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Abstract

Mammalian oocyte development is charac-
terized by impressive changes in chromatin
structure and function within the germinal
vesicle (GV). These changes are crucial to con-
fer the oocyte with meiotic and developmental
competencies. In cow, oocytes collected from
early and middle antral follicles present four
patterns of chromatin configuration, from GV0
to GV3, and its progressive condensation has
been related to the achievement of develop-
mental potential. During oogenesis, follicular
cells are essential for the acquisition of meiot-
ic and developmental competencies and com-
municate with the oocyte by paracrine and gap
junction mediated mechanisms. We recently
analyzed the role of gap junction communica-
tions (GJC) on chromatin remodeling process
during the specific phase of folliculogenesis
that coincides with the transcriptional silenc-
ing and sequential acquisition of meiotic and
developmental capabilities. Our studies
demonstrated that GJC between germinal and
somatic compartments plays a fundamental
role in the regulation of chromatin remodeling
and transcription activities during the final
oocyte differentiation, throughout cAMP
dependent mechanism(s).

Features and significance 
of large-scale chromatin 
configuration changes within
the germinal vesicle

During follicular development, mammalian
oocyte acquires a series of competencies that
play critical roles at fertilization and subse-
quent stages of embryonic development.
Recent studies indicate that these competen-
cies involve remodeling of chromatin occur-
ring in the germinal vesicle (GV), when
gamete and somatic cells communicate
throughout junctional and paracrine mediated

mechanisms.1 Dynamic changes in GV oocyte
chromatin structure have been reported in
mouse,2-4 monkey,5 pig,6 rat,7 human,8,9 horse,10-

12 cattle,13-16 goat,17 sheep,18 rabbit,19 buffalo,20

dog,21-23 ferret,24 and cat.25 A direct relationship
between oocyte’s chromatin configuration and
embryonic developmental competence has
been proved in mouse26,27 and cow.13,28

In growing mouse oocytes chromatin is ini-
tially decondensed in a configuration termed
Non-Surrounded Nucleolus (NSN).2,4,29 With
subsequent growth and differentiation, oocyte
nuclear organization undergoes a dramatic
change in which chromatin becomes progres-
sively condensed, forming a heterochromatin
rim in close apposition with the nucleolus,
acquiring a configuration termed Surrounded
Nucleolus (SN).2,4,29

The morphological differences between
these two types of oocytes have a biological rel-
evance as NSN and SN morphologies have
been correlated with differences in follicle
size, oocyte diameter and the age of the
mouse.4,29 Several authors indicate that SN
oocytes may represent the more advanced
stage of preovulatory oocytes.4,26,29 In fact, it
has been demonstrated that the transition into
the SN configuration correlates with the time-
ly progression of meiotic maturation.2-4

Furthermore, after in vitro maturation and fer-
tilization, NSN oocytes are incapable of devel-
opment beyond the two-cell stage, whereas SN
oocytes are capable of development to the blas-
tocyst stage.26,27 Differences in chromatin mor-
phology have also been correlated with
changes in transcriptional activity: NSN
oocytes remain transcriptionally active and
synthesize all classes of RNA, whereas SN
oocytes are associated with global repression
of transcriptional activity.9,30-33

In cow, oocytes collected from early and mid-
dle antral follicles present four patterns of
chromatin configuration, from GV0 to GV3
(Figure 1) characterized by the progressive
increase in condensation13 and global DNA
methylation.34 The GV0 stage shows a diffuse
filamentous pattern of chromatin in the whole
nuclear area; the GV1 and GV2 configurations
represent early and intermediate stages,
respectively, of chromatin remodeling, a
process starting with the appearance of few
foci of condensation in GV1 oocytes and pro-
ceeding with the formation of distinct clumps
of condensed chromatin in GV2 oocytes; the
GV3 is the stage where the highest level of con-
densation is reached with chromatin organ-
ized into a single clump. Importantly, oocytes
with a GV0 configuration showed a very limit-
ed capacity to resume and complete meiosis I
after in vitro maturation, while virtually all the
GV1, GV2 and GV3 oocytes were able to reach
MII stage, despite their GV configuration. On
the contrary, after in vitro fertilization and

embryo culture, only a limited percentage of
GV1 oocytes reached the blastocyst stage,
while GV2 and GV3 oocytes showed a higher
embryonic developmental potential.13

