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Abstract—The problem of scheduling for large scale charging
of Electric Vehicles (EVs) is considered. As part of the future EV
infrastructure, a Large Scale Charging (LSC) facility is capable
of charging hundreds of electric vehicles simultaneously. As an
intelligent load in the future smart grid, LSC requires properly
designed pricing and scheduling algorithms that take into account
the electricity consumed, the arrival-departure characteristics,
and overall charging capacity.

The scheduling of LSC is formulated as a deadline scheduling
problem. Utility functions that combine both amount of charge
and tightness of the deadline are proposed. Under arbitrary
(and deterministic) arrival, departure, and charging character-
istics, a scheduling policy referred to as deadline scheduling
with admission control is proposed. The proposed algorithm
achieves the highest competitive ratio (against the best offline
scheduling) for the utility function linear in charging level among
all online scheduling algorithms. It also offers significant gain
over benchmark scheduling algorithms such as the Earliest
Deadline First (EDF) scheduling and the First Come First Serve
(FCFS) scheduling in terms of average performance for general
utility functions when tested with randomly generated charging
requests.

Index Terms—Electric vehicle infrastructure, large scale charg-
ing, EV/PHEV charging, demand response.

I. INTRODUCTION

The electrification of the transportation system is one of

the key components toward a clean and sustainable society.

The technology for Electric Vehicles1 (EVs) has sufficiently

advanced that an accelerated adoption of EVs is increasingly

likely. Crucial to the transition toward an EV based transporta-

tion is to establish Large Scale Charging (LSC) infrastructures,

i.e., a battery charging system at public parking facilities, work

places, and apartment complexes where a large number of

EVs are charged simultaneously. LSC is essential for urban

areas, especially in densely populated developing countries,

where in-home EV charging is not an option. With intelligent

scheduling, LSC sites can participate in demand side response,

taking advantages of the economies of scale, and offering

greater energy efficiency. For the management of the grid,

LSC provides an opportunity for efficient load management

[1], [2].

The pricing and scheduling of large scale EV charging fa-

cility is considered in this paper. Specifically, a pricing scheme

coupled with a deadline scheduling algorithm that exploits

This work is supported in part by the National Science Foundation under
Grant CNS-1135844.

1Include both Plug-in Hybrid Electric Vehicles (PHEVs) and Battery
Electric Vehicles (BEVs).

the available charging capacity and the customer’s flexible

schedule is proposed. It is assumed that a customer arriving

at a charging facility can communicate its charging needs (the

amount of charging required and the deadline for completion)

to the operator. The pricing of a charging request should

be a function of not only the amount of required charging

but also the deadline of completion. To an LSC operator, a

job with a relaxed deadline offers the scheduling flexibility

to accommodate more profitable requests. Such requests also

give the operator the opportunities to avoid power surge and

exploit future pricing advantages. Therefore, customers should

be given price incentives to offer their flexibilities.

The scheduling of LSC is studied under the framework

of online scheduling of jobs with deadlines. In the online

scheduling setting there is no reservation requirements, and

the operator has to decide, at the time of customer arrival

with a charging request, whether to accept the customer and

the price of service. In a more general setting, the pricing itself

can be used as a way to reject a request or reduce the amount

of requests. In this paper, however, the policy of admission is

considered separately from that of pricing.

For online deadline scheduling algorithms operating in

uncertain environments, it is often inevitable that some jobs

cannot be completed by their deadlines. In the context of

LSC, for example, the power shortage or faulty equipments

may affect the completion of accepted charging requests. The

admission control can be used as a way to reduce but not

eliminate such occurrences. Therefore, there is a need, as part

of the pricing scheme, for a way to compensate the customer

whose charging request is accepted but not completed or not

to the requested level. For instance, a voucher for free future

services or cash credits for the uncharged amount can be

offered. Such mechanisms of compensating the customers with

unfulfilled requests need to be incorporated to the design of

optimal scheduling algorithm.

A. Summary of Results

The scheme presented in this paper focuses on the pricing

and the online scheduling for LSC, which is the first of this

kind to our best knowledge. An arbitrary (non stochastic)

model for arrival, departure, and charging processes is adopted.

