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Nowadays, the efficient exploitation of High Performance Computing resources is crucial in order
to extend the applicability of first-principles theoretical methods to the description of large, pro-
gressively more realistic molecular and condensed matter systems. This can be achieved only by
devising effective parallelization strategies for the most time-consuming steps of a calculation, which
requires some effort given the usual complexity of quantum-mechanical algorithms, particularly so if
parallelization is to be extended to all properties and not just to the basic functionalities of the code.
In this paper, the performance and capabilities of the massively-parallel version of the Crystal17

package for first-principles calculations on solids are discussed. In particular, we present: i) recent
developments allowing for a further improvement of the code scalability (up to 32768 cores); ii) a
quantitative analysis of the scaling and memory requirements of the code when running calculations
with several thousands (up to about 14000) of atoms per cell ; iii) a documentation of the high
numerical size consistency of the code; iv) an overview of recent ab initio studies of several physi-
cal properties (structural, energetic, electronic, vibrational, spectroscopic, thermodynamic, elastic,
piezoelectric, topological) of large systems investigated with the code.

I. INTRODUCTION

Density functional theory (DFT), combined with pe-
riodic boundary conditions, is the method of choice for
the ab initio calculation of a variety of properties of ma-
terials, owing to its excellent balance between high ac-
curacy and relatively low computational cost.1–5 The ex-
tension of the application of DFT to large, structurally
complex models of real systems (often characterized by
a low degree of point- and/or translational-symmetry) is
therefore crucial to its future success and popularity. To
achieve this the exploitation of high-performance com-
puting (HPC) resources, coupled with the development
of reduced system size scaling algorithms, at present con-
stitutes the main route.6–12 Efficient use of such resources
requires the scientific application, Crystal in this case,
to exploit the massively parallel and distributed nature
of the modern HPC facility; the trend for current ma-
chines is a rapid increase in the number of computational
cores available coupled with a stagnation in the amount
of memory per core and the clock rate. Thus for a modern
HPC orientated scientific application, whatever its area,
an efficient exploitation of parallel computing, through
a hierarchy of strategies, is vital and allows not only for
a faster time-to-solution, but also for a reduction of the
required memory per process if the data is properly dis-
tributed, which makes the study of large systems possi-
ble.
Achieving a high degree of parallelization in codes for

the ab initio description of materials requires a large in-
vestment of effort, particularly so if parallelization is to
be extended to all algorithms and not just to those re-
ferring to basic functionalities (like single-point SCF cal-
culations for energy and electronic structure determina-
tions, for instance). Furthermore, it should be stressed
that in order to obtain reliable results which can help

in gaining insight on the physics of a large scale system
with periodic quantum-mechanical codes, a good speed-
up as a function of the number of cores is a necessary
but insufficient condition. Indeed, as trivial as it might
sound, one has also to ensure the application has a high
numerical size consistency, that is retention of high ac-
curacy as a calculation is scaled in size. This has seldom
been addressed in the literature. In this paper, the paral-
lel efficiency of the Crystal17 code is documented and
quantified according to different criteria (strong scaling
profiles, system size scaling, memory requirements). Dif-
ferent parallelization strategies are discussed, the numer-
ical size consistency documented, and recent applications
of the code to large systems reviewed, which show how,
nowadays, large scale DFT simulations of many proper-
ties of materials can be routinely run on HPC machines.

A replicated-data parallel version of the program,
Pcrystal using message-passing-interface (MPI) direc-
tives, has been available since 1996, in which a complete
copy of all necessary data for the calculations is held
by every process, but different processes are performing
different independent parts of the calculation at a given
instant.13 The evaluation of one- and two-electron inte-
grals is very efficiently parallelized within this scheme, as
independent subsets of integrals may be assigned to dif-
ferent processes. For the SCF procedure, parallelism is
mainly achieved by exploiting the factorization of many
computational tasks in reciprocal space (such as the
Fourier transform of the main matrices, Kohn-Sham ma-
trix diagonalization, etc.), into essentially independent
k-points. When spin-unrestricted formulations are used
for open-shell systems, parallelism is also extended to α
and β spins. From the Crystal14 version of the pro-
gram, this kind of parallelism has further been pushed
to include point-symmetry factorization within each k-
point based on the corresponding irreducible representa-
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tions (irreps).14 Over the years, the replicated-data paral-
lelism strategy has been progressively extended to all the
algorithms of the code,15–17 thus covering the whole spec-
trum of available properties (energetic, structural, elec-
tronic, vibrational, spectroscopic, thermodynamic, lin-
ear and non-linear optical, elastic, piezoelectric, photo-
elastic, topological, etc.). This parallel mode is particu-
larly effective for systems containing up to several tens of
symmetry-irreducible atoms per cell (say ≤ 100) and for
a standard or dense sampling of reciprocal space. Above
this indicative threshold, memory typically becomes the
limiting factor of this approach because of data replica-
tion; this method of parallelism obviously has very poor
memory scalability, and thus more processes do not mean
larger systems may be solved. However, given that point-
symmetry is fully-exploited at all steps of the calculation
in the code (in particular, all the big matrices are stored
in their most symmetry-irreducible shape), the overall
size of the systems that can be studied with this approach
can be much larger if they belong to rich point-symmetry
groups.14,18,19 For instance, many classes of cubic crystals
are characterized by 48 point symmetry operators, which
makes it possible to study systems with a few hundred
atoms per cell. In this respect, single-walled carbon nan-
otubes and fullerenes represent exceptional cases, where
the number of point-symmetry operators can even ex-
ceed 48.20 For instance, a giant (10,10) icosahedral car-
bon fullerene has been studied with this version of the
program, which is characterized by 120 symmetry opera-
tors and contains 6000 atoms (out of which only 55 turn
out to be symmetry-irreducible).21

