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LARGE-SCALE COMPUTER-AIDED STATISTICAL MATHEMATICS

Peter A. W. Lewis
Naval Postgraduate School

Monterey, California

Abstract

Some thoughts on large-scale computer-aided statistical mathematics (primarily
simulation) which were presented at the 6th Annual Conference on the Computer
Science/Statistics Interface conference are presented. Comments of participants
and panelists (D. F. Andrews, J. N. Arvesen, D. P. Gaver , and G. Marsaglia) have
been added to the original text.

1. INTRODUCTION

The aim of this paper is to stimulate discussion

on large-scale computer-aided statistical mathe-

matics (primarily simulation) at this conference.

There has been a lot of discussion of computers

and statistics (Hartley, 1972; Milton and Nelder

,

1969; Chambers, 1970), but little of large-scale

use of computers in simulation experiments to

solve open distributional problems. This has per-

haps been because of the unavailability of large

computers and large amounts of computer time to

research workers and statisticians. I think this

will change rapidly over the next ten years as

internal computation speed and the size of random

access memories go up. The talk given by Dr. A.

G. Anderson at this conference has amply illus-

trated this trend.

To take advantage of this availability, and to use

the internal time sharing of central processing

units inherent in multiprogramming, new statistical

techniques which are computation-oriented will have

to be developed. There is already growing impetus

in this direction and this new technology coupled

to the computers will make an enormous impact on

statistics. I should note, too, that large-scale

simulations are commonplace in industry and devel-

opment laboratories, but the inefficiency of most

of these computations is appalling.

There are recent surveys of several aspects of

statistical computing (Hemmerle, 1967; Halton,

1970; Chambers, 1970; Freiberger and Grenander,

1971), most notably that by Tukey (1972b) who has

been responsible for many of the new ideas in sta-

tistical computation. Consequently, I will only

describe here the evolution of a computer program

called COMPSTAT which was developed to try to use

the IBM 360/91 computer at the IBM Research Center

as efficiently as possible. The problems encoun-

tered in developing this program, some solved but

others open, are more than enough for one paper.

*Sponsored by the Office of Naval Research through Contract NR 042-288 and the

Foundation Research Program at the Naval Postgraduate School.



My interest in the problem of large-scale

statistical computation grew from the frustration

of trying to deal with non-normal time series, in

particular, point processes (Cox and Lewis, 1966),

and of having to write a book around the many gaps

in the distribution theory. The first problem I

tackled was the distribution of product-moment

statistics (Lewis and Goodman, 1970), since one

can, in principle, find recursion relationships

to generate the distribution for successive sample

sizes n. It took six months to verify the

mathematics, six months to program it, and even

then I wasn't sure enough of the programming to

publish the results. I then turned to simulation,

and quickly ran into several equally frustrating

problems

:

(1) Many procedures, notably variance re-

duction techniques, were very particular

to the problem at hand and difficult to

generalize. For example, a technique

which works in estimating the mean of a

distribution may not work when one is

also interested in estimating the var-

iance or higher moments.

(2) Most published statistical estimation

(point and interval) techniques were

"valid" asymptotically, and were pro-

hibitively expensive in terms of number

of operations (addition and multipli-

cation) and memory cells required.

(3) Most "canned" routines were slow and

generally unreliable.

(4) "Tooling up" took an excessive amount

of time, and storing results, tabu-

lating results and manipulating results

was difficult.

It was therefore decided to look into the proce-

dures and algorithms available, program them

efficiently if they were useful, develop new

techniques which were fast and economical of

storage where necessary, and put them into a

standard program which could be used for large

scale simulations.

Several guidelines were set:

a) All procedures were to be computationally

simple, use as little memory as possible

and to be as broadly applicable as pos-

sible. In particular, this meant they

should use as little information as

possible about the statistic, say S, to

be simulated. For example, one might not

want to use the specific information that

S was positive.

b) To utilize the speed of the computers,

the best way seemed to be to compute the

distributions of as many statistics as

possible simultaneously.

c) Memory requirements should be kept fixed

and relatively small in order to use

excess CPU (Central Processing Unit)

time by running in a lowest priority par-

tition in a multiprogrammed invironment.

A block diagram of the overall program, COMPSTAT,

which was developed is shown in Figure 1. We dis-

cuss this program generally before going into

details of implementation and unsolved problems

in later sections. •

Referring to Figure 1, the symbol n is used to

refer to sample size in statistical simulations,

so that the statistic S might be the average

of the observations in a random sample of size n.

