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Abstract

Background: It is widely accepted that orthologous genes between species are conserved at the sequence level

and perform similar functions in different organisms. However, the level of conservation of gene expression

patterns of the orthologous genes in different species has been unclear. To address the issue, we compared gene

expression of orthologous genes based on 2,557 human and 1,267 mouse samples with high quality gene

expression data, selected from experiments stored in the public microarray repository ArrayExpress.

Results: In a principal component analysis (PCA) of combined data from human and mouse samples merged on

orthologous probesets, samples largely form distinctive clusters based on their tissue sources when projected onto

the top principal components. The most prominent groups are the nervous system, muscle/heart tissues, liver and

cell lines. Despite the great differences in sample characteristics and experiment conditions, the overall patterns of

these prominent clusters are strikingly similar for human and mouse. We further analyzed data for each tissue

separately and found that the most variable genes in each tissue are highly enriched with human-mouse tissue-

specific orthologs and the least variable genes in each tissue are enriched with human-mouse housekeeping

orthologs.

Conclusions: The results indicate that the global patterns of tissue-specific expression of orthologous genes are

conserved in human and mouse. The expression of groups of orthologous genes co-varies in the two species, both

for the most variable genes and the most ubiquitously expressed genes.

Background
Over the past two decades, both tissue specificity and

the conservation of expression between orthologous

genes have been much discussed but comparative analy-

sis at the transcriptome level has produced ambiguous

results. While studies suggested that orthologous genes

do not share similar expression patterns [1-5], other

groups reported the opposite observations [6-9]. In fact,

gene-specific expression regulation is different in mouse

and human. For instance, it has been shown that even

for highly conserved and tissue-specific transcription

factors, promoter-binding events are highly species spe-

cific, and binding patterns do not align between species

[10]. We took advantage of the vast amount of human

and mouse gene expression data deposited in ArrayEx-

press to investigate possible correlation of global

patterns between mouse and human orthologous genes

at the expression level.

The challenge of comparing expression patterns of

orthologous genes in different species is mainly due to

different affinities of probes on different chips, leading to

difficulties in comparing data from different platforms.

Different approaches have been tried to compare gene

expression patterns in different organisms (reviewed

in [11]). Some studies used the same microarray for

cross-hybridization in samples from different species to

eliminate the variations in hybridization and scanning

protocols. This approach typically used either a single-

species array, to which samples from closely related

species or subspecies were hybridized and expression

levels of orthologous genes were measured [12,13], or

a custom-designed chip that contained probes from

different species [14,15]. Alternatively, many other

studies made use of species-specific arrays to identify co-

expressed groups of orthologous genes [4-6,16,17]. In

such studies, how to minimize the platform effects was
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the key to meaningful comparison of the cross-species

data. Some studies identified differentially expressed

genes within species; then the resulting significant gene

lists were compared cross-species to look for patterns of

conservation [3,18]. A few other studies used more

sophisticated algorithms and analyzed combined data

from different species at the same time to identify cell

cycle genes with conserved expression patterns between

species [19-21].

Our study used data generated on species-specific

microarray platforms. Only human data from the Affy-

metrix HG-U133A array and mouse data from the Affy-

metrix MG_U74Av2 array were considered to exclude

between-array variability within each species. These two

whole genome arrays were selected because they have

been used for the highest number of human and mouse

samples in ArrayExpress. Raw data consisting of 5,372

and 1,323 high quality human and mouse CEL files

were selected from ArrayExpress. Each CEL file corre-

sponds to the hybridization of one biological sample.

Since the data matrices are extremely large and the

information content is very rich, we first normalized

and filtered for human-mouse orthologous probesets,

then used principal component analysis (PCA) to reduce

the data dimensions. PCA has been often used to study

high-dimensional data generated by genome-wide gene

expression studies [22-25]. In an earlier PCA analysis of

the 5,372 human hybridizations it was found that, on

PCA scatter plots, samples in general clustered together

based on tissue types. Despite the great diversity, the

samples are predominantly clustered into the following

classes of distinctive biological characteristics: hemato-

poietic system, malignancy samples including cell lines,

neoplastic sample and non-neoplastic primary tissues,

and nervous system. Specific classes of genes are

expressed in different clusters [25]. The study suggested

that samples of similar physiological attributes have

similar gene expression profiles globally and they would

tend to group together on PCA scatter plots.