A distributed-data massively-parallel version of the
program, MPPcrystal, has been available since 2010,
where the largest arrays required by a calculation are
partitioned and distributed among the processes so that
each process stores in memory only a fraction of the to-
tal array on which it operates, and ScaLAPACK libraries
are used for performing linear algebra tasks.11,12 In par-
ticular, all objects that depend upon the square of the
system size, including such entities as the Kohn-Sham
matrix and its eigenvectors, are either distributed in this
way or have been eliminated from the code. Further,
all large objects in direct space (such as Fock and den-
sity matrices for each direct lattice cell) are stored in
their most compact “irreducible” form and deallocated
when not needed (during the reciprocal space operations,
for instance), thus reducing the memory footprint of the
program.We also note that this compact representation
scales linearly with the system size, not quadratically.
Owing to the distributed-data strategy, the larger the
number of processes, the smaller the required memory
per process as each process holds a smaller part of the
distributed matrices. Thus the distributed-data paral-
lel version represents the ideal tool to study very large
systems (containing several hundreds or thousands of
atoms per cell), with little or no point-symmetry, and
a coarse reciprocal space sampling. At variance with the
replicated-data version, not all algorithms have been ex-

tended to the distributed-data strategy yet. Available
algorithms include the self-consistent-field procedure, an-
alytical gradient evaluation, the geometry optimizer, the
vibrational frequency and infrared intensities (through a
Berry-phase approach) calculation, and the elastic and
piezoelectric tensor determination. Work is constantly
in progress to extend this strategy to other properties.

In this paper, we report on how the massively-parallel
version of the program has been improved in the last five
years, mainly in three respects: i) the required memory
per core has been further reduced by adopting a direct
strategy (according to which some arrays are recomputed
when needed instead of being stored on memory) for rel-
atively small matrices, which would progressively con-
stitute a memory bottleneck as the size of the system
increases; ii) the scalability of the wall-clock time needed
to complete the calculation with respect to the number of
cores used to run the calculation on has been improved,
which required almost all tasks (including those taking
very little time for small- or medium-sized systems) to
be efficiently parallelized; iii) the scalability with respect
to system size has also been improved by means of a re-
structuring of the routines for the selection of Coulomb
and exchange two-electron integrals.

The structure of the paper is as follows: the technical
improvements that made it possible to scale up to 32768
CPUs are discussed and documented in Section II; recent
applications of the MPPcrystal code to the study of
several properties of large condensed matter systems are
reviewed in Section III; conclusions and perspectives are
drawn in Section IV.

II. TECHNICAL IMPROVEMENTS

In order to document the performance of MPPcrys-

tal, a structural model of the MCM-41 compound
(amorphous mesoporous silica) is here taken as a refer-
ence, which contains 579 atoms per primitive cell, dis-
plays no point-symmetry, and was already used as a
benchmark for the documentation of the parallel effi-
ciency of previous versions of the program.11,16 When
systems of different size have to be considered, larger
structural models are obtained by growing supercells of
this system along the c crystallographic axis, which en-
sures a good structural and chemical consistency. These
supercells will be denoted as Xn, where n is an integer
defining the order of expansion along c. The PBE func-
tional is used for most calculations in combination with
a 6-31G∗∗ Pople basis set (corresponding to 7756 atomic
orbitals, AOs, per primitive cell). All calculations were
run on the SuperMUC (LRZ, Germany) HPC IBM iData-
Plex machine powered by 16 Intel cores per node running
at 2.7 GHz, with 2 GB/core. The largest supercell here
considered is X24, which is 24 times larger than the prim-
itive cell and thus contains 13896 atoms/cell and 186144
AOs/cell.
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A. Memory Occupancy

As anticipated in the Introduction, memory is progres-
sively becoming the main bottleneck in the quantum-
mechanical simulation of large systems given that mod-
ern HPC architectures are often characterized by a rel-
atively low memory per core (of about 2 GB/core). Ef-
ficient data-distribution strategies thus have to be de-
vised in order to fully-exploit HPC resources. Most of
the largest arrays in the MPPcrystal code, and in
particular all matrices whose size increases quadratically
with the system size, are distributed among processors.
A core of initial arrays (related to geometry, symmetry
and integral screening), scaling linearly with the system
size, are still replicated on each processor. The mem-
ory occupancy of the MPPcrystal code is documented
in Figure 1 as regards the SCF process. The left-hand
side panel reports the memory peak per core (in MB)
as a function of the size of the system for a given num-
ber of adopted processors. We observe that the mem-
ory occupancy grows linearly up to a certain system size