Any value of n may be used in the program,

though it is written so as to repeat simulations

on successive values of n if required. A number

m of replications is specified by the user, with

the option of splitting m into r blocks of

size m' each (m = rm 1

). This is done to obtain

estimates of the variance of estimates and also

to allow for checkpoints to be taken.

On each replication the STATISTICS GENERATOR can

call for £ ^ n random numbers, unsorted or

sorted by magnitude. The user writes the STA-

TISTICS GENERATOR, specifying up to 32 statistics

(functions of the I random variates) . This

has proved to be a very flexible arrangement; the

statistics could be, for example,



STATISTICS
GENERATOR
(Max of 32)

RANDOM
NUMBER

</*n>

•
I

MOMENTSIQUANTILESI PERCENTILES
I

1_

^

INDIVIDUAL
TABULATION

CUMULATIVE
TABULATIVE

SORTER

SIDEPUT
AND

ARCHIVE

T

I

GRAPHICAL OUTPUT

EDITOR AND SMOOTHER
I

FLOWGRAPH OF COMPSTAT PROGRAM

Figure I.

a) the sample serial correlations of lags 1

to 32 in a series of random variables

of length n;

b) the waiting times of 32 successive cus-

tomers in a simulated queue;

c) an estimate of a parameter in a distribu-

tion, the jackknifed estimate of the

parameter, the jackknifed variance, and

the pseudo-values

;

d) 32 points in the simulated spectrum of a

time series of length n.

There are many other possibilities. For each of

these statistics the user can specify that he wants

estimates of the first four moments of S, 16

quantiles of the distribution of S, and 16 per-

centiles of S (or any combination of these three).

Quantiles here is used to mean the solution x
q

of the equation a = F (x ) , where a is given and

F (x) is the distribution of S. A percentile is

just F(x) for given x. We assume the quantile

exists

.



Mean Stand. Dev,

O"

Lower Quantiles

P x
o. 001

X
0, 002

X
0. 005

x
o. 010

X
0. 020

X
0. 025

X
0. 050

x
o. 100

Normal
(Exact)

11. 982 2. 562 6.989 7. 197 7. 512 7.789 8. 11 3 8. 229 8, 642 9, 165

Exponential 1 1. 824

(0. 001)

2. 827

(0. 001)

6, 133

(0, 005)
6. 378

(0, 003)

6.746
(0. 003)

7. 068

(0, 002)

7, 445

(0, 002)

7, 580

(0. 002)

8, 063

(0. 002)

8, 668

(0. 001)

l/2 Weibull 213, 828

(0. Oil)

Skewness

*1

85, 678

(0. 033)

Kurtosi s

^2

67. 580

(0. 067)

72. 483

(0. 080)

80. 052

(0. 082)

Upper Q

87. 068

(0. 059)

uantiles

95. 41

(0. 032)

98. 523

(0. 030)

109, 7 07

(0, 036)

124. 384

(0, 032)

x
o. 900 "o. 950

X
0,97 5

X
0. 980

x
o. 990

X
0. 995

X
0. 998

X
0. 999

Normal
(Exact)

1. 442 15.324 U. 764 18. 176 18. 627 20. 024 21. 415 23.251 24. 638

Exponential 1. 061

(0. 003)

2. 120

(0. 023)

15, 514

(0. 004)

17. 064

(0. 005)

18. 572

(0. 005)

19. 061

(0. 006)

20. 552

(0. 009)

11. 045

(0. 009)

24. 055

(0, 024)

25. 557

(0, 033

1/2 Weibull 1. 557

(0, 003)

5. 082

(0. 035)

323. 012

(0. 084)

373. 912

(0, 059)

425. 816

(0. 136)

442. 749

(0.172)

496, 882

(0. 182)

553. 934

(0. 328)

634. 068

(0. 472)

700. 534

(1 696)

Table 1

Table 1 shows the form chosen to tabulate the

results (moments and quantiles) of a simulation

involving m replications for each n. These

results are averages and sample standard devia-

tions of the results of the r blocks of m 1

replications, all of this being stored in an

archive which Tukey has aptly called the SIDEPUT.