Such a non-stochastic setting is appealing for both mathe-

matical and practical reasons. Because LSC for EVs is still

at an embryonic state, credible models that characterize the

processes of charging requests, the duration of stay, and the



level of charging are missing. Since the setting used in this

paper is assumed arbitrary, the proposed solution does not

require the knowledge of specific parameters.

A utility function and an associated pricing scheme that ties

both the amount of charging and the urgency of the deadline

are proposed. In particular, for a customer arriving at time

r with a charging request of p (joules) and deadline d, the

utility of such a job to the operator is u(p, d−r−p

p
) where u

is increasing with respect to the amount of charging p for

fixed d−r−p

p
(the relative deadline factor) and decreasing with

respect to d−r−p
p

for fixed p. Following the proposed pricing

scheme the customer will be charged for the amount of the

utility u if the request is fulfilled by the deadline. If the

operator fails to fulfill the request, the operator compensates

the customer in an amount proportional to the unfulfilled

amount (negative price for the customer).

An online scheduling algorithm aiming at maximizing the

reward under arbitrary arrival, departure (deadline), and charg-

ing instances is proposed. Referred to as Deadline Scheduling

with Admission Control (DSAC), this algorithm extends an

earlier algorithm proposed in [3] for problems involving mul-

tiple chargers. This generalization is necessary when parallel

charging—an essential feature for LSC—is allowed.

To measure performance of algorithms under arbitrary de-

terministic formulations, it is standard to use competitive ratio

analysis, which compares an online algorithm against the best

possible offline scheduling algorithm among all charging in-

stances. It can be shown that DSAC is optimal for linear utility

functions (u ∝ p, or u = kp) in terms of competitive ratio. In

other words, DSAC scheduler provides the best performance

guarantee under the worst possible charging scenarios. It is

also demonstrated that DSAC offers significant improvements

in average performance over benchmark algorithms such as

the Earliest Deadline First (EDF) and the First Come First

Serve (FCFS) algorithms for general utility functions.

B. Related Work

The benefits and impact of EV on the electricity network

are by now well documented. See, e.g., [4], [5], [6] where

the authors concluded that the current generation capacity

is able to sustain the additional EV charging. System level

constraints for the electric grid after introducing EV charging

are considered in [7], [8], [9]. There has also been economic

analysis of EV charging technology. The authors of [10] has

conducted an energy economic analysis of EV charging using

solar photovoltaic panels at workplace parking garage with

the conclusion that EV charging facility in public garage is

economically beneficial to both the car owners as well as the

facility operator.

For the scheduling of EVs, a variety of modeling and

optimization techniques have been proposed in the literature.

The EV charging for public garages has been considered in

[11], [12]. Specifically, the authors of [11] aggregated system

and operation models for the simulation of EV charging

in a municipal parking lot. The method of particle swarm

optimization is employed to allocate energy to EVs in [12].

The techniques in [11], [12] are significantly different from

the approach proposed in this paper, and there is no stated

performance guarantee; performance can only be evaluated by

simulations.

The proposed algorithm DSAC is rooted in the classical

deadline scheduling problem, stemming from the earlier prob-

lems of scheduling of processors for computer systems. It

should be noted, however, that the standard deadline schedul-

ing formulation does not include penalty if the job is not

completed by the scheduler. Since the seminal work of Liu

and Layland [13], there is considerable literature addressing

the scheduling problem in the underloaded and overloaded

regimes. The former corresponds to the case when there

exists an offline scheduling algorithm that can complete all

jobs arrived whereas the latter corresponds to the case when

some jobs cannot be completed even for the best offline

scheduling algorithm. For the underloaded scenario with single

processor, it has been shown that simple online scheduling

algorithms such as Earliest Deadline First (EDF) [13], [14] and

Least Laxity First (LLF) [15] achieve the same performance

as the optimal offline scheduling algorithm. The assumption

of underloaded overall workload, however, is restrictive and

unverifiable in practice. Locke showed in [16] that both EDF

and LLF can perform poorly in the presence of overload.

