
0-89791-993-9/97 $10.00  1997 IEEE

Large Scale Circuit Partitioning With Loose/Stable Net Removal

And Signal Flow Based Clustering 1

Jason Cong, Honching Peter Li, Sung Kyu Lim, Toshiyuki Shibuya� and Dongmin Xu

UCLA Department of Computer Science, Los Angeles, CA 90095
�Fujitsu Laboratories LTD., Kawasaki, Japan

In this paper, we present an e�cient Iterative Improve-
ment based Partitioning (IIP) algorithm called LSR/MFFS,
that combines signal
ow based Maximum Fanout Free Sub-
graph (MFFS) clustering algorithm with Loose and Stable
net Removal (LSR) partitioning algorithm. The MFFS al-
gorithm generalizes existing MFFC decomposition method
from combinational circuits to general sequential circuits in
order to handle cycles naturally. We also study the prop-
erties of the nets that straddle the cutline carefully, and
introduce the concepts of the loose and stable nets as well
as e�ective ways to remove them out of the cutset. The
LSR/MFFS algorithm �rst applies LSR algorithm to clus-
tered netlist generated by MFFS algorithm for global-level
cutsize optimization and then declusters netlist for further
cutsize re�nement.

As a result, the LSR/MFFS algorithm has achieved the
best cutsize result among all the bipartitioning algorithms
published in the literatures with very promising runtime per-
formance. In particular, it outperforms the recent state-of-
the-art IIP algorithms LA3-CDIP, CLIP-PROPf [8], Straw-
man [12], hMetis-FM [13], and MLc [1] by 17.4%, 12.1%,
5.9%, 3.1%, and 1.9%, respectively. It also outperforms the
state-of-the-art non-IIP algorithms Paraboli [17], FBB [19],
and PANZA [16] by 32.0%, 21.4%, and 1.4%, respectively.

1 Introduction

Circuit partitioning divides a given circuit into a collection
of smaller subcircuits to minimize the number of connec-
tions among the subcircuits, subject to the area balance
constraint. The circuit partitioning problem becomes more
important as VLSI technology reaches submicron device di-
mensions; a single VLSI chip can contain over 10 million
gates for the 0.25 micron technology and beyond. As a re-
sult, the hierarchical layout strategy using the divide-and-
conquer technique is indispensable in order to make the
VLSI layout problem tractable.

The existing circuit partitioning algorithms in the liter-
ature can be roughly classi�ed into two classes; constructive
methods, such as the spectral-based methods [11, 3] and the
network
ow-based method [19], and iterative improvement
methods (also referred as group migration or move based
methods). In practice, iterative improvement based par-
titioning (IIP) algorithms have been used extensively due
to the following advantages over the other approaches; (i)

1This work was partially supported by DARPA/ITO under Con-
tract J-FBI-93-112, NSF Young Investigator Award MIP-9357582,
and Fujitsu Laboratories at America under the 1995 and 1996 Cal-
ifornia MICRO Programs. Many thanks are due to the authors of
hMetis [13] for their helpful discussions on runtime performance.

area balance constraint, pre-assignment of cells, and non-
uniformity in cell sizes can be easily accommodated, (ii) one
can easily control the runtime vs cutsize trade-o� by con-
trolling the number of iterations. Some of the best known
methods include the Kernighan & Lin (KL) algorithm [14],
the Fiduccia & Mattheyses (FM) algorithm [9], and Krish-
namurthy's lookahead scheme [15]. To reduce the computa-
tional complexity for partitioning large-scale circuits, clus-
tering methods have been introduced. In this case, clusters
are �rst identi�ed and collapsed, and the resulting clustered
circuit is partitioned using existing partitioning methods.
Among many promising studies on circuit clustering meth-
ods, we focus on the extension of signal
ow based Maximum
Fanout Free Cone (MFFC) approach [4, 6, 7]. A compre-
hensive survey of various techniques in circuit partitioning
and clustering can be found in [2].