The estimated standard deviations of the estimates

are given in brackets just below the estimates;

below them we give (not shown) the estimated

quantiles after subtraction of the estimated mean

y and division by the estimated standard devia-

tion a. This allows the experimenter to judge

whether the statistic is approximately normally

distributed.

The last blocks in Figure 1 allow for CUMULATIVE

TABULATION on n, EDITING and SMOOTHING of the

results (including rounding and printing tables

for publication) , and GRAPHICAL OUTPUT as shown

in Figures 2 &3. It is easy to see in the figures

that this statistic is not normally distributed

and is converging very slowly with n to the

asymptotic (n-*°°) distribution. The positive

skewness of the distribution is also evident.

An original, rather inefficient, COMPSTAT program

was used to implement a study of tests of inde-

pendence in point processes. Twenty statistics

were computed simultaneously on an IBM 360/91 in

a 120K partition. Some of these results have been

published (Lewis, 1972) and are partially repro-

duced here (Figures 2 and 3) ; others will appear

later.

A study on a similar scale of robust estimates of

location was undertaken at Princeton (Andrews,

et al, 1972); they had the advantage over me of

both manpower and expertise.

It is hoped to rewrite the COMPSTAT program at

some later time in order to incorporate all of the

recent advances in statistical computing technol-

ogy described below.

2. DETAILS

We discuss now the details of the implementation

of a program such as COMPSTAT. At its inception

in 1966 we quickly ran up against the lack of real



Figure 2

computational considerations in many standard

statistical procedures. The situation is better

at present, with books such as Hemmerle (1967)

and Knuth (1969) now available. Knuth (1969) in

particular is invaluable. There are still many

problems, however, particularly relating to large-

scale computations.

a) Random Number Generation

Clearly the statistical quality of the random

numbers available for large-scale simulations

will be the limiting factor in how far one can go

in utilizing large-scale computers in simulations.

In 1966 the main generator in use was RANDU in

the IBM SSP package. It is still widely used to-

day, by default, even though it is known to

knowledgeable users to have poor statistical pro-

perties. There are no published test results on

RANDU, except one brought to my attention at the

conference (Bates and Zirkle, 1971) but there are

papers published on problems which have been en-

countered with its use. Moreover, as a statistical

consultant one comes up against many cases in which

strange results in simulations are remedied by re-

placing RANDU by another random number generator.

In this respect it might be noted that if statis-

ticians are guilty of ignoring computational

aspects of their procedures, computer scientists

are equally guilty of ignoring the statistical

aspects of algorithms. There are hundreds of

clever random number algorithms in the literature
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[see the bibliography by Nance and Overstreet,

1972] but there are virtually no accompanying test

results published. Moreover, it is generally dif-

ficult to do so in a computer journal.

In 1966 we started to investigate the problem of

random number generation for large-scale computa-

tion, and after extensive testing we developed

a 31-bit pseudo-random number generator for the

System 360. This is a multiplicative congruential

generator of the form (Lewis, Goodman, and Miller,

1969)

x
i+1

= Ax
±

(mod p)

,

31 5
where p , a prime , is 2 - 1 and A = 7 is a

positive primitive root of p, thus guaranteeing

a cycle of length p for the generator. Another

advantage of using a positive primitive root for

the multplier is that low order bits are also

random. Beside the assembly language version given

in the paper, a very fast version of this

generator which generates arrays of integer or

floating point numbers is available in the new IBM

SL/MATH package. We will refer to this as the GGL

generator; it generates a random number in 1.40

Usees on a 360/91 and in 16.00 usees on a 360/67.

A version has been written for the 360/67 at the

Naval Postgraduate School using a division simu-

lation algorithm due to Lehmer (see Payne, Rabung

,

Bagyo, 1969; Liniger, 1961).



Test results for GGL are given in Lewis, Goodman,

and Miller (1969) and extensive subsequent use

turned up no obvious problems, though constant

care was exercised. For example, in Table 1 the

maximum periodogram values with 1/2-Weibull dis-

tributed variates (squares of exponentially dis-

tributed variates) are very large. In this simu-

lation r = 6, m' = 750,000 and m = 4,500,000.

As a check, normal deviates were used in a very

large simulation and no discrepancy from the

exact distribution (shown in Table 1) even at

0.999 quantiles was found. This GGL random

number generator was used in the Princeton study

(Andrews, et al , 1972) and is used in APL.