It is intriguing whether these major gene expression

patterns are conserved across evolutionarily diverse spe-

cies such as human and mouse. We answer this ques-

tion positively and report a similar PCA analysis of the

1,323 mouse hybridizations. Similar to what was

observed in the previous study of human data [25], the

mouse samples also clustered on PCA scatter plots. The

samples were loosely partitioned into a nervous system

cluster, a muscle/heart cluster, a liver cluster and a clus-

ter of samples with lower variability, including cell line

samples. Since the distribution of samples on the scatter

plots is driven by the underlying transcriptome, we

anticipate that samples in each cluster have distinctive

gene expression profiles. To compare gene expression

profiles between human and mouse, the data from the

two species were normalized and merged into a single

data matrix based on orthologous gene pairings. The

merged data matrix was subjected to PCA analysis. We

observed that the clustering of samples in individual

species is well preserved in the multi-species analysis;

more interestingly, human and mouse share a very simi-

lar pattern of sample clustering. The resemblance of the

human and mouse sample clusters was also observed in

hierarchical clustering of Pearson correlation between

human and mouse tissues. All observations suggest that,

for at least a fraction of orthologous genes, the expres-

sion profiles are largely conserved between the two spe-

cies. The speculation is supported by elevated gene

expression correlation co-efficient between human and

mouse orthologous genes comparing with a randomized

negative control. Additional investigations allowed us to

identify orthologous genes whose expression levels co-

vary in the two species.

Results and discussion
Sample clustering analysis of the mouse dataset

An integrated mouse gene expression dataset based on

Affymetrix platform MG_U74Av2 was created as

described in Materials and methods. It can be down-

loaded from the ArrayExpress website [26], accession

number E-MTAB-27. The data matrix of E-MTAB-27

contains normalized gene expression measurements for

1,323 samples from 71 independent experiments for

12,488 probesets, which map to 8,741 genes with

Ensembl identifiers (Table 1). To explore whether the

1,323 samples form distinct groups based on their gene

expression profiles, the data matrix was subjected to PCA

and the results are visualized by scatter plots. As shown

in Figure 1, the majority of brain and nerve samples form

a distinct group together with a number of retina sam-

ples. The retina and the optic nerve originate as out-

growths of the developing brain and are considered as

part of the central nervous system, which can explain this

co-clustering. Liver samples form a loose cluster com-

pared to the denser nervous system cluster. The third

dominant cluster consists of heart and muscle samples,

and this co-clustering is not surprising considering that

Table 1 Summary of probesets and probeset annotations

for the platforms used in the study

Mouse Human Cross-species

Number of probesets 12,488 22,283 6,180

Number of annotated probesets 9,396 18,387 6,180

Number of Ensembl genes 8,741 13,199 5,925

Three platforms are listed: mouse platform MG_U74Av2, human platform HG-

U133A and the reduced cross-species platform containing only orthologous

probesets between human and mouse. Annotated probesets are those with

gene annotations. The last row in the table is numbers of Ensembl genes

represented by the probesets in each platform.
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heart is composed mainly of cardiac muscles. A central

cluster, denser than the three main tissue specific

clusters, consists of cell lines and other less numerous

samples, such as bone and immune system. This co-

clustering of many sample types in the central PCA clus-

ter, in particular the cell line samples, was observed in

human studies [25] and may be due to a relatively small

degree of correlation variability between samples. Cell

lines of various tissue types are more homogeneous in

their expression profiles than the original tissues, either

because of less possible variability in the sample prepara-

tion, or because the immortalization procedure has had a

profound effect on expression regulation.