In this paper, we present a large-scale IIP algorithm
named LSR/MFFS. It integrates three individual algorithms
to accomplish both global and local-level cutsize optimiza-
tion; Loose net Removal (LR), existing Stable Net Tran-
sition [18] (SNT), and Maximum Fanout Free Subgraph
(MFFS) algorithm. The LR and SNT algorithms focus on
nets instead of cells to reduce the cutsize by attempting to
remove two special kinds of nets; loose and stable net (to be
de�ned in the subsequent sections). Our study shows that
LR is e�ective in dynamically identifying clusters during cell
movements, while SNT enables the partitioning algorithm
to jump out of local minima e�ciently. The intergration of
these two net removal schemes results in a very powerful IIP
algorithm named Loose and Stable net Removal (LSR).

In order to reduce the runtime and prune non-optimal
soltions from the solution space, we developed signal
ow
based MFFS clustering algorithm that promotes simulta-
noeus movement of logically dependent cells during the cell
moves. Our LSR/MFFS algorithm �rst clusters the circuit
using the MFFS clustering algorithm, then applies the LSR
algorithm to the clustered circuit, and �nally declusters the
circuit and applies LSR algorithm again for further cutsize
re�nement. Our experiments indicate that LSR/MFFS par-
titioning algorithm has achieved the best cutsize results with
very promising runtime performance among all the parti-
tioning algorithms reported in the recent literature.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the LSR based partitioning algorithm. Sec-
tion 3 presents signal
ow based MFFS clustering algorithm.
Section 4 provides experimental results. Section 5 concludes
the paper with our ongoing research.

2 LSR based Partitioning Algorithm

2.1 Review of IIP Algorithms

An iterative improvement partitioning (IIP) algorithm such
as FM [9] uses the notion of cell gain to represent the re-
duction in the cutsize if the cell is moved to another block.
Starting from a random initial partition and precomputed
gain of entire cell, IIP algorithm selects the maximum gain
cell c that satis�es the size constraint to move. A cell is
labeled free if it has not been moved so far and locked oth-
erwise. The neighbors of c are the free cells of the nets that
are incident to c. After c is moved and locked, gain of its
neighbors is updated for the next move. This cell move con-
tinues until all the free cells that do not violate the area
constraint are moved, and we backtrack the move sequence
to retrieve the one that produces the minimum cutsize. This
entire process is called a pass, and a new pass is attempted
until there is no further improvement in terms of cutsize. In
this case, these multiple passes constitute a run.

IIP algorithm usually adopts a special data structure
called bucket that supports fast update and retrieval of cell
gains. Recently, the LIFO bucket [10] scheme is proposed to
ensure that the cells with the most recently updated gain to
be chosen �rst among other cells with the same gain, pro-
viding di�erent perspective in breaking ties. This scheme is
designed to promote the locality of cell moves where all the
neighbors of the currently moved cell are chosen to move
subsequently. However, locality can easily be disrupted by
the update of other cells with higher gain values under this
scheme. Dutt and Deng [8] proposed a more e�cient way of
promoting the locality. They viewed the cell gain as the sum
of initial and updated gain, where the former refers to the
cell gain computed before any move, and the latter refers to
the sum of dynamically updated gain values from the cell
move afterwards. Their strategy is based on the observation
that relying only on the updated part of the gain in choosing
the next cell encourages the neighboring cells to move sub-
sequently and thus establishes the locality. They also noted
that this locality promotes closely connected components in
the circuit (= clusters) that straddle the cutline to be re-
moved out of the cutset and thus establishes cluster removal.
As a result, their algorithm CLIP/CDIP achieved the best
cutsize result among all the published IIP algorithms prior
to their work. However, their strategy is not free from the
frequent tie-breaking situation, still relying on LIFO bucket
and lookahead capability such as LA3 [15].