Nevertheless, valid doubts continue to be expres-

sed about the use of the GGL generator in large-

scale computations, particularly in light of

Marsaglia's results (Marsaglia, 1968, 1972) on the

structure of sequences of numbers from congruen-

tial generators. These results have shed a lot

of light on problems which can be encountered

with congruential generators, but I don't be-

lieve they tell the whole story. There are also

new types of generators being advocated. Some

of these are too cumbersome for consideration,

but others are popular, in particular the Taus-

worthe or shift register generators (Tausworthe,

1965). Some doubt has been cast on the statis-

tical properties of these shift register pseudo-

random number generators recently; my own

preference is, for speed and simplicity, to go to

shuffled congruential generators (Marsaglia and

Bray, 1968). Tukey (1972) ascribes this idea

to Gentlemen but it seems quite old and was put

forward by Marsaglia in the early 1960's. I

have found no documentation of the statistical

properties of shuffled generators, although they

are intuitively appealing.

We have undertaken further statistical tests of

some of the above generators at the Naval Post-

graduate School. In particular, we have been

interested in correlating test results with

* I am indebted to Dr. L. R. Turner, NASA

for these numbers.

results of Couveyou and MacPherson, 1967; (see

also Knuth, 1969, pp. 82-100.) and Marsaglia, 1972.

It seems to me that the Couveyou-MacPherson Fourier

analysis is the best analytical tool for predicting

performance of random number generators that has

appeared. Marsaglia's results [1972] on the lat-

tice structure of the congruential generators are

also useful.

The tests referred to started with the GGL random

number generator, RANDU and a TAUSWORTHE generator

(Tausworthe, 1965) and the runs test. As in Lewis,

Goodman, and Miller (1969), runs of length eight

or longer are pooled and a Chi-square statistic

computed. Nominally, this has a Chi-square dis-

tribution with 7 degrees of freedom and we denote
2

it as x 7
- Table 2 gives summary statistics on

16
20 runs of 2 numbers each for the three gener-

ators. The Tausworthe generator is now analytic-

ally known to have poor runs performance (Toothill,

Robinson, and Adams, 1971). The runs test rejects

neither GGL nor RANDU if the test statistic is as-

sumed to be distributed as a Chi-square variate

with 7 degrees of freedom. As mentioned before,

RANDU is known to be poor; this is shown in Table

3 giving the Couveyou-MacPherson wave numbers for

GGL and RANDU for dimensions up to 7. It is in

higher dimensions that RANDU is particularly poor.*

Table 2. Runs test; Chi-square statistic.

GGL

RANDU

TAUSWORTHE

Table 3. Wave numbers for two generators .*

GGL RANDU

Dimension

2 16,807 23,172

3 638.9 10.86

4 146.25 10.77

5 67.21 10.77

6 29.92

7 16.55

Lewis Research Center, Cleveland, Ohio,

A
7 x2

7

6.846 4.084

7.939 3.502

9.972 10.428



A comparison of the three samples of size 20 using

a two-sample Kolmogorov test rejects the hypothesis

that any of them are from the same distribution!

This is a sad result for large-scale simulation,

particularly if one were trying to simulate the

distribution of the Chi-square summary statistic,
2

X 7 , for the runs test.

The three generators have been shuffled and the

Chi-square statistics of 100 tests for samples

of size 2 numbers from each generator were

found to be distributionally commensurate. The

shuffled Tausworthe generator was still suspect,

however.

Results of this testing will be given elsewhere;

other statistical tests are being evaluated. The

conclusions so far are interesting. There is

mild evidence that shuffling helps. The main con-

clusion seems to be, however, that the runs test

is virtually useless. (Note that Bates and Zirkle

accept RANDU, partly on the basis of runs tests.)

And although recent books (Newman and Odell , 1971;

Maisel and Gnugnoli , 1972) tout the runs test as

amongst the best, I have been unable to find any

documentation for this. It seems to be an example

of a stochastic rumor to which I too have contri-

buted (Lewis, Goodman, and Miller, 1969). Perhaps

some readers can guide me to work on the power

of the runs test; Lehman (1959, p. 155) points

out that a modified runs test has certain optimum

properties in testing for independence in a binary

sequence against lst-order Markov alternatives.

Even results on the power of the runs test re-

lative to the serial correlation test for first

order normal autoregressive schemes would be of

interest

.