There were efforts to develop an online scheduling algorithm

with worst case performance guarantee when the system is

overloaded in [17], [18].

The admission control has been considered in the litera-

ture under the term “immediate notification” in [19] for the

application of video-on-demand. Later, joint admission and

scheduling has been studied in [20], [21], [22], [23] for non-

preemptive job requests without non-completion penalty. The

authors of [24], [25] give separately two joint admission and

scheduling algorithms for preemptive job requests with non-

completion penalty under proportional value model (v ∝ p),
where the non-completion penalty is the entire request value

v.
The deadline scheduling algorithm proposed in this paper

is an extension of an approach in [3] where its application to

large scale charging was mentioned but not addressed explic-

itly. There are major differences between [3] and the current

paper in both the application setting and the specific techniques

including the utility and reward structure, the presence of

multiple processors and parallel charging, and the evaluation

of average performance in performance comparison.

II. EV CHARGING MODEL

A. Charging Infrastructure and Customer Requests

The charging infrastructure at the facility consists of m
charging plugs (processors) with constant charging speed. In

LSC operations, preemption is allowed at no cost, i.e., a

preempted battery can be resumed charging from the previous

battery level upon preemption.

Each EV charging request T = (r, p, d) is represented by

a triple specified by the arrival (release) time r, charging

(processing) time p and deadline d. For example, a customer



who lives in an apartment in a high-rise building without

overnight charging equipment may arrive at a EV charging

facility near his office building around 8 am on the way

to work. The customer may intend to catch a flight for a

conference at 2 pm and plan to leave for the airport at 12

pm. The current battery level may be 10 miles and in order to

make the round trip to the airport the desired battery level after

charging is 50 miles. In this example the release time is 8 am,

the deadline is 12 pm and the processing time is determined

by the 40 miles desired battery level as well as the charging

speed of the charging plug.

Over a certain period of time, e.g., one day, all the

customer requests submitted constitute the input sequence

I = (T1, T2, . . . , Tn) including charging requests T1 =
(r1, p1, d1), . . . , Tn = (rn, pn, dn) to be priced, admitted and

scheduled by the LSC facility operator. Each fulfilled customer

request is associated with an individual utility, which is a

given function u(r, d, p) of the request parameters r, d and

p, whereas each admitted but unfulfilled request is associated

with a negative individual utility u(r, d, p̂), where p̂ is the

unfulfilled amount of the requested charging level.

Given the charging infrastructure and customer requests

model, the problem of interest is to devise a mechanism

of LSC operation to maximize the collective utility of the

customers. To this end we adopt the approach that uses the

revenue-seeking LSC operator as a proxy to maximize the col-

lective customer utility. Specifically, the LSC operator prices

the customer requests according to the individual utility and

conducts the admission control and scheduling in a revenue-

seeking fashion for his own benefit. When the individual utility

function is not known or known with uncertainty to the LSC

operator, the impact of using a pricing function that deviates

from the true individual utility function will be investigated

via simulation.

B. Interaction between Customers and LSC Operator

The interaction between the customers and the LSC facility

operator is summarized in the price quote offered by the

LSC operator. After the facility operator is given the charging

request parameters r, p and d, the facility operator offers a

price v for the charging request. The objective of the LSC

operator is to maximize the revenue, whereas the objective of

the customer is to obtain battery charging at a reasonable price.

In the process of both parties maximizing their own utility, our

system model allows the LSC operator to decline a customer

request (e.g., because the facility is currently busy serving

more profitable requests) to protect the utility of the LSC

operator, and thus indirectly expands the collective customer

utility by allocating the time and charging infrastructure to the

requests with better individual utility. Our system model also

allows the customer to evaluate the price quote and decide

to seek charging elsewhere. However, once the offered price

quote is accepted by the customer a contract is established

between the LSC operator and the customer; if the accepted

charging request is not completed by its deadline as promised,

the LSC operator loses the associated value (quoted price) of

the request and has to pay an additional penalty depending

on the amount of unfinished charging level. Specifically, the

non-completion penalty is equal to v p̂

p
, where p̂ denotes the

unfinished charging level, i.e., the non-completion penalty is

the fraction in the quoted price that corresponds to the unfin-

ished charging level. This non-completion liability protects the

utility of the customer. This specific non-completion liability

suits LSC well since utility is delivered to the EV owner

continuously as the battery charging level increases.