Further analysis demonstrated that samples of a parti-

cular tissue type are always represented by multiple

experiments (Additional files 1 and 2), suggesting that

lab effects did not drive the tissue clustering. We con-

clude that, similarly to what has been observed in

human, mouse samples from a given tissue class share

similar global gene expression patterns, causing the

samples to cluster together when they are projected to

the top principal components. When profiling the tran-

scriptome of thousands of samples from different tissues

and different conditions, the subtle variations within the

same class of samples give way to the grand differences

between different sample classes.
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Figure 1 PCA plot of the integrated mouse gene expression data matrix. Each dot represents a sample, which is colored by the annotation

of its tissue type. The samples can be loosely divided in four areas from left to right: nervous system (blue), muscle/heart (red), cell line (green)

and others, and liver (purple). The brown dots co-clustering with nervous system samples are retina samples. Samples with unknown organism

part (-) are white so they are invisible.
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Sample clustering analysis of combined human and

mouse datasets

To compare the expression pattern of human and

mouse, a direct way is to put normalized expression

data of the two species together and reduce the data

complexity by PCA. On scatter plots of two principal

components, will samples cluster by species or by tissue

types? To answer this question, we created an integrated

mouse and human gene expression matrix, containing

6,180 orthologous probesets measured for 3,824 samples

(2,557 human and 1,267 mouse), as described in Materi-

als and methods. The data can be downloaded from our

web site [27] in the form of Bioconductor’s Expression-

Set objects; a README in the same directory gives

instructions on how to extract matrix of expression

values and sample annotation from the R objects.

The 6,180 probesets represent 5,925 Ensembl genes

(Table 1). The samples for this analysis were selected to

maintain a balance in tissue representation between

mouse and human, to allow as much comparability

between sample groups as possible between the two spe-

cies. Samples prevailingly dominant in one species were

removed from both species, which include all mammary

gland and all blood and bone marrow samples. This

process removed 2,815 human samples and 56 mouse

samples from the raw datasets. The normalized human

and mouse matrices were merged based on orthologous

probesets; the merged matrix was then analyzed by

PCA. When the data were normalized by probeset, the

first three principal components explain more than half

of the data variance (Additional file 3a). Scatter plots of

components 1 and 3 are shown in Figure 2a,b, in which

samples are labeled by species and tissue type,

respectively.

In the combined analysis, we observe the same cluster

pattern as in the mouse-only analysis. The four predo-

minant groups are a central cluster of mostly cell line

samples, and three tissue-specific clusters: muscle/heart,

nervous system, and liver samples (Figure 2). Human

samples and mouse samples form the same major clus-

ters, and the tissue-specific clusters of samples from

each species are adjacent in the PCA plot. Similar sam-

ple clustering patterns were observed in scatter plots of

other principal components; one example is components

1 and 2 in Additional file 4. Since the distance between

two samples when projected onto the principal compo-

nents is determined by the covariance of their gene

expression profiles, we believe the similarity of the
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Figure 2 PCA plots of a combined human and mouse gene expression data matrix (principal components 1 and 3). Each dot represents

a sample, which is labeled by (a) species and (b) tissue type. Cell line samples from both species form a big central cluster, together with a

relative small number of samples from immune system, reproductive system, bone, endocrine organs and other tissue sources from both

species. Away from this central cluster, three major sample clusters are indicated: muscle/heart samples (red), nervous system samples (blue) and

liver samples (purple). For these three clusters, human and mouse samples exhibit subclustering in proximity to each other. In the nervous

system cluster, a few mouse head and neck samples (yellow) are mixed in - these are retina samples that have been generalized into the head

and neck category. In the muscle/heart cluster, a few human bone samples (black) and a few head and neck samples (yellow) are mixed in.
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human and mouse tissue clusters reflect the correlation

between the transcriptomes of human and mouse tis-

sues. Our hypothesis is that, in the same types of tissues,

orthologous genes are expressed in a correlated fashion

at the global level in both species. The systematic shift

of the locations between corresponding human and

mouse tissue clusters may be explained by platform

effects that remain after data normalization or it may

reflect the genuine difference in expression patterns

between the species.

Samples such as mammary gland and hematopoietic

system were removed from the analysis presented in

Figure 2 and Additional file 4 due to their one-sided

presence in one species. Our initial PCA studies

included these samples; the overall landscape of the

PCA plot was different from what we have seen so far

but the clustering of samples from nervous system, sam-

ples from muscle and heart, as well as the resemblance

of such clusters between human and mouse is still evi-

dent (Additional file 5). Thus, we believe that the cross-

species global gene expression similarity we observed is

not due to sample filtering.