There is clearly much work to be done in random

number generation. I have also not mentioned

the need for efficiently generated, reliable nor-

mally distributed random variates. These, and

perhaps several other kinds of random deviates

should be provided as primitives, just as random

numbers are provided as primitives in APL. A

package to generate normally and exponentially

distributed random variables is available from

Marsaglia at McGill University. It uses some of

Marsaglia's own methods and is very fast. A survey

of some of these methods is given by Ahrens and

Dieter (1972).

b) Ordering .

Ordering (sorting) of quantities, or obtaining

ranks, is a basic operation in statistical compu-

tation; a survey is given by Martin (1971). The

main use we had for it initially was in quantile

estimation, and here it was a bottleneck since,

in general, ordering of n quantities takes a

number of operations proportional to n(£n n) and

memory capacity proportional to n. The quantile

estimation problem is discussed below; the use of

ordering is now used mainly in COMPSTAT in gener-

ating statistics such as the median. There are

several points to be made here.

(i) Uniformly distributed random variates

can be ordered by address modification schemes

(Isaac and Singleton, 1956) in time propor-

tional to n, although for large computations

3n memory positions are needed to avoid over-

flows. An algorithm for this type of sorting

is provided in COMPSTAT.

(ii) It is clear that by using pilot estimates

of a non-uniform distribution, address modi-

fication schemes can be used on any data.

These take, asymptotically, n operations,

but for reasonable sample sizes the procedure

is slow and cumbersome programming-wise. The

scheme is due to Floyd at Stanford. There is

renewed interest in this area and Chambers

(1971) has a scheme for partial sorting which

is more efficient than an n(£n n) sort.

Andrews (personal communication) also has a

scheme for obtaining the median; it uses a

pilot estimation scheme and is subject to

overflows which could be a problem in large-

scale simulations.

(iii) Schemes using the Markov property of

the gaps (differences between successive order

statistics) (see David, 1971, p. 17) are

available for producing ordered uniform var-

iates (Schucany, 1972; Lurie and Hartley, 1972)



We had tried in COMPSTAT an equivalent scheme

based on the independence of the gap statis-

tics for exponentially distributed variates.

These schemes for moderate n are more time

consuming than the n(log n) schemes, but are

more efficient in use of memory space. Their

primary use would seem to be when only a few

of the low or high order statistics are needed.

Two points should be made here:

1. It is computationally easier to generate

high order statistics, rather than the low

order statistics advocated by Lurie and

Hartley (1972) and Shucany (1972). Denoting

the uniform variates by U. and the ordered

uniform variates by U , . , we have
r u

rob
{

U (i)* U
(i)IVi (i+D

I

(i)

(i+D

(i=l,2,...n; u
(i)

£ u
(

.

+1)
, u

n+1
1)

If only low order uniform order statistics are

required, they are generated as U
J.

. . = 1 -

U
(n+l-i)'

2. The time consuming operation in the above

is to take the (l/i)th power. This is done,

usually, using logarithms and the scheme is

then equivalent to generating order statistics

from a unit exponential distribution. However,

since it is much faster to generate exponen-

tial variates using some of Marsaglia's sam-

pling procedures than it is to generate them

by taking the logarithm of a_ uniform variate ,

it is faster to generate ordered uniform ran-

dom numbers by starting with exponential var-

iates .

The basis for this is that if E..., i = 1, 2,

...n, denotes ordered unit exponential vari-

ates from a sample of size n, and we let

E, n > = 0, the gap statistics (Cox and Lewis,

p. 26-27)

D
(i) (i) (i+D

(i = 1, --, n)

are independent exponentials with mean

E(D
(i)

) = (n+l-i)"
1

Thus if we have n unit

exponentials, generated say by one of Marsag-

lia's schemes, we generate

:

(i)
"
J. (n+1"J> E

j3=1
(i = 1, ...n)

and

U
(i)

= 1 - 6XP iE
(i)

} (i = 1, ...n).

An n(log n) sorting and ranking scheme is also

provided in COMPSTAT. for sorting and ordering with-

in the STATISTICS GENERATOR.

c) Quantiles and Percentiles .

Estimating quantiles was the second biggest bottle-

neck in implementing COMPSTAT. Quantiles are more

basic in characterizing distributions than percen-

tiles, although, for example, one is interested in

percentiles when evaluating by simulation the power

of a test based on a statistic S. Thus, given

the a-quantile x of S under a null hypothesis,

one wants the percentile corresponding to S and

x under a different hypothesis.