2.2 LSR Partitioning Algorithm

We present in this section stronger yet simpler form of clus-
ter removal strategy by gradually increasing the cell gains
of the neighbors connected to the currently chosen cell via
loose nets until all of them are moved to one block. This
strategy encourages the neighboring cells to be chosen sub-
sequently and thus maintains the locality. It also reduces
the frequency of tie-breaking situation signi�cantly since the
rank of cells in the bucket is determined according to the in-
creased gain values. We shall �rst present the concept of
loose nets and its relation to cluster removal, then present a
modi�ed cell gain computation of Loose-net Removal (LR)
algorithm and its enhancement with Stable Net Transition
(SNT) [18]. The following discussion focuses on bipartition-
ing case, but LSR can be easily extended to handle multiway
partitioning.

a b

f

c

d

e

a b

f

c

d

e

a b c d e a b

f

c

ed

a b

f

c

e

d

a b

f

c d e

f

(a) (b) (c)

(d) (e) (f)

Figure 1: Removing 3 nets fa, b, cg, fb, fg, and fc, d, eg
with LR. Arrow points to cells chosen to move, and dot-
ted and solid circle denote free and locked cell, respectively.
Shade indicates cells with LR's cell gain increase, which
darkens as the increase accumulates.

2.2.1 Loose Net Removal

During each pass of IIP algorithm, free net contains only
free cells, and a locked net has locked cells in two blocks.
A net is de�ned to be loose if it has locked cells in exactly
one block and at least one free cell in the other block. The
anchor block of a loose net n is de�ned as the block that
contains the locked cells of n, and the other block that has
one or more free cells of n is called tail block. Once a free
cell c of a free net n is moved and locked into a block B, net
n immediately becomes loose with B being its anchor. For
example, in Figure 1-a, net fa, b, cg is a loose net with the
left block being its anchor. But if any of the free cells of the
loose net in its tail block, say b or c, is moved and locked at a
non-anchor block, the net will remain locked into the cutset
thereafter during the entire pass. In other words, every net
in the �nal cutset follows the free ! loose ! locked state
transition, so our primary goal is to prevent as many loose
nets from becoming locked as possible.

The basic idea of Loose net Removal (LR) algorithm is
to focus on the free cells of a loose net in the tail block while
they remain free. It intentionally increases the cell gains as-
sociated with moving those cells to its anchor block so that
they are more likely to be selected during the subsequent
moves. That is, our primary goal is to prevent the corre-
sponding loose net from becoming locked into the cutset. A
natural question arises on what to do with the free cells of a
loose net located inside the anchor. We do not restrict the
movement of these cells to non-anchor block since they can
participate in removal of other loose nets. In case these cell
moves fail to overcome the local minima and degrade the so-
lution quality, conventional FM-type backtrack can always
reverse these moves. After each cell move, LR considers free
cells of all loose nets that are incident to the currently moved
cell, promoting these cells to move to their anchor blocks by
increasing their gains. Therefore, LR is e�ective in main-
taining the locality of cell movement and thus establishing
the cluster removal e�ect.

2.2.2 Cell Gain Increase Function

Removal of the given initial loose net causes additional loose
nets to form subsequently, necessitating rules to set priority
in removing these nets. The magnitude of cell gain increase
due to a given loose net n is then computed as follows;

incr(n) =

�
max net size

size(n)
�

P
c2Ln

deg(c)P
c2Fn

deg(c)

�

where max net size denotes the size of the largest net in
the given netlist, size(n) denotes the number of cells of n,
and deg(c) denotes the number of nets incident to cell c. Ln
denotes the set of all locked cells of n in the anchor, and
Fn denotes the set of all free cells of n in the tail. The
above equation favors small nets, dense connectivity at the
anchor, and sparse connectivity at the tail to encourage the
algorithm to focus on relatively easy-to-remove loose nets.