It is interesting to observe that all mouse clusters are

closer to the center than their human counterparts

(Figure 2; Additional files 4 and 5). The observation

may reflect that the expression values on the mouse

chip are not as widely diversified as those on the

human chip; or may simply reflect that the mouse data-

set scaled differently to the human dataset during

normalization.

How the data were normalized before they were

merged into a combined matrix has profound impact on

the PCA landscape. In all PCA results we presented so

far, the data were normalized by probeset across all

samples to minimize the platform differences among

samples; thus, the data are more comparable cross-spe-

cies. If we normalized the human and mouse data

matrices by sample, in the combined matrix, the plat-

form difference is the largest variance captured in the

top principal component (Additional file 3b), separating

mouse samples and human samples into two distinctive

areas (Additional file 6a). Within each species cluster,

the tissue clusters are still preserved and the relative

order of the tissue clusters is the same in the two spe-

cies (Additional file 6b), reflecting the global gene

expression resemblance of the two species.

The similarity between the human and mouse tissue

clusters observed on PCA plots is also observed after

hierarchical clustering of sample groups. A Pearson corre-

lation coefficient matrix between 26 categories of tissues

(13 for human and the same 13 for mouse) was hierarchi-

cally clustered (see Materials and methods for details). For

liver, muscle/heart, nervous system, cell lines, adipocyte

tissues, immune system, skin and gastrointestinal organs,

human and mouse data clustered side by side on both X

and Y axis (Figure 3). Within such tissue clusters of

human and mouse, while the same tissue of the same spe-

cies displays the highest correlation of gene expression

levels, the same tissue of different species often has a

higher correlation of gene expression levels than back-

ground away from the diagonal. Such cross-specifies cor-

relation is seen in a similar heatmap with a more detailed

tissue annotation (Additional file 7).

Identification of expression correlation between

orthologous genes of different species

Cross-platform comparison of gene expression data is

always a challenge. Even for the same tissue type,

human and mouse samples differ in many ways; thus,

it is difficult to take a pair of orthologous genes

between the two species and compare their expression

levels directly. A condition that induces or suppresses

the expression of a gene in one species may not be

applicable to another species. To minimize sample and

platform variations, we used a measurement called cor-

relation of correlation coefficient or corCor [28]. It

compares transcriptome-wide correlation in two

groups of corresponding probesets by calculating the

vector of correlation coefficients for one probeset to

all other probesets in each of the two groups sepa-

rately, then calculating the correlation coefficient

between these two vectors. In our study, the mouse

data matrix of 1,267 samples and 6,180 probesets and

the human data matrix of 2,557 samples and 6,180

probesets were compared by calculating corCor for

every probeset (see Materials and methods). As a nega-

tive control, the expression values in the mouse and

human data matrices were randomized and the corCor

for each probeset was calculated between mouse and

human.

The distribution of corCor for all 6,180 probesets

shows that orthologous genes have high corCor com-

pared to a negative control (Figure 4a,b): in the test

group, 599 genes had corCor >0.1; in the negative con-

trol no gene had corCor >0.05, suggesting, when we

look at the data globally taking all tissue types in consid-

eration, a fraction of human and mouse orthologs are

expressed in a correlated way. The corCor quantity was

also calculated in a positive control comparing 233

human muscle and heart samples with 411 human ner-

vous system samples (Figure 4c). As can be assumed,

human genes in different human samples exhibit higher

between-group correlations than human genes and

mouse orthologous genes.

In contrast to what we observed in Figure 4b, when

corCor was measured between mouse and human sam-

ples within specific tissues, corCor distributions are not

strongly deviating from the negative control (Additional
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file 8). We believe when samples are of a single tissue

type and relatively homogenous, the platform effects

and laboratory effects become more dominant and can

mask the tissue-specific global expression patterns

observed in analyses using much larger and heteroge-

neous datasets.