Percentile estimation as a binomial process is es-

sentially straightforward and ideal by our criter-

ion of simplicity and economy of computation and

memory requirements. It is also unbiased. However,

it appears that greater efficiency should be ob-

tained by coupling estimates at different x 's,

although I haven't been able to do so. Most schemes

.appear to require assumptions about boundedness of

the probability density function. Somerville (1970)

has some results in this area; it appears to be an

area for further research.

Quantile estimation based on order statistics is

advocated in most texts (see David, 1971). For

large-scale computation the sorting time required

and the memory capacity is prohibitive. Stochastic

approximation schemes (Robbins and Monro, 1951;

Hodges and Lehman, 1956) were then tried but found

to converge at an impossibly slow rate for large

quantiles. These two quantile estimation schemes

are prime examples of statistical procedures which

are not attuned to computing realities, and whose

asymptotic properties are deceptive as far as prac-

tical applications are concerned.

A solution was finally found (Goodman, Lewis, and

Robbins, 1972) which combined the stochastic ap-

proximation with a data transformation. Typically



if the a-quantile was required (a>0.5), the

maxima of successive groups of size v of reali-

zations of S are found. The problem is then

one, if a' = a , of finding the x
,

quantile,

which is equal to x , in a distribution which
th

is the v— power of the distribution S, F (x) .

By taking v large enough to make a' ~ 1/2 the

problem becomes one of estimating a median, al-

though other values of v can be used. Stochastic

approximations work well with medians, but as the
-1/2

bias is apparently of order m , jackknifing

is required to reduce the bias.

The present scheme (Goodman, Lewis, and Robbins,

1972) based on the maximum transformation and

stochastic approximation solves the basic pro-

blems of quantile estimation, but research is con-

tinuing to improve it. Computationally it is very

good since finding a maximum requires only two

memory cells and computation time is linear in m,

the number of realizations of S which are gen-

erated. It is also simple to compute in parallel

the quantiles for several levels, e.g. a =

0.990, 0.995, 0.999.

D. Salsburg has raised the question as to whether

one wouldn't want to order the data anyway to do,

for instance, a normal probability plot of the

simulated distribution. This may be true for

samples of size m equal to about 500; beyond

that the sorting in a large-scale simulation be-

comes onerous, time-wise and memory-wise, and I

feel a plot using 16 quantiles, as in Figure 2,

plus the moments in Figure 3, is as good as or

better than a full probability plot.

d) Bias and Bias Reduction .

It is essential for sensible and interpretable

simulation results to have estimates of the var-

iances of the simulated quantities. However,

sectioning the m replications in a large-scale

simulation into r sections of m' replications

to estimate the variance of estimates (see

Mosteller and Tukey , 1968) brings in problems of

bias. This is because one wants r to be about

10 to get reliable estimates of the variance, but

the resulting m' may be too small to reduce the
10

bias in the simulated quantity to acceptable levels.

This problem seems to be well in hand because of

the jackknife technique for bias reduction which

was developed by Quenouille (1956) , pushed by

Tukey (1958) and generalized by Schucany, Gray,

and Owen (1971) and Gray and Schucany (1972). A

similar technique was used by Gaver and Hoel (1970)

in examining small-sample Poisson probability es-

timates. Some price may be paid in inflation of

the variance of the estimator (Miller, 1964; also

Goodman, Lewis, and Robbins, 1972, for a specific

case)

.

In COMPSTAT the jackknife is quite simply incor-

porated into the STATISTICS GENERATOR.

e) Variance Estimation .

The problem of bias appears to have been alleviated

directly by the jackknife, and indirectly because

of a suggestion by Tukey (1958) that the sample

standard deviation based on the pseudo-values in

the jackknife procedure be used to estimate the

variance of the jackknifed estimate. There is

some evidence that this procedure is broadly

applicable, although Miller (1968) pointed out

cases where it can give poor results. In general,

n-fold jackknifing in a small sample of size n

can give an estimate with a very inflated variance,

though this problem disappears as n+°°. Relevant

references are Arvesen (1969) , a review by Arvesen

and Salsburg (1972), and Mosteller and Tukey (1968)

The jackknifing procedure will probably be most

useful when available computation time is too short

for sectioning. For a description of variance

estimation techniques based on sectioning, see

Mosteller and Tukey (1968).

f

)

Variance Reduction Techniques .