LR()
while (there exists free cell)

c = pick cell with maximum gain;
move and lock cell c;
for (each net n incident to cell c)

update gain of cells in net n;
if (n is loose net)

for (each free cell f of net n not in anchor)
if (f:gain+ incr(n) < T)

f:gain = f:gain+ incr(n);
endwhile

Figure 2: Loose Net Removal Algorithm (single pass)

The LR algorithm based on the modi�ed gain compu-
tation is described in Figure 2. Some important points to
note in regards to cell gain increase of LR are as follows;
First, the same amount of increase is added uniformly to all
free cells of loose nets, and the increases are accumulated
until the loose net is completely removed to a single block
or possibly locked into the cutset. Second, a threshold value
T limits the total accumulated value of cell gain, which en-
ables us to adopt conventional array-based bucket structure
[9]. Note that the only reason for the gain increase is to en-
sure that the target cells are chosen to move prior to other
cells. Our study shows that a fairly small threshold value
100 can accomplish this goal without a major performance
degradation. Third, the conventional cell gain update is still
applied to the neighbors before the increase. This is neces-
sary while choosing the next good initial seed for LR after
completing removal of the current cluster. Lastly, the in-
crease eliminates the necessity of special tie-breaking strat-
egy due to the expanded cell gain range. The conventional
cell gain ranges from �p to p, where p represents the max-
imum number of nets incident to a single cell. Since the
entire cells are distributed into this short range, most other
IIP algorithms require special tie-breaking strategies such as
LIFO bucket [10] or lookahead capability [15]. However, LR
reduces the frequency of tie-breaking situation signi�cantly
since the rank of cells in the bucket is determined according
to the increased gain values.

Our experiments show that this simple strategy works
surprisingly well; LR alone ourperforms LIFO-FM, LIFO-
LA3, LIFO-LA3-CLIP, and LIFO-LA3-CDIP by 8.2% to

54.4% improvement in terms of minimum cutsize of 20 runs
with less CPU time (interested reader is referred to [5] for
details). This convinces us that our simple cluster removal
scheme focusing on the free cells of loose nets is very e�ec-
tive without any kind of tie-breaking enhancement. Figure
1 shows an example of removing three nets n1 = fa, b, cg, n2

= fb, fg, and n3 = fc, d, eg from the cutset with LR. First
of all, LR increases the gain of b and c since n1 is a loose net
(1-a). Since LR favors shorter nets, n2 will be chosen �rst
to be removed by moving b (1-b). Then, LR �rst �nishes
removing n1 (1-c) prior to n2 (1-d). Finally, n3 is removed
(1-f). This example shows only a single direction of LR, but
the similar process can be performed in the other direction,
enabling us to balance the cut.

2.3 Loose and Stable Net Removal

A net is de�ned to be stable if it has remained cut through-
out the entire run. Shibuya et al [18] observed that more
than 80% of the nets in the �nal cutset are stable, and these
nets trap FM algorithm into local minima and limit the solu-
tion quality. From this observation, they proposed an hill-
climbing method called Stable Net Transition (SNT) that
enables FM algorithm to systematically explore more local
minima yet still with a reasonable CPU time.

After a run of FM algorithm terminates, the initial and
the �nal cutsets are compared to detect stable nets. Then a
stable net is randomly picked and all of its cells are moved
into the smallest block, causing the stable net to be removed
from the cutset. If a cell is moved once during this process,
it cannot be moved to other blocks during a handling of
another stable net. This process is repreated until a pre-
determined percentage of the stable nets are processed or
no more move is possible. Then, another run of FM is
performed using the outcome of the stable net removal as
its initial partition. Usually the cutsize increases right af-
ter removing the stable net, but such hill-climbing is not
so costly because SNT promotes higher rate of convergence
and shorter duration of runs due to the fact that moving the
stable nets only would result in a minor perturbation of the
current con�guration compared to an entirely new random
initial con�guration.

The idea of stable net removal can be combined natu-
rally with loose net removal. LR dynamically removes nets
in the cutset during the cell moves, whereas SNT statically
removes nets from the cutset at the end of cell moves. Inte-
grating these two net removal schemes results in a powerful
partitioner named Loose and Stable net Removal (LSR).

3 MFFS Based Clustering Algorithm

E�cient clustering algorithms are important to improve the
quality of the partitioning results and to speed up parti-
tioning algorithms by reducing the number of nodes to be
partitioned. In this section, we present a signal
ow and
logic dependency based clustering algorithm MFFS, which
generalizes existing MFFC decomposition method [4] from
combinational circuits to general sequential circuits.