Since corCor is not suitable to identify correlating

human and mouse genes at the tissue level, an alterna-

tive approach was attempted to identify orthologous

genes that are expressed in a correlated fashion in the

two species. The expression variance of every gene was

calculated one tissue and one species at a time. For

each tissue type, the genes are sorted based on their

variance. When comparing the sorted gene lists for a

human tissue and its corresponding mouse tissue, we

observed that, on average, 42% of the most variable

600 genes in one species have ortholog counterparts in

the most variable 600 genes in the other species

(Figure 5; Additional file 9). For the 600 least variable

genes, this figure is 27%. This enrichment of orthologs

in highly and lowly variable genes is present in all four

tissue types that have segregating clusters in the PCA

analysis - liver, nervous system, muscle/heart, and cell

lines, as well as in the set of all samples combined and

Liver

Heart + muscle

Cell line

Immune system

Brain + nerve

Skin, gastrointestinal organs

Adipocyte

Figure 3 Hierarchical clustering heatmap of Pearson correlation coefficients between major tissue types of human and mouse. The

outlined boxes indicate tissues in which human and mouse data clustered together.
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analyzed together. As a negative control, the data were

randomized by shuffling the expression values in the

data matrices and the percentage of overlapping ortho-

log pairs is, on average, 10% for all tissues and all var-

iance windows we tested. It is clear that a human

tissue and its corresponding mouse tissue share

through orthology a good fraction of the most variable

genes (tissue-specific genes) and the most constant

genes (housekeeping genes); the level of sharing is as

strong as the level of human genes co-vary between

(a) (b) (c)

corCor corCor corCor

Figure 4 Distribution of corCor between human and mouse ortholog genes. X-axis is corCor value; Y-axis is number of orthologs.

(a) Randomized negative control. (b) corCor between human genes and their mouse orthologs in all samples. (c) Positive control with corCor

between human genes measured in nervous system and human genes measured in muscle/heart. Please note that the values on the X-axis in

(b,c) are a magnitude higher than those in (a).
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two different human tissues, which is also around 40%

for the top 10% most variable genes (Additional file 9).

Data used for this analysis can be found on our web

site [27].

A simple binary test done by Chan et al. [6] also identi-

fied close to 400 1-1-1-1-1 orthologous genes across

vertebrate clades that display conserved expression in at

least one of ten tissues they tested at the most stringent

threshold. To see how many genes the two studies iden-

tified as those with evolutionarily conserved expression

profile overlap, we created two lists: a list of 273 ortho-

logs we identified as expressed in the nervous system of

both human and mouse with top10% variance, and a list

of 110 genes that are expressed in the nervous system of

all 5 species tested by Chan et al. at the highest thresh-

old (top 1/6). We identified 13 overlap genes between

the two lists. Our study used 6,108 orthologs, whereas

Chan’s study used 3,074, with an overlap of 1,344 genes.

Of the 273 genes we identified, 51 are in the 1,344-gene

set, and of the 110 genes Chan et al. identified, 79 are

in the same 1,344-gene set. A simple hypergeometric

probability test shows that the chance of having 13 over-

laps between 51 and 79 genes randomly taken from a

common pool of 1,344 genes is low (P = 2.9 × 10-6),

suggesting the overlap of the results from the two stu-

dies is significant. The same comparison was also done

in heart/muscle and liver; similar overlaps with more

significant P-values were observed between the two

methods, showing significant overlap between gene sets

identified by the two studies (Table 2).