The profit obtained by the LSC operator is the total value

of all completed charging requests before their deadlines, less

all penalties paid for the admitted requests that miss their

deadlines. The pricing, admission and the scheduling has to

be conducted in an online fashion, i.e., the LSC operator

knows the parameters of request Ti only at the release time

ri. The LSC operator strives to design an online management

scheme with satisfactory performance in both underloaded and

overloaded regimes.

III. PRICING SCHEME AND UTILITY

The pricing function v(r, d, p) should be tied to the in-

dividual utility of the customer request, since this provides

an incentive for the customers to consider their flexibility

and submit charging requests with relaxed deadlines whenever

possible.

The pricing scheme has two effects for the LSC operation.

1) Pricing scheme determines customer response, i.e., shap-

ing the fraction of customers that accept a certain

price v(r, d, p) offered for requests with release time

r, deadline d and processing time p. Specifically, an

unreasonably high price will turn away the majority of

the customers and reduce both the revenue of the LSC

operator as well as the collective utility of the EV owners.

On the other hand, a price too low may overwhelm the

charging facility without earning appropriate revenue for

the LSC operator.

2) Due to the revenue-seeking nature of the LSC operator,

the pricing scheme will affect the specific admission

and scheduling decision since different prices may tag

different priorities to the charging requests in the view of

LSC operator. It is sensible for the LSC operator to devote

more resource and time on the customers who accepted

more rewarding quoted prices.

The first effect of the pricing scheme leads to the traditional

method of pricing a standard product. Specifically, with the

knowledge of the customer response curve f(v; r, d, p), where

f(v; r, d, p) gives the fraction of customers with release time

r, deadline d and processing time p that are willing to accept

the price v, the LSC operator maximizes vf(v; r, d, p). This

method balances the quoted price with the customer response

curve; in both extremes of v the revenue function vf(v; r, d, p)
cannot assume the maximum since either v or f(v; r, d, p) is

too small.

However, the customer response curve f(v; r, d, p) is dif-

ficult to obtain or approximate due to the three additional

parameters r, d and p. More importantly, the pricing problem



in EV garage charging exhibits significant distinctions from

pricing a standard product since, for the standard products

manufactured on demand, the contention for manufacturing

resource only comes into play in the term of manufacturing

cost, even when there are overwhelming orders for the standard

product. On the other hand, for LSC application the contention

for charging infrastructure and time is explicit. With the

limited peak power injection from the electricity network when

there are overwhelming requests for charging in a short period

of time, the LSC operator simply cannot fulfill all the requests,

even at the expense of more operational cost. Therefore, the

pricing scheme in EV garage charging serves for the purpose

of optimally allocating charging infrastructure and time among

charging requests.

Structural properties of the utility function u = u(r, d, p)
are presented below.

1) The class of time homogeneous utility functions is con-

sidered, i.e., the utility of the request given by the triple

(r, d, p) is identical to that of the triple (r+ t, d+ t, p). It

is worth pointing out that there may be additional issues

such as peak hour versus non-peak hour. However, in this

paper the utility function that adapts to time or the overall

customer request arrival process is not considered. One

can thus write the utility function u = u(p, σ), where

σ = (d − r − p)/p is the relative deadline factor of

the request T = (r, d, p), ranging in [0,∞), and implies

the difficulty for the LSC operator to fulfill the specific

charging request without affecting other requests.

2) The utility u = u(p, σ) should be an increasing function

of the processing time p when σ is fixed, since the

electricity consumed is proportional to the charging level

requirement p.
3) The utility function u(r, d, p) should be a decreasing

function of deadline d when the release time r and the

processing length p is fixed, since the extended deadline

delays the time the customer can retrieve the car and may

reduce the operational difficulty of the LSC operator. This

observation translates to the fact that u = u(p, σ) is a

decreasing function of σ when p is fixed.