These results further support the general
principle that meiotic and developmental com-
petencies are acquired at sequential stages of
oogenesis,1 alongside with changes in large-
scale chromatin structure.35

Oocyte growth, chromatin
remodeling and key structural
modifications in the nuclear
and cytoplasmic compartments 

In the mammalian ovary, oocytes are natu-
rally arrested at prophase I of meiosis and pri-
mordial follicle-enclosed oocytes remain in the
resting phase until they are stimulated to
grow.36 Oocyte growth phase includes a series
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of modifications in the amount, structure and
distribution of the organelles as well as a peri-
od of oocyte transcription, which are necessary
for the oocyte to achieve meiotic and develop-
mental competence.36,37 The bovine oocyte and
follicle continue to grow in parallel until the
follicle reaches a diameter of about 3 mm;
thereafter, the oocyte plateaus at about 120-
130 µm, while the follicle grows up to 15-20
mm in diameter before ovulation.36 As the
oocyte increases in diameter, key structural
modifications and redistribution of the cyto-
plasmic organelles further occur.38 Towards the
end of the growth phase, the global transcrip-
tional activity decreases and the nucleolus is
transformed into an inactive remnant through
a mechanism known as nucleolar dismiss-
ing.37,39,40 In cow, the process of chromatin
remodeling is timely related with the morpho-
logical changes that occur in both the nuclear
and cytoplasmic compartment during oocyte
growth and differentiation (Table 1 and Figure
2).13,41 Oocytes with a GV0 configuration are
the predominant type of oocytes collected from
early antral follicles, between 0.5 and <2 mm
in size, with a mean diameter of 108 µm.13

These oocytes displayed typical structural fea-
tures of the growth phase with nuclear charac-
teristics and distribution and structure of the
cytoplasmic organelles similar to those previ-
ously described in oocyte with a diameter <110
µm.38 Furthermore, at the nuclear level, GV0
chromatin configuration is always associated
with high level of RNA synthesis while the
transition to condensed state of the chromatin
is associated with global repression of tran-
scriptional activity.28,41 With subsequent
growth and differentiation, profound changes
in chromatin organization occur and the
oocytes gradually achieve the full capability for
sustaining embryonic development. As a con-
sequence, oocytes collected from mid-antral
follicles represent a heterogeneous popula-
tion of gametes, characterized by different
degrees of chromatin condensation and by
different embryonic developmental compe-
tence. In fact, GV2 and GV3 oocytes exhibited
a higher capability to sustain the preimplan-
tation embryonic development when com-
pared to GV1 oocytes.13 GV1, GV2 and GV3
stage oocytes, accordingly to their mean
diameter (117, 119 and 121 µm, respective-
ly13) generally showed the morphological
appearance that has been previously
described in fully grown oocytes.36-38,42,43

Morphological and functional studies in cow
described the modifications that typically char-
acterize the bovine oocyte differentiation with-
in the dominant follicle, before the LH surge
and during preovulatory development, which is
an important step for the attainment of a full
developmental competence.37,44 These changes
are generally referred to as oocyte capacita-

tion37 and, at the structural level, include,
among others, the reduction of the size of
Golgi complex and the convolution of the
nuclear envelope. 