and then scales quadratically for larger systems. This
transition from a linear to a quadratic regime occurs at
a system size that increases with the number of pro-
cesses: it is about 2000 atoms/cell for 1024 processes,
5000 atoms/cell for 2048, 9000 atoms/cell for 4096, and
finally a linear scaling of the memory occupancy is ob-
served up to about 14000 atoms/cell when the calculation
is run over 8192 processes. Figure 1 (left panel) roughly
documents which systems can be studied, memory-wise,
on a HPC machine with 2 GB/core with the MPPcrys-

tal program: the primitive cell of MCM-41 containing
579 atoms can be run on just 32 2 GByte cores; the X8 su-
percell (4632 atoms/cell) requires 512 such cores; the X16
supercell (9264 atoms/cell) 1024 cores; while the largest
system here considered (X24 with 13896 atoms/cell) can
be studied by using 4096 cores. Let us note that the
memory requirement for a global hybrid SCF calculation
would be between twice and three times the occupancy of
a pure DFT calculation; a B3LYP calculation could in-
deed be performed for the X12 system (6948 atoms/cell)
over 4096 cores, for instance.

FIG. 1: Maximum memory per core during the SCF step of the calculation as a function of the system size for different numbers
of CPUs (left panel) and as a function of the number of CPUs for the X16 system with 9264 atoms/cell (right panel). With the
adopted basis set, there are 7756 AOs per primitive cell (i.e. per 579 atoms); 10000 atoms thus correspond to about 134000
AOs.

In the right-hand side panel of Figure 1, the maxi-
mum memory per core of the SCF calculation for the
X16 system (9264 atoms/cell) is reported as a function
of the number of adopted processors, as compared with
the ideal case (blue line) in which all arrays are effec-
tively distributed. A rather efficient memory reduction
is observed when several hundreds or few thousands cores
are used. Above 4096 processors, the required memory
per core reaches a plateau of about 750 MB in this case,

which is basically due to those initial arrays mentioned
above (with a linear dependence on the system size) that
are replicated for each core. To address this, a shared-
memory strategy is being devised in order to share these
arrays among all the processors within the same node,
which will significantly decrease the value of this plateau
and which will be available in next versions of the code.
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B. Strong Scaling Profiles

In Section IIA we have discussed the effect of the use
of an increasing number of processes on the reduction
of the required memory per process, which ultimately
determines the size of the systems that can be studied
with MPPcrystal. In this section, we discuss the com-
plementary effect of the use of an increasing number of

processors on the reduction of the time needed to com-
plete the calculation. When a faster time-to-solution is
sought, it is crucial to estimate the optimal number of
processors to run the calculation on: too small a number
would not fully exploit the parallel scalability of the code
while too large a number would clearly result in an inef-
ficient scalability because the speedup reaches a plateau
in those conditions.

FIG. 2: Wall-clock time speedup of a SCF cycle with MPPcrystal as a function of the number of cores used for the X4 (top
left panel), X8 (top right panel), X16 (bottom left panel), and X24 (bottom right panel) supercells of the MCM-41 model
(PBE functional, red circles). The baseline used in the definition of the speedup is 256 cores for X4, 512 for X8, 1024 for X16,
and 4096 cores for X24. The dashed line shows the fit of the obtained speedup values to Amdahl’s law. At each point, the
scaling efficiency is reported (in %), where the diagonal of the plot corresponds to the ideal scaling. For X8, the speedup is
also reported for B3LYP calculations (blue crosses).

The most useful tool for this kind of analysis are strong
scaling profiles, which report the wall-clock time speedup
as a function of the number of processors used for a sys-

tem of fixed size. The strong scaling of a SCF cycle with
the latest version of MPPcrystal is documented in the
four panels of Figure 2 for four systems (X4, X8, X16 and
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TABLE I: Time needed t (in minutes) to perform a SCF cycle
with the PBE functional for systems of different size (X4,
X8, X16 and X24) by running the calculation with different
numbers of processors NCPU.

X4 X8 X16 X24

NCPU t (m) NCPU t (m) NCPU t (m) NCPU t (m)

256 6.1 512 17.2 1024 58.7 - -

512 3.3 1024 9.5 2048 31.0 4096 57.2

1024 1.9 2048 5.4 4096 17.7 8192 32.0

2048 1.2 4096 3.6 8192 11.6 16384 20.5

4096 0.8 8192 2.4 16384 7.6 32768 15.8

X24), when use is made of the PBE functional (red cir-
cles). The scaling of X4 (2316 atoms/cell) is documented
from 256 to 4096 processors. The maximum number of
processors used is then doubled for each system of in-
creasing size, up to 32768 processors for the X24 system,
which contains 13896 atoms/cell. The baseline used in
the definition of the speedup is 256 cores for X4, 512 for
X8, 1024 for X16, and 4096 cores for X24. At each point,
the scaling efficiency is reported (in %), where the di-
agonal of the plot corresponds to the ideal scaling. The
resulting plots, on their different scales, look similar to
one another and they reach approximately the same effi-
ciency for the largest number of processors considered in
each