4) The decreasing trend of u = u(p, σ) in σ can also

be interpreted with the interaction among the charging

requests that come close in time. A charging request with

relative deadline factor very close to 0 cannot afford to

be moved around or delayed in the time axis. Therefore

stricter commitment in time and charging infrastructure

is necessary to fulfill the request which may potentially

block or delay other requests. The decreasing trend in the

price represents the commitment premium.

Considering the structural properties we adopt the utility

function u = u(p, σ) = ph(σ) in the simulations in Section

V, where u is proportional to p, and h(σ) is a decreasing

function of σ indicating the commitment premium. Exponen-

tial function is used for h(σ) in Section V.

Ideally the pricing function should be identical to utility

function in order to maximize collective utility. However, due

to uncertain knowledge of the utility function from LSC op-

erator side we adopt three different types of pricing functions

in the form v = v(p, σ) = pĥ(σ) in the simulations in Section

V, where ĥ(σ) is taken from one of the following three types:

constant, exponential (with correct and deviated parameters)

and step functions.

IV. ADMISSION AND SCHEDULING

Intuitively, the admission and scheduling tend to be easy for

the LSC operator if the overall charging load from the cus-

tomer requests is well below the facility capacity. Indeed, when

the overall charging load is reasonable, simple algorithms such

as EDF and first come first serve (FCFS) show reasonable

performance by simply admitting all requests that ever arrive.

However, if overwhelmingly many charging requests arrive

in a short period of time, e.g., during rush hours or due to

events like sports games, the admission and scheduling will be

more challenging. Described and interpreted below is an online

admission and scheduling algorithm DSAC, the performance

of which is demonstrated in Section V for both underloaded

and overloaded scenarios.

A. DSAC: Admission Control

When a customer request arrives and finds the facility

running well below capacity, the LSC operator offers a price

quote and once the offered quote is accepted, the operator

should immediately admit the customer, dispatch the request

to one of the lightly loaded processors and append the request

at the end of the current schedule. Otherwise, the charging

infrastructure would be left idle and potential profit would be

lost. In this easy-to-accommodate situation, the LSC operator

essentially takes a greedy approach and notices that admitting

the request will bring more revenue for now.

When a customer request arrives to a heavily occupied

facility, after the offered price quote is accepted, the LSC

operator faces a dilemma that admitting the customer may lead

to non-completion liability, while declining the customer again

means losing profit at hand. While optimal tradeoff between

the two concerns is difficult and involves accommodating

the newly arrived customer with minimum non-completion

liability, we propose a greedy threshold approach for this

difficult-to-accommodate situation.

The key idea behind the admission algorithm for difficult-to-

accommodate requests in DSAC is to evaluate the admission

decision based on the comparison of the potential profit

associated with admitting and declining the customer request.

Specifically, the LSC operator enumerates the potential proces-

sors. For each processor the admitting option is evaluated by

considering the quoted price as well as the incurred potential

non-completion penalty; the declining option is evaluated by

recognizing the potential value of the requests that would have

been affected upon admitting the new request. The ratio of

the profit associated with admitting and that with declining is

computed for each potential processor. Only if the maximum

ratio is over a prescribe threshold, the operator will admit this



request and dispatch it to the processor with the maximum

ratio.

B. DSAC: Scheduling

Even assuming the LSC operator admits the request just

released, there are many alternatives in the specific schedule of

the request just released as well as the other pending requests

(due to the admission of the new request, it may be necessary

to update the schedule of the other requests). DSAC makes

the scheduling decision in a greedy manner with minimum

backtrack in updating the schedule after admitting the newly

released request. Specifically, if the operator decides to admit

the request and dispatch to Processor k, the schedule of

Processor k is updated by tight-scheduling the newly released

request in the interval [d − p, d] where p and d are the

processing time and deadline of the newly released request,

respectively. Then the part of the previous schedule after

time d − p is moved to start at time d, or the end of the

current schedule, whichever comes later in time. This moving

may lead to some of the moved jobs to miss their deadlines.