The MFFC based clustering algorithm has been reported
to provide natural clustering solution for combinational cir-
cuits [4, 6]. A modi�ed MFFC algorithm for sequential cir-
cuits has been presented in [7], but the capability of this
algorithm to detect directed cycles is limited. In general,
the MFFC algorithm is mainly applied to combinational

circuits. In the following section, we introduce a cluster-
ing method based on the Maximum Fanout Free Subgraph
(MFFS), which can overcome the restriction of MFFC clus-
tering.

3.1 De�nition of MFFS

We �rst rewrite the de�nition of FFC and MFFC as follows.
One can verify that our new de�nition is equivalent to that
in [4].

De�nition 1 (FFC & MFFC) For a given node v in a
combinational circuit,

FFCv = fuj every path from u to some PO

passes through v in the circuitg

MFFCv = fuj for all FFCv; u 2 FFCvg

Now, it is natural for us to extend FFC and MFFC to
Fanout Free Subgraphs (FFS) and Maximum Fanout Free
Subgraphs (MFFS) for the clustering of general sequential
circuits.

De�nition 2 (FFS & MFFS) For a given node v in a se-
quential circuit,

FFSv = fuj every path from u to some PO

passes through node v in the circuitg

MFFSv = fuj for all FFSv; u 2 FFSvg

3.2 MFFS Construction Algorithm

For a given netlist NL and a node v, the MFFS cluster
rooted at v can be obtained by using the following proce-
dure:

1. Convert the given netlist to a directed graph, G(N ,
E), where N is a set of nodes which correspond to the
cells in the netlist, and E is a set of directed edges. A
directed edge (i; j) exists if node j is a fanin of node i.

2. Cut all the fanout edges of the root node v; search
all other nodes in graph G(N , E) starting from the
primary outputs (POs) of the netlist. The nodes in
G(N , E) that are not traversed belong to theMFFSv.

This algorithm is named as the MFFS construction algo-
rithm.

Theorem 1 The time complexity of the MFFS construction
algorithm is O(jN j+ jEj), where jN j is the number of nodes
and jEj is the number of edges in G(N , E).

3.3 MFFS Clustering Algorithm

The MFFS construction algorithm tells us how to obtain
one MFFS cluster. If we want to cluster the entire netlist,
we need to apply MFFS construction algorithm repeatedly.
Our MFFS clustering algorithm works as follows:

For a given netlist NL, let roots = fall POs of NLg.
Then, we take out a node v 2 roots and use the MFFS
construction algorithm to construct MFFSv. This process
is repeated until roots is empty. Then we remove all the
currently constructed MFFS clusters from NL, and obtain
a reduced netlist NL0 whose POs are the input nodes to the
removed MFFS clusters. We repeat the same procedure for
the new netlist NL0 recursively until all cells in netlist NL

are grouped into MFFS clusters. One can refer to [5] for an
example, illustrating how the algorithm works.

Theorem 2 The time complexity of the MFFS clustering
algorithm is O(jN j � (jN j + jEj)) in the worst case, where
jN j is the number of nodes and jEj is the number of edges
in the directed graph, G(N , E).

3.4 Speedup of MFFS Algorithm

Although our MFFS clustering algorithm can �nd good clus-
ters, its runtime can be long for large cicuits due to the
fact that each MFFS construction requires the search of the
entire netlist. Since in practice we usually have a maxi-
mum size limit to each cluster, we have developed a heuris-
tic version of MFFS clustering algorithm that only searches
a subset of the circuit every time. We call this algorithm
MFFSd(h), where h indicates the depth of the circuit to
be searched. Given a node v, this algorithm constructs an
approximate of MFFSv as follows:

1. Perform breadth-�rst search from node v of depth h
in G(N ,E) and put all encountered nodes in set SCv.

2. For every node in SCv, if its fanout nodes are not in
SCv, put them into set PPOv (called pseudo POs).

3. Apply the MFFS Construction Algorithm, described
in Section 3.2, on the subcircuit formed by SCv and
PPOv with all nodes. in PPOv being considered as
POs. We can then obtain a cluster rooted at node v.