The functions of the enriched human mouse orthologs

were examined by studying Gene Ontology (GO) term

over-representation in the gene list using ONTO-

EXPRESS [29]. ONTO-EXPRESS uses the ontology tree

and calculates statistical significance for each biological

process as P-values. We found that the most variable

genes shared by human and mouse tend to be genes

with tissue-specific functions. For instance, for nervous

system samples, the shared gene list contains genes

involved in nervous system development and synaptic

transmission (Additional file 10a). For muscle and heart

samples, the over-represented GO terms in the most

variable genes are muscle development, regulation of

striated muscle contraction, ventricular cardiac muscle

morphogenesis, cardiac muscle contraction, muscle fila-

ment sliding, and actin filament-based movement (Addi-

tional file 10b). For liver samples, liver-specific GO

terms such as oxidation-reduction, lipid metabolic pro-

cess, response to mercury ion, and cholesterol homeos-

tatasis are enriched (Additional file 10c). This leads to

the conclusion that genes with evolutionarily conserved

expression patterns across species are mostly the ones

performing highly tissue-specific functions and are

expressed in specific tissues with limited cell types. This

explains the observation made by others [6] and us that

tissues with relatively homogenous composition of cell

types, such as heart/muscle, liver, and nervous system,

would be segregated when profiling large-scale gene

expression data. On the other hand, the shared ortho-

logs among the least variable genes tend to be house-

keeping genes, such as genes controlling transcription,

apoptosis, cell adhesion, cell differentiation and protein

amino acid phosphorylation (Additional file 10d). Not

surprisingly, the housekeeping genes are also expressed

in a similar manner across species.

Conclusions
With large amounts of gene expression data obtained

from public repositories, we investigated the transcrip-

tomes of human and mouse across a large variety of

experimental conditions. Where single experiments ben-

efit from reducing experimental variability to discover

gene-specific expression regulation, by instead selecting

as wide a variety of experimental and sample conditions

as possible, we can gain insights into regulation at a

higher level of complexity. When analyzing samples

from a large variety of tissues, such large-scale studies

revealed that the patterns of global gene expression are

strong enough to segregate samples based on key biolo-

gical properties, despite vast variations in experiment

conditions, genetic background, age, sex and other sam-

ple characteristics. The results confirmed the common

belief that samples of similar tissue types share similari-

ties at the transcriptome level. At the same time, the

patterns of this segregation, as detected by PCA, are

similar between mouse and human and indicate that, on

Table 2 Comparison of the lists of genes that display the evolutionarily conserved expression patterns in different

tissues as identified by us and by Chan and colleagues [6]

Tissue Study Conserved probesets Conserved genes Conserved genes in the common list Overlaps P-value

Heart/muscle This study 259 260 49 17 1.8 × 10-8

Chan et al. [6] NA 141 101

Liver This study 233 244 40 13 2.3 × 10-7

Chan et al. [6] NA 106 83

Nervous system This study 269 273 51 13 2.9 × 10-6

Chan et al. [6] NA 110 79
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a global level, the signals driving tissue specificity are

similar between the species. It supports previous find-

ings [6-9] that although mechanisms of individual gene

regulation may be different between the species, global

functional patterns are similar and identifiable with

whole transcriptome analysis. In particular, like in our

study, Chan and colleagues [6] observed in a cross-spe-

cies comparison of five different vertebrates ranging

from human to pufferfish that the expression profiles of

orthologous genes across the five species in related tis-

sues of different species were conserved; among other

tissues, they also identified heart/muscle, central nervous

system and liver as tissues with evolutionarily conserved

gene expression profiles [6].

Our results provide strong evidence that, on a global

level, gene expression patterns of human-mouse ortho-

logs are conserved. The cross-species conservation of

expression profiles of tissue-specific genes and house-

keeping genes is the foundation for the similar land-

scapes of sample clustering between human and mouse

in large-scale transcriptome comparison. A recent publi-

cation [30] documents that approximately half of mea-

sured subnetworks of transcription factors are conserved

between human and mouse; this may at least partially

explain the conservation of global gene expression pat-

terns we observed in this study.

Materials and methods
Creating an integrated mouse gene expression dataset

We identified 2,290 CEL files generated on Affymetrix

chip MG_U74Av2 from ArrayExpress; these are all from

publicly available experiments deposited to ArrayExpress

before May 2008. The quality of the CEL files was evalu-

ated individually using the R simpleaffy package and four

quality control measurements were produced: average

background (AvgBg), scale factors (sfs), percent present

(PP) and RNA degradation slope (RNAdeg). Arrays were

selected for inclusion in this study based on these quanti-

ties using the following ranges: AvgBg, 20 to 150; PP, 25

to 65; RNAdeg, <1.7; sfs, 0.1 to 2.5 (suggested by [31]).