Therefore the schedule is again updated to remove the part of

the moved jobs that comes after their deadlines.

The decision process can be interpreted as follows. When

the LSC operator decides to admit the newly released re-

quest, the request is profitable once accepted but difficult to

accommodate into the current schedule. Therefore in order

to accommodate the newly released profitable request, the

operator sacrifices the jobs in the current schedule in the time

interval [d− p, d], some of which may have deadlines far into

the future, thus still have potential in completion even after

the moving.

Described next is the procedure to determine the profit

associated with admitting (e.g., to Processor 1) and declining

the requests that cannot be appended on Processor 1. First

execute (virtually) on the current tentative schedule of Pro-

cessor 1 the procedure associated with the decision to admit

the difficult-to-accommodate request (including scheduling

the newly released request in [d − p, d] and postponing the

previous requests in [d − p, d]) and find out the requests in

the current tentative schedule of Processor 1 that are affected

in the received processing time. Denote by Jaffect the set of

requests in the current tentative schedule that are affected in

the received processing time. The profit associated with the

option of declining can be computed as the value of the subset

of requests in Jaffect anticipated to complete by the current

tentative schedule, less the portion of penalty attributed to the

subset of requests. The profit associated with the option of

admitting can be computed as the value of the newly released

request, less the portion of penalty attributed to the acceptance

of the newly released request (due to affecting the requests in

Jaffect).

To summarize, the dynamics of DSAC admission and

scheduling algorithm can be described as follows: the operator

maintains a tentative schedule for each processor at all times;

when a customer request is released, the operator checks

whether it is possible to append the new request at the end of

the current tentative schedule of one of the processors while

meeting its deadline. If the deadline can be met, then the

request is admitted and appended at the end of the current

tentative schedule of that processor. Otherwise, the operator

determines whether to admit the request based on the profits of

the options of accepting and declining. If the profit associated

with accepting is not sufficiently large, then the request is

simply declined service. Otherwise, the request is scheduled

on the processor with the maximum profit ratio in the time

interval [di − pi, di]; the previous schedule after time di − pi
is then moved to start at time di, or the end of the current

schedule, whichever comes later in time, and the operator

further checks whether there are any moved requests that

already missed their deadlines after the moving, deletes them

and moves the requests accordingly to fill the gap left by the

requests deleted.

The pseudo code of DSAC is given below. At time 0
the operator starts the infinite loop in which the schedule is

updated upon each request release.

DSAC: Admission and Scheduling procedure

1: loop
2: upon event: request Tarr is released
3: if Tarr appendable to Processor i then
4: append Tarr to the end of the tentative schedule of Proces-

sor i
5: else
6: î = argmaxi Profiti,admit/Profiti,decline

7: if Profit̂i,admit > βProfit̂i,decline then

8: append Tarr at the end by darr on Processor î
9: update the schedule after darr − parr accordingly

10: else
11: decline Tarr

12: end if
13: end if
14: end loop

As indicated in the pseudo code Tarr gets admitted and

appended to the current schedule on Processor i if it is

appendable on Processor i (line 4). Otherwise, if Tarr is not

appendable to any of the m processors, the profits Profiti,accept
and Profiti,decline associated with admitting and declining Tarr

respectively get compared, where i indicates the processor

index. For the processor that maximizes the profit ratio (Pro-

cessor î), if admitting Tarr assumes better profit (line 7),

then Tarr is admitted and appended at the end by darr (i.e.,

scheduled in the time interval [darr − parr, darr]), and the

current schedule after darr − parr is moved and modified

accordingly (line 8 and 9). Otherwise, if admitting Tarr does

not have better profit, Tarr is declined service (line 11). The

threshold β (line 7) represents the tradeoff between the current

revenue versus the newly arrived requests.