The overall appearance of GV1 oocytes
denotes that they have not completed the
changes that normally occur in final differenti-
ation.41 This could be related with their poor
developmental capability. In contrast, both GV2
and GV3 oocytes, accordingly with their higher
developmental capability, showed typical signs
of pseudo-maturation,44 with GV3 oocytes in a
more advanced stage of differentiation, as indi-
cated by the global repression of transcriptional
activity and the appearance of early cellular
degeneration, such as the presence of
organelle-free areas, degenerative features of
cortical granules41 and reduction of the intercel-
lular coupling between the oocyte and cumulus
cells.13 These observations are in agreement
with the hypothesis that GV3 oocytes represent
that proportion of gametes which have reached
a high developmental capability during follicu-
lar growth and that, at the time of collection, are
undergoing early events of atresia.13 This
hypothesis also supports the concept that oocyte
developmental competence appears to be
improved by low levels of atresia.45-52

Oocyte development, chro-
matin remodeling and gap
junction mediated interplay
with cumulus granulosa cells

Oocyte growth and differentiation depend on
the establishment of a patent bidirectional com-
munication mediated by heterologous gap junc-
tions between oocytes and companion granulosa
cells during folliculogenesis.53-55 In mouse, previ-
ous studies indicate that the presence of oocyte-
associated granulosa cells are required for the
progressive repression of transcriptional activity
in fully grown oocytes.32 Moreover, the tight
association with companion cumulus cells is
required to promote the transition from NSN to
SN configuration after gonadotropin stimula-
tion.32 This hypothesis is supported also by stud-
ies where gap junction mediated communica-
tions (GJC) between mouse oocyte and cumulus
cells were interrupted, due to targeted deletion
of the connexin 37 gene (Gja4), and chromatin
condensation associated with transcriptional
repression failed to occur.56

Coupling between oocyte and cumulus cells
undergoes dynamic changes during follicle

Review

Figure 1. A) The four patterns of chromatin configuration, from GV0 to GV3 (scale bar:
10 µm); B) Oocyte size, transcriptional activity, meiotic and developmental competence
and DNA global methylation in relation to chromatin configurations.
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development and the patency of GJC between
the two compartments decreases in parallel with
the meiotic resumption of the oocyte.57-59

However, recent studies performed in cow,
horse, dog and cat60-63 indicated that morpholog-
ically healthy oocyte-cumulus cells complexes
isolated from antral follicles without evident
signs of atresia are a heterogeneous population
characterized by different functional degrees of
GJC. In cow, in particular, the direct oocyte-gran-
ulosa cell communication through gap junction
seems a requisite for chromatin remodeling
process during the final phase of oocyte
growth.13,28 This is supported by the evidences
that, at the time of collection, the pattern of
uncondensed chromatin in GV0 oocytes is asso-
ciated with fully open GJC. On the contrary, the
percentage of oocytes with functionally open
communications significantly decreases with
the increase of chromatin condensation, from
GV1 to GV3 oocytes,13,28 indicating that bovine
oocytes that reached the highest level of chro-
matin condensation have a greater probability in
loosing their coupling with follicular cells than
oocytes with a lower chromatin condensation.13

On the other hand, the increase in chromatin
condensation may represent a consequence of
the premature interruption of communication
between oocyte and follicular cells before the
final oocyte maturation since the lost of GJC
between the germ and somatic compartments
has been related with early events of follicular
atresia.64

The crucial role of GJC in the modulation of
chromatin configuration, global transcriptional
activity and developmental competence acquisi-
tion, has been recently confirmed in bovine
oocyte-cumulus cells complexes. The use of cul-
ture systems that prolonged GJC, sustained
oocyte growth and allowed chromatin to gradual-
ly organize from GV0 into the GV1 configuration,
thus acquiring the ability to mature and be fer-
tilized in vitro.28 When GJ functionality was
experimentally interrupted with the uncoupler
1-heptanol, chromatin rapidly condensed and
RNA synthesis suddenly ceased. Interestingly,
this effect was nullified by the addition to the
culture medium of cilostamide, a specific
inhibitor of the oocyte-specific PDE3, an
enzyme-degrading cAMP65-67 indicating that the
functional status of GJC may affect both tran-
scriptional activity and remodeling of large-scale
chromatin configuration, potentially through
cAMP-dependent mechanism(s).28 Therefore,
besides the well-characterized mechanisms of
action by which cAMP is known to regulate mei-
otic resumption,68,69 these results may suggest
that cAMP could be also involved in the control of
the activity of factors that modulate transcrip-
tion and large-scale chromatin remodeling dur-
ing the final phase of oocyte growth and before
the resumption of meiosis.