I have not discussed variance reduction techniques

so far. An excellent review is given by Gaver

(1969); see also Hammersley and Handscomb (1964).

These variance reduction techniques can be imple-

mented in COMPSTAT but there seem to be several

drawbacks, mainly that the methods are particular

to the problems at hand. Thus, a large amount of

time can be spend deriving, say, an antithetic



variate for a particular problem and this may, when

large computers are available, be an inefficient

way to use statisticians.

The most important drawback to most methods, how-

ever, is that a method that reduces the variance

of an estimate of the mean of a statistic S will

often inflate the variance of an estimate of the

variance of S. This is clearly true for many

antithetic variate techniques (Hammersley and

Mauldon, 1956) and would be worse when quantiles

or percentiles are also required. This may be

all right in nearly normal situations, but not in

others.

Much more research is required on variance reduction

techniques that are applicable to all aspects of

the characterization of a distribution, and are

easily derived. Control variable techniques

(Fieller and Hartley, 1959) seem to me the best

candidate for this role.

An empirical control variable technique can be im-

plemented with COMPSTAT when exploration is re-

quired around a null situation. This may, for

instance, be a test of hypothesis in which power

against small deviations is of interest. Again,

small variations in scheduling algorithms in com-

plex queues might be of interest to see what

improvement they make to, say, throughput time.

One might then do a very precise simulation of the

characterizations of the statistic under the null

hypothesis. Fix m' , the number of replications

per section, and let r, the number of sections,

be large and denote by
9i^

r ^ t 'ie est imated

quantity under the null hypothesis. This will be

the average of the estimates of 6 from the r

sections. Results for the sections are kept in

the SIDEPUT, together with the seed for the random

number generator which initiates each section of

the simulation. The quantity is estimated under

alternative conditions using the same random num-

bers using only r' sections, where r
1 << r.

Call this quantity W(r'). If $/ r ') is the

null (average) estimate from the first r' sec-

tions, (L(r-r') the null (average) estimate from

the last r - r' sections, then the control

variable estimate is

(r
1

) = e
£
(r') - 6 (r«) + 6

Q
(r)

= 6
e
(r») - (I=|l) l^r') + (i=El) T (r-r')

Then
r-r\2

var[ 6
£

( r')] = var [ 6
£
(r')] + (~^-) var[ ^(r')]

(^-'-)cov[f"
E
(r')r

o
(r')] + (^-)var[^(r-r')]

The common random numbers used to generate the es-

timates should make the estimates 6 (r
1

) and

&
n
(r') highly correlated, and the above equation

is the variance in the usual control variable sit-

uation except for the last term. If r is large

relative to r' this last term should be small

relative to the other terms.

It is possible to use subsequent sections of size

r' in the original simulation of &„ to explore

other alternatives, say 6 , i , .... There are

interesting design and analysis problems in this

scheme which will be explored elsewhere.

One final point should be made here about control

variables. Let 6 be the uncontrolled estimate

and 6 the controlled estimate (generated from

the same random numbers). It is not often real-

ized that even with a regression adjusted control

(see Gaver, 1969) the maximum attainable variance

reduction is

var&=i-° 2
.var( 5)

where P is the correlation between and 6.

It can be very difficult and time-consuming, es-

pecially for the inexperienced practitioner, to

find a control which gives a high enough p to

justify the pratitioners time. And in many cases

equivalent speed ups can be achieved by using more

efficient random number generators, ordering rou-

tines , etc

.

The time factor to achieve a high p is one rea-

son for putting forward the empirical scheme above.

g) Planning Simulation Experiments .

The empirical control variable suggestion in the

previous section brings up the whole question of



the design of simulation experiments. Thus, it

would be reasonable to use the empirical scheme,

or plan an experiment around the null value EL?

This would be appropriate if the range of para-

meters of interest were known in advance. The

empirical control variable technique seems at-

tractive as an on-line, interactive procedure,

especially when estimates of the variances of the

estimates are available, as in COMPSTAT. Some

formal analysis is still needed and this could

be formidable.

In general, it would seem that the output of

large-scale simulation would be a fertile field

for application of techniques of analysis of var-

iance and experimental design. I am not familiar

with much by way of specific applications; several

recent books, including that by Mihram (1972),

which I have not examined carefully, do treat

analysis of simulation experiments. The tendency,

however, does seem to be to just regurgitate the

old theory without specifically worrying about

particular problems of simulation experiments.