C. Illustration

Fig. 1 illustrates the admission and scheduling algorithm

for the single processor case. The arrows and the circles

indicate the release times and the deadlines, respectively. The

blue request in Fig. 1(a) and the red request in Fig. 1(e) are



appendable and thus admitted and appended in the end of

the current schedule. The green request in Fig. 1(b) and the

brown request in Fig. 1(f) are difficult to accommodate into the

current schedule and thus the profits associated with admitting

and declining are examined in Fig. 1(c) and Fig. 1(g). The

admission and scheduling decisions in Fig. 1(d) and Fig. 1(h)

are rendered by the profit comparison. The schedule is updated

by tight-scheduling the green request and the brown request

in Fig. 1(d) and Fig. 1(h). The moving caused by the green

request and the brown request leads to non-completion penalty

of the blue request and the green request, respectively. On

the other hand, the red request is still feasible after the delay

caused by the brown request in Fig. 1(h).

D. Competitive Ratio Guarantee

In the EV charging problem, an online operator knows the

job parameters at the release time, whereas the offline operator

is clairvoyant and knows the entire input instance a priori.

Due to the prior knowledge of the job parameters, the offline

operator is never subject to any non-completion liability. When

faced with overloaded charging request sequences, the online

operator is at significant disadvantage compared with the

offline operator.

To measure the worst case performance guarantee of an

online algorithm the metric of competitive ratio is widely used

(see Definition 1).

Definition 1. Competitive ratio: An online algorithm A is α-

competitive for an input set I if minI∈I
A(I)
opt(I) ≥ α where I

varies over all possible input instances in I, and A(I) and

opt(I) are the values the online algorithm A and the optimal

offline algorithm obtain on input instance I , respectively.

Specifically, an α-competitive online algorithm is guaran-

teed to achieve at least α fraction of the optimal offline value

under any input instance I in the input set I. In the EV charg-

ing problem an input instance I includes a sequence of charg-

ing requests T1 = (r1, d1, p1, v1), . . . , Tn = (rn, dn, pn, vn),
and the input instance set I contains all input instances with

finite number of charging requests.

The worst case performance guarantee of the DSAC algo-

rithm in terms of competitive ratio for linear utility function

(u ∝ p, or u = kp) is stated in Theorem 1.

Theorem 1. DSAC algorithm achieves the optimal competitive

ratio in the entire set of online algorithms for linear utility

function.

The result in Theorem 1 extends the previous competitive

ratio optimality result in [3]. Due to space limit the detailed

proof and exposition will be included in future work [26].

V. AVERAGE PERFORMANCE: SIMULATION RESULTS

A. Simulation Setup

In this section the simulation of the average performance

of the DSAC algorithm and comparison with EDF and FCFS

with or without admission control are presented. The benefit of

appropriate pricing scheme is also demonstrated via simulating

the collective utility of the customers.

The system parameters in the simulation are adopted as

follows; the customer arrival process is assumed to be Poisson

process with parameter λ, the charging level requirements

assumed to be i.i.d. uniform random variables in the interval

[5, 100], and the relative deadlines assumed to be i.i.d expo-

nential random variables with parameter η, where the relative

deadline of charging request T = (r, d, p) is d−r−p, i.e., the

maximum amount of time that can be spent on other requests

in interval [r, d] in order to finish T in time.

The customer utility function is set to be u(p, σ) =
ph(σ), where h(σ) is an exponential function (h(σ) = 1 +
3 exp(−σ)). Different pricing functions are simulated with the

form v(p, σ) = pĥ(σ), where ĥ(σ) is chosen from constant

(ĥ(σ) = 1), correct exponential (ĥ(σ) = 1 + 3 exp(−σ)),
deviated exponential (ĥ(σ) = 1 + 2 exp(−σ)), and step

functions (ĥ(σ) = 1 + 3 · 1{σ≤2}). In the simulation 200

Monte Carlo runs are conducted with 1000 jobs released over

time for each Monte Carlo run. The tradeoff parameter of

DSAC algorithm is taken to be β = 2.4. The EDF and FCFS

algorithms are adapted to the multi-processor situation in that

an admitted request is dispatched to the processor with shortest

current tentative schedule.