4. repeat (1) until all nodes has been clustered.

Since only a small number of cells need to be searched
to �nd a cluster in step (3) when h is set to be small, we
can consider that this step takes constant time. Therefore,
the resulting MFFSd(h) clustering algorithm requires only
O(jN j + jEj) time.

4 Experimental Result

We have implemented our LSR/MFFS and MFFSd(h) al-
gorithm, compiled with gcc v2.4, and tested them on SUN
SPARC5-85. Table 1 lists some characteristics of benchmark
circuits used in our experiments. Selection of test circuits
is limited to those with signal direction, but most of them
are used in common among other published papers. The bi-
partitioning results are obtained using the minimum cutsize
of 20 runs under 45-55% area balance criterion and real cell
sizes. The runtime is measured in seconds.

4.1 Cutsize Reduction Trend

The experimental result summerized in Table 1 shows the
cutsize reduction trend starting from the basic FM to our
most enhanced LSR/MFFS. We tested FM, SNT, LR, and
LSR with and without MFFS clustering/declustering. The
following observations are made from this set of experiment
regarding various enhancements developed in this paper; (i)
Signal
ow based MFFS clustering indeed helps to reduce
the cutsize and runtime. This is evident from the compar-
ison between FM vs FM/MFFS, SNT vs SNT/MFFS, etc.
(ii) LR is the most e�ective contributor in terms of cutsize
reduction. This is revealed from the comparison between
FM vs LR and FM/MFFS vs LR/MFFS. (iii) SNT provides
good initial partition and improves both cutsize and run-
time, when combined with LR. This is apparent from the
comparison between FM vs SNT, LR vs LSR, FM/MFFS
vs SNT/MFFS and LR/MFFS vs LSR/MFFS.

Benchmark Circuits No Clustering Based MFFS Clustering Based
name # cell AVR CT1 CT2 FM SNT LR LSR FM SNT LR LSR

s1423 619 1.0 0.9 1.9 12 14 13 13 12 12 12 12
sioo 664 4.6 2.3 2.6 25 25 25 25 25 25 25 25
s1488 686 1.0 0.9 1.4 48 45 44 42 42 42 43 43
balu 801 12.9 2.0 3.8 27 27 27 27 27 27 27 27
prim1 833 6.7 3.2 5.9 43 42 42 42 43 42 42 43
struct 1952 2.5 17.9 12.1 42 45 33 33 39 52 33 33
prim2 3014 6.7 34.8 22.1 174 167 121 122 133 122 131 119
s9234 5866 1.0 36.7 9.7 49 54 41 43 42 43 41 40
biomed 6514 4.5 87.8 30.5 83 83 83 83 100 84 84 84
s13207 8772 1.0 73.9 14.1 90 74 75 70 91 65 73 61
s15850 10470 1.0 84.9 17.6 113 73 73 65 72 70 44 43
s35932 18148 1.0 420.8 32.1 100 128 45 44 48 76 45 44
s38584 20995 1.0 565.1 44.5 52 52 49 47 52 52 47 47
avq.sm 21918 4.5 1287.3 116.1 321 378 135 139 273 172 127 127
s38417 23949 1.0 452.2 45.1 176 112 53 55 119 147 51 50
avq.lg 25178 4.5 1473.2 90.2 491 380 145 131 251 168 127 127

Total - - 4543.9 449.7 1846 1699 1004 981 1369 1261 952 925

Time - - - - 214.6 100.9 326.0 279.0 139.1 102.1 206.5 162.6

Table 1: Characterization of the benchmark circuits and cutsize reduction from various enhancements. AVR stands for Area
Variation Ratio (= max cell area/min cell area). Clustering time using MFFS and MFFSd(h) algorithms are reported under
CT1 and CT2 column, respectively. The total CPU time of single run of each partitioning algorithm is listed under Time
row.

4.2 Comparison to Published Results

Table 2 summerizes the comparisons of LSR/MFFS with
other recently published state-of-the-art partitioning algo-
rithms in terms of cutsize and runtime. We reported the
sum of total elapsed CPU time for 10 runs of partitioning
(and clustering, if applicable) 13 circuits under IIP algo-
rithms.