Interestingly, while in mouse the absence of a

patent bidirectional communication caused the
majority of oocytes to remain transcriptionally
active with uncondensed chromatin,32,56 in cow
GJC disruption by means of 1-heptanol caused
premature chromatin condensation and tran-
scriptional interruption. These experimental

models differ substantially in some aspects;
thus, it remains to be fully investigated whether
this discrepancy might be due to a different
physiological status of the animal model or to
the growth phase of the follicle from which an
oocyte is isolated. Notably, it cannot be excluded

Review

Figure 2. Fluorescence (a, b, c, d), light  (e, f, g, h) and transmission (i, l, m, n, o, p, q, r)
micrographs representative of GV0 (a, e, i, o), GV1 (b, f, l, p), GV2 (c, g, m, q) and GV3
(d, h, n, r) oocytes. Mt, mitochondria; V, vacuoles; RER, rough endoplasmic reticulum;
CG, cortical granules; eMV, erected microvilli; bMv, blent microvilli; ZP, zona pellucida;
OP, ooplasm; pMt, pleomorphic mitochondria; hMt, hooded mitochondria; G, Golgi
complex (from Lodde et al.41). 

Table 1. Main morphological and structural features of the nuclear and cytoplasmic com-
partment in bovine oocyte in relation to chromatin configuration (modified from Lodde
et al.41).

GV0 GV1 GV2 GV3
Nucleus Eccentric Peripheral Peripheral Peripheral

Undulation of the Nearly absent Slight Profound Profound
nuclear envelope
Nucleolus Fibrillo granular Dense fibrillar Dense fibrillar Dense fibrillar
Cytoplasmic Sparse in Homogeneous in Homogeneous Clustered in
organelles the cytosol the oocyte cortex in the oocyte the oocyte cortex
distribution cortex
Ooplasmic vesicle Few Abundant Abundant Plentiful
Perivitelline space Absent Present Present Present
Microvilli Erected Bent Bent Bent
Mitochondria Round Hooded Hooded Hooded
(location) (small clusters in the (deep cortical) (deep cortical) (peripheral)

cytoplasm)
Golgi complex Present Reduced Almost absent Almost absent
Cortical granules Singular, all over Clustered, deep Clustered, Clustered, 

the cytoplasm cortical deep cortical peripheral
(some sign 
of degeneration)
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that just the timing when the functional cou-
pling between oocytes and cumulus cells is
interrupted could determine the effect on chro-
matin structural and functional changes.28

Conclusions

The mammalian oocyte nucleus exhibits
characteristic chromatin configurations,
which are subject to dynamic modifications
during oogenesis.

The experimental manipulation of large-
scale chromatin structure25,28,70 can provide a
tool to determine the key cellular pathways and
factors involved in genome-wide chromatin
modifications. Analysis of the functional dif-
ferentiation of chromatin structure in the
oocyte genome in fact have wide-ranging
implications for understanding the role of
nuclear organization in meiosis, the events of
nuclear reprogramming and the spatio-tempo-
ral regulation of gene expression during devel-
opment and differentiation. 

Finally, this can provide experimental mod-
els to analyze the possible implication of
gametes and embryos manipulation in epige-
netic disturbances since the process of chro-
matin remodeling accompanies the epigenetic
maturation of the female gamete, which
enables an oocyte to develop into a viable
embryo after fertilization. 
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