In addition to the simpleaffy assessments, the CEL files

selected were further evaluated by probe level model

(PLM) using the Bioconductor’s affyPLM package. Two

quality assessments were derived from the PLM fitting

output: normalized unscaled standard error (nuse) and

relative log expression (rle). The cutoffs were set as: nuse,

0.97 to 1.05; rle, -0.15 to 0.15. Arrays not passing these

criteria were discarded from further analysis.

The resulting 1,323 CEL files were pre-processed

using Bioconductor’s RMA package [32] to create an

integrated, normalized data matrix. Annotations for

each sample were retrieved from the database and

manually curated to ensure uniform representation and

minimal redundancy. For instance, when in some

experiments samples were originally annotated as ‘hepa-

tocyte samples’, we would change the annotation to

‘liver’ for consistency. The annotations of the 1,323 sam-

ples were generalized so the whole dataset contains a

limited number of unique categories of tissue type anno-

tation, such as nervous system, reproductive system,

immune system and so on. The integrated dataset was

submitted to ArrayExpress and assigned accession

[E-MTAB-27].

Merging human and mouse gene expression datasets

The high quality CEL files of 5,372 human samples

tested on the HG-U133A microarray were selected and

prepared as previously described [25]. The high quality

CEL files for mouse samples were selected as described

above. The data were normalized separately for human

and mouse in R using the justRMA function. In the

resulting matrices, each column contains data for one

sample and each row data for one probeset. The two

matrices were then reduced to a subset of probesets

representing orthologous genes between mouse and

human. The pairing of these orthologous probesets was

done based on gene orthologs obtained from Ensembl

Compara [33]. Since the probe effect is well known to

be very significant in all microarray analyses, we chose

to identify orthologous probesets by maximizing the

number of probes with similar sequences as follows. For

each orthologous gene pair, data for all probesets and

their associated probes and probe sequences were

retrieved from Affymetrix. Probes for each human gene

were BLASTed against mouse probes of the correspond-

ing orthologous gene using bl2seq, and the best one-to-

one match was retained. Default settings were used with

bl2seq except -W 7, -G 5, -E 2, -F = F. The human-

mouse probeset pair with the most probe-probe top

matches was selected to represent the ortholog pair on

the probeset level.

After we discarded rows with non-orthologous probe-

sets from the human and mouse matrices, the remaining

data on each matrix were normalized either by probeset

or by sample. To normalize by probeset, we first cen-

tered data row by row on median zero by subtracting

the row median from each value in the row. Then the

centered values were divided by median absolute devia-

tion to scale the data. To normalize by sample, we used

the same procedure but centered and scaled the data by

columns instead of by rows; column median was used

to center the data and column median absolute devia-

tion was used to scale the data. After normalization

either by probeset or by sample, the two data matrices

of centered and scaled values were merged into one

matrix by concatenating the sample columns of ortholo-

gous probesets. In the merged matrix, the rows are pro-

besets and the columns are human and mouse samples.
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Principal component analysis

PCA is a technique that transforms a dataset onto a lin-

ear space spanned by a number of orthogonal compo-

nents, ordered by decreasing variance of the data when

projected on it. The technique facilitates dimensionality

reduction and noise filtering by the projection of data

onto a number of the principal components, maximizing

the variance retained. The function prcomp with default

settings provided in the R statistic package was used to

perform PCA on different data matrices throughout this

study. The results were visualized by scatter plots.

Hierarchical clustering

The combined data matrix of 2,557 human samples and

1,267 mouse samples created as described above was

used for hierarchical clustering. The matrix contains

gene expression values centered and scaled by probeset.

Each sample in the matrix is assigned to one of 13 gen-

eral tissue categories that are well represented in both

species so the total number of annotation types is 26

(tissue combining species). We extracted 26 submatrices

containing data from samples of 26 different annotation

types; Pearson correlation coefficients were calculated

for 26 × 26 permutations of the submatrices; for each

pair of submatrices, a mean correlation coefficient was

taken and placed in a 26 × 26 matrix. Hierarchical clus-

tering of the samples in the matrix was performed by R

function heatmap.2.