IIP algorithms in comparison include LA3-CDIP, CLIP-
PROPf [8], Strawman [12], hMetis-FM20 [13], and MLc-
100 [1]. The experiment shows that LSR/MFFS consis-
tently outperforms non-clustering based algorithms LA3-
CDIP and CLIP-PROPf by 17.4% and 12.1%, respectively,
in terms of cutsize. In addition, LSR/MFFS outperforms
multi-level clustering based Strawman, hMetis-FM20 and
MLc-100 by 5.9%, 3.1%, and 1.9%, respectively. The com-
parison of runtimes to other IIP algorithms except hMetis
also reveals the performance superiority of LSR/MFFS.

Non-IIP algorithms in comparison include PANZA [16],
Paraboli [17], and FBB [19]. LSR/MFFS again consistently
outperforms these algorithms by 1.4%, 32.0%, and 21.4%,
respectively. PANZA omitted runtime in their report, and
the average runtime for each run of FBB tested on SPARC10
sums to 921.3 sec for 7 circuits tested, whereas LSR/MFFS
spends only 79.8 sec. In overall, LSR/MFFS has achieved
the best cutsize result among all the partitioning algorithms
published in the literature with very promising runtime.

5 Conclusion & Ongoing Work

In this paper, we introduced the notion of loose net and pre-
sented the LR (Loose net Removal) algorithm. LR was then
enhanced with existing SNT (Stable Net Transition) scheme
[18] for eliminating hard-to-remove nets from the cutset. We
also generalized the existing MFFC decomposition method
to come up with signal
ow based MFFS (Maximum Fanout
Free Subgraph) clustering algorithm. The LSR/MFFS al-

gorithm �rst applies LSR algorithm to clustered netlist gen-
erated by MFFS algorithm for global-level cutsize optimiza-
tion and then declusters netlist for further cutsize re�ne-
ment. As a result, LSR/MFFS partitioning algorithm has
achieved the best cutsize results among all the partitioning
algorithms reported in the recent literature.

Our ongoing research includes (i) extension of MFFS al-
gorithm to support multi-level cluster hierarchy as well as
various runtime improvement schemes, (ii) extension of LR
to handle multiway partitioning e�ciently, and (iii) devel-
opment of a mincut-based placement algorithm exploiting
the promising performance of LSR/MFFS.

REFERENCES

[1] C. J. Alpert, D. Huang, and A. B. Kahng. \Multilevel
circuit partitioning". In Proc. ACM/IEEE Design Au-
tomation Conf., pages 530{533, 1997.

[2] C. J. Alpert and A. B. Kahng. \Recent directions in
netlist partitioning: a survey". Integration, the VLSI
Journal, pages 1{81, 1995.

[3] C. J. Alpert and S. Z. Yao. \Spectral partitioning: The
more eigenvectors, the better". In Proc. ACM/IEEE
Design Automation Conf., pages 195{200, 1995.

[4] J. Cong and Y. Ding. \On area/depth trade-o� in
LUT-based FPGA technology mapping". In Proc. 30th
ACM/IEEE Design Automation Conf., pages 213{218,
1993.

[5] J. Cong, P. Li, S. K. Lim, T. Shibuya, and D. Xu.
\Large scale circuit partitioning with loose/stable net
removal and signal
ow based hierarchical clustering".
Technical Report 970005, CS Dept. of UCLA, 1997.