The admission control scheme of EDF and FCFS is im-

plemented as follows. Under EDF and FCFS with admission

control, the LSC operator declines a newly released request

if overload is detected once the request is incorporated into

the current schedule. That is, the facility operator checks the

feasibility of the requests accepted so far to ensure no penalty

will be incurred. If accepting a newly released request may

lead to penalty, then the facility operator decides to decline

the request. In Fig. 2 the performance of EDF and FCFS is

normalized by the value obtained by DSAC.

B. Admission Control: Underloaded and Overloaded Scenar-

ios

Both underloaded and overloaded scenarios are simulated

and EDF and FCFS without admission control are compared

with DSAC. It can be observed that in lightly loaded scenarios

(Fig. 2(a) and 2(c)) EDF and FCFS without admission control

perform reasonably well compared with DSAC, especially in

the 6-processor situation in Fig. 2(c), where the system load is

extremely light and EDF and FCFS without admission control

achieves almost 100 percent of the value obtained by DSAC.

On the other hand, in overloaded scenarios (Fig. 2(b) and

2(d)) EDF and FCFS without admission control perform

poorly compared with DSAC. When the system load is

extremely heavy due to the fact that no admission control

is performed, EDF and FCFS admit all the requests and

incur excessive non-completion penalty. Therefore the value

obtained turns out to be negative, whereas DSAC still earns

positive revenue. The pricing function is set to be the true

utility function.

The effect of the admission ingredient is thus illustrated

by the significant gap in the overloaded scenario. Also the
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Figure 1. Illustration of the admission and scheduling algorithm
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Figure 2. Illustration of the performance of the pricing, admission and scheduling algorithm



simulation validates the satisfactory performance of DSAC in

both underloaded and overloaded scenarios.

C. Pricing and Utility

Different pricing functions are simulated and the impact of

deviation of the pricing function from the true utility function

is investigated with respect to the maximization of collective

utility. It can be observed that EDF and FCFS with admission

control achieve less fraction of the value of DSAC in Fig.

2(e) compared with Fig. 2(f) and Fig. 2(g). Same observation

can be made from the 3-processor situation (Fig. 2(h), 2(i)

and 2(j)). Since EDF and FCFS with admission control do

not adapt to the prices, a smaller ratio of the value of EDF

and FCFS over that of DSAC indicates better performance of

DSAC in terms of maximizing collective utility.

The effect of the pricing ingredient is thus illustrated by the

fact that when the pricing function approximates the true utility

function better, the LSC operations achieve better collective

utility. It can be observed that moderate deviation in the pricing

function (ĥ(σ) = 1 + 2 exp(σ) and ĥ(σ) = 1 + 3 · 1{σ≤2})

from the true utility function (h(σ) = 1 + 3 exp(σ)) does not

cause significant degradation in the collective customer utility.

D. Scheduling Impact

The normalized utility is plotted versus the mean inter-

arrival time and mean relative deadline, and the impact of

the scheduling ingredient is investigated by comparing with

EDF and FCFS with admission control. It can be observed

in Fig. 2(k) and 2(l) that DSAC performs stronger compared

with EDF and FCFS with admission control as the relative

deadline gets looser and the inter-arrival time gets smaller.

The effect of the scheduling ingredient can be illustrated

by the fact that the benefit associated with DSAC improves

when the arrival process gets heavier, indicating the capability

of DSAC handling extremely heavy request arrival. Similarly,

the benefit associated with DSAC improves when the deadline

is relaxed, indicating the capability of DSAC earning increased

revenue with customer flexibility.

VI. CONCLUSION

The problem of EV garage charging management is consid-

ered where EV customers arrive sporadically with deadlines

and battery charging level requirement. The pricing, admission

and scheduling aspects of the large scale charging facility

operations are investigated, and a utility based pricing scheme

is proposed that explores the customers’ time flexibility, to-

gether with an online admission and scheduling algorithm

DSAC with worst case competitive ratio guarantee for linear

utility function. Satisfactory average performance of DSAC is

demonstrated for both underloaded and overloaded scenarios

via extensive comparative simulation with benchmark algo-

rithms such as EDF and FCFS under a stochastic setup.
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