Calculation of corCor

For a gene A on the human array composed of n

genes, we computed its pair wise Spearman correlation

coefficient with every gene on the same chip, giving a

vector v(A) of length n - 1. Given gene A’ is the ortho-

log of gene A on the mouse array, we similarly com-

puted its pair wise correlation coefficient with every

mouse gene as v(A’) of length n - 1. The correlation

coefficient between v(A) and v(A’), corCor, provides an

indication of whether A and A ’ are correlated in

mouse and human on the transcriptome level, regard-

less of the vast sample variations. The higher the abso-

lute corCor value, the stronger correlation of the

orthologous genes is; negative corCor indicates nega-

tive correlation. The R package MergeMaid was used

for this analysis [34].

Additional material

Additional file 1: PCA plot of the integrated mouse gene expression

data matrix. The two axes are components 2 and 3; each dot represents

a sample, colored by experiment accession number. While experiments

with more than 15 samples are labeled as individual experiments,

experiments with smaller numbers of samples are grouped into one

category, ‘small exp’ (light brown). Tissue clusters observed in Figure 1

are circled. No apparent clustering of samples based on experiments is

observed.

Additional file 2: Experiments and samples used for the mouse

PCA.

Additional file 3: Distribution of gene expression variances for the

top 50 principal components. The histograms were plotted for PCA

results of the combined human mouse data matrix normalized by

(a) probeset or (b) sample.

Additional file 4: PCA plot of a combined human and mouse gene

expression data matrix (principal components 1 and 2). The samples

are labeled by (a) species and (b) tissue type. Four major sample clusters

are indicated: muscle/heart samples (red), nervous system samples (blue),

liver samples (purple) and cell line samples (green). For these clusters,

human and mouse samples exhibit subclustering in proximity to each

other.

Additional file 5: PCA plots of a combined human and mouse gene

expression data matrix with all samples. The samples are labeled by

(a) species and (b) tissue type. Unlike previous PCA plots, samples such

as mammary gland and hematopoietic system whose presentation is

mostly one-sided in one species were removed from the analysis; this

PCA included all high quality data from both human and mouse. The

clustering of samples from nervous system (green), muscle/heart (lilac),

cell lines (brown), and liver (pink) is still evident among the

overwhelmingly dominant hematopoietic samples (blue) and mammary

gland samples (turquoise). The corresponding human and mouse sample

clusters resemble each other. Samples of unknown tissue type

annotation are colored white and labeled as ‘0’.

Additional file 6: PCA plots of a combined human and mouse gene

expression data matrix normalized by sample. The samples are

labeled by (a) species and (b) tissue type. Mouse samples (black) and

human samples (red) are well separated on the axis of component 1.

Tissue clusters in the two species are projected to the second principal

component in a similar order: nervous system (blue), muscle/heart (red),

liver (purple) and cell lines (green).

Additional file 7: Hierarchical clustering heatmap of Pearson

correlation coefficients between different types of tissues in human

and mouse. Tissues in which human and mouse data clustered together

are outlined by boxes.

Additional file 8: Distribution of corCor between human and mouse

ortholog genes in specific tissues. The X-axis is the corCor value

between human and mouse gene expression levels in (a) nervous

system and (b) cell line samples. The Y-axis is the number of orthologs.

In these analyses, corCor distribution is not very different from a

randomized negative control (Figure 4a).

Additional file 9: Percentage of common genes in the top 10%

most variable genes between different tissues of the same species,

as well as between different tissues of human and mouse.

The numbers in bold are those represented in the top 10% group in

Figure 5.

Additional file 10: Functional analysis of orthologous genes shared

between mouse and human in the top 10% most variable genes

and the top 10% least variable genes. (a-c) The top 10% most

variable genes and (d) the top 10% least variable genes: (a,d) nervous

system; (b) muscle/heart; (c) liver. In (a-c), GO over-representation was

sorted by corrected P-value and then by level of GO term enrichment;

only the top ten categories are displayed. Genes with tissue-specific

functions are colored in orange. The over-represented GO terms in

(d) were sorted by count of genes in each category; the top categories

are mostly housekeeping molecular functions.

Abbreviations

corCor: correlation of correlation coefficient; GO: Gene Ontology; PCA:

principal component analysis; PLM: probe level model.
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