IIP Algorithms Non-IIP Algorithms
CDIP PROPf Straw hMetis MLc LSR/MFFS PANZA Paraboli FBB

circuit [8] [8] [12] [13] [1] - [16] [17] [19]

s1423 - - - - - 12 15 16 13
sioo - - - - - 25 25 45 -
s1488 - - - - - 43 44 50 -
balu 27 27 27 27 27 27 27 41 -
prim1 52 51 49 50 47 43 - - -
struct 36 33 33 33 33 33 33 40 -
prim2 152 152 143 145 139 119 - - -
s9234 44 42 42 40 40 40 40 74 70
biomed 83 84 83 83 83 84 83 135 -
s13207 70 71 57 55 55 61 66 91 74
s15850 67 56 44 42 44 43 44 91 67
s35932 73 42 47 42 41 44 43 62 49
s38584 47 51 49 47 47 47 47 55 47
avq.sm 148 144 131 130 128 127 - - -
s38417 79 65 53 51 49 50 49 49 58
avq.lg 145 143 140 127 128 127 - - -

Total1 1023 961 898 872 861 845 - - -

Total2 - - - - - 509 516 749 -

% Imp 17.4 12.1 5.9 3.1 1.9 - 1.4 32.0 21.4

Time 5817 5611 12577 ***1 3455 2054 - 24619 -

Table 2: Comparison of LSR/MFFS to other published algorithms. Total1 is based on 13 common test circuits under IIP
algorithms, whereas Total2 is based on 12 common test circuits under non-IIP algorithms. Our runtime includes MFFSd(h)
clustering time from Table 1.

[6] J. Cong, Z. Li, and R. Bagrodia. \Acyclic multi-way
partitioning of boolean networks". In Proc. ACM/IEEE
31st Design Automation Conf., pages 670{675, 1994.

[7] J. Cong and D. Xu. \Exploiting signal
ow and logic
dependency in standard cell placement". In Proc. Asia
and South Paci�c Design Automation Conf., pages
399{404, 1995.

[8] S. Dutt and W. Deng. \VLSI circuit partitioning
by cluster-removal using iterative improvement tech-
niques". In Proc. Int'l Conf. on Computer-Aided De-
sign, pages 194{200, 1996.

[9] C. Fiduccia and R. Mattheyses. \A linear time
heuristic for improving network partitions". In Proc.
ACM/IEEE Design Automation Conf., pages 175{181,
1982.

[10] L. Hagen, D. Huang, and A. B. Kahng. \On imple-
mentation choices for iterative improvement partition-
ing algorithms". In Proc. ACM/IEEE European Design
Automation Conf., 1995.

[11] L. Hagen and A. B. Kahng. \A new approach to
e�ective circuit clustering". In Proc. Int'l Conf. on
Computer-Aided Design, pages 422{427, 1992.

[12] S. Hauck and G. Borriello. \An evaluation of bipar-
titioning techniques". submitted to IEEE Trans. on
Computer-Aided Design, 1996.

[13] G. Karypis and V. Kumar. \Multilevel hypergraph
partitioning : Application in VLSI domain". In Proc.
ACM/IEEE Design Automation Conf., pages 526{529,
1997.

[14] B. Kernighan and S. Lin. \An e�cient heuristic proce-
dure for partitioning of electrical circuits". Bell System
Technical Journal, 1970.

[15] B. Krishnamurthy. \An improved min-cut algorithm for
partitioning VLSI networks". IEEE Trans. on Comput-
ers, pages 438{446, 1984.

[16] J. Li, J. Lillis, and C. K. Cheng. \Linear decomposi-
tion algorithm for VLSI design applications". In Proc.
ACM/IEEE Design Automation Conf., pages 223{228,
1995.

[17] B. M. Riess, K. Doll, and F. M. Johannes. \Partition-
ing very large circuits using analytical placement tech-
niques". In Proc. ACM/IEEE 31st Design Automation
Conf., pages 646{651, 1994.

[18] T. Shibuya, I. Nitta, and K. Kawamura. \SMINCUT:
VLSI placement tool using min-cut". Fujitsu Scienti�c
& Technical Journal, pages 197{207, 1995.

[19] H. Yang and D. F. Wong. \E�cient network
ow based
min-cut balanced partitioning". In Proc. IEEE Int.
Conf. on Computer-Aided Design, pages 50{55, 1994.

1A direct comparison between hMetis and LSR/MFFS is not pos-
sible since hMetis used SGI R10000 200MHz for collecting runtime.
However, private communication between the authors indicates that
hMetis is about 1.4 times faster.