A simple case occurs when an experimenter has two

variance reduction techniques available, say two

control variables, and a fixed number of repli-

cations m he can perform. He wants to choose

the control variable which minimizes the variance

of the final estimate of a parameter, say 6,

which could be the mean of a statistic S. If

m 1 is large enough so that the estimates in each

of the r sections (rm'=m) are unbiased and

normally distributed, this is a classical two arm

bandit problem.

I know of no one, however, who has actually done

this, probably because the benefit of reduced

variance doesn't outweigh the extra cost of tool-

ing up for two estimates of G. It could be

feasible with COMPSTAT. Once more than one para-

meter is involved, say the mean and variance of

S, the problem is much more complicated. In

general I think, however, that as computers de-

velop simulation will make many statistical prac-

tices developed in vacuo widely useful.

Some of many other open design problems can be -,

j

seen by considering Figure 2, where estimated quan-

tiles of a distribution are plotted. One would

generally want to smooth these plots or fit some

regression function to assess the rate of conver-

gence to the asymptotic normal distribution. There

are problems in that the number of simulations, m,

was fixed in advance and thus, the variances at

each n vary. Moreover, one would want to couple

the smoothing or regression analysis of the var-

ious quantiles. These are both functionally and

statistically correlated for each n across

quantiles and with n for each quantile.

Detailed analysis of such graphic output needs

much more work; it is possible that the work of

Efron and Morris (1972) may be relevant to this

problem.

Besides the smoothing, any program such as COMPSTAT

should provide facility for direct plotting of

output tables of rounded and perhaps smoothed data.

This is one facility computer scientists can pro-

vide us with.

3. MISCELLANEOUS PROBLEMS AND OPEN QUESTIONS.

I have not touched on many questions in large-scale

simulation. A few are discussed here to emphasize

that there are many problems that do not even start

to fit on present or future computers. Thus, sim-

ulation, especially without some analytic support,

is not always a possible way out of problems, al-

though some people feel simulation is the last

resort. Other questions discussed below indicate

that there are simple problems we cannot handle.

a) Conditional distributions.

Conditioning poses problems in simulations which

I do not know how to handle efficiently. Thus, in

fitting exponential polynomials to data from a non-

homogeneous Poisson process (Lewis, 1972) observed

for a time t , one wants to condition on the

number, n, of events observed in (0,t ). The

times to events t. are then order statistics
l

from a uniform random sample of size n. In test-

ing for a second order term in the polynomial one
2

wants the conditional distribution of St., given

n and Et . . Conceptually this is simple to see,



as Zt. is the distance from the origin to the

n - 1 dimensional hyperplane defined by fixing
2

Zt.. The joint asymptotic normality of Zt and
i l

Zt. give the result that for large n, Zt?/n

has a conditional normal distribution with mean

(Lewis, 1972).

2i v. v . 2 ^i 1
= E(Itf|n;[t.) = t" VL i' L l nt,

and standard deviation

a =
"0

1/2
*

(12nV
How does one simulate this problem for small n

and assess the rate of convergence to n? This

must be a very common problem.

b) Multivariate problems .

I have not mentioned simulation of multivariate

statistics J3.
An immediate problem here is that

quantiles and percentiles are not uniquely defined,

so one has to use joint moments, which could be

estimated in COMPSTAT, or rely on probability

density functions. I have not discussed density

estimation here at all. Multivariate problems,

of course, also bring in new aspects of graphical

and tabular output which are non-trivial.

c) Simulated maximum likelihood .

As a last stab, I would like to mention another

area which interests me. In complicated time

series we now have computationally feasible tools

such as spectral analysis to help in defining and

delineating models. Once this is done, however,

there are often no reasonable ways of estimating

parameters of the model, especially since likeli-

hoods cannot be derived, even though the model is

structurally simple. It would be useful to simu-

late the joint density of the observations at the

observed data point as a function of the para-

meters so as to find the maximum likelihood es-

timates of the parameters. I assume this is worth

the cost to the experimenter. One then has a more

complicated case of a) , closely related to re-

sponse surface designs. The solution seems to be

far away

.

The reader is referred to the papers by Tukey

13

(1972 a, b) for further problems.
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