients of protein level and drug 

sensitivity. The bar plots show the number of predictive protein markers in each category. The 

protein markers of baseline (p0) and protein response (Δp) were selected at the significance level 

of p = 0.05 in the univariate correlation test. The joint protein markers, labeled as “Δp|p0,” are the 

linear regression models of baseline and protein response levels for specific proteins. The 

coefficients in the heatmap for joint markers indicate the correlation between the prediction of the 

linear model and the drug sensitivity. Δp total is defined as the union of “Δp only” and “Δp given 

p0.” (B, C) The scatter plots summarize the comparison of the Pearson’s correlation coefficients 

of drug sensitivity and (B) baseline level (p0) as well as (C) protein response (Δp) in the two 

independent data sets.  

 

Figure S3. Differentially expressed proteins between trametinib-sensitive and -resistant cell 

lines, related to Figure 4  

(A, B) Heatmaps showing baseline protein expression (A), and perturbed protein response (B) with 

a significant difference between the sensitive and resistant cell lines (q < 0.05). 

 

Figure S4. Examples of drug-centered protein connectivity maps, related to Figure 6 

(A-C) Drug-protein connectivity maps for individual drugs: gamitrinib (A), rabusertib (B), and 

chlorpromazine (C). In the network views, the edge color indicates the response direction of 

protein markers (red/blue: up/down-regulated in post-treatment). The proteins (nodes) of the same 

functional pathways are highlighted in the same colors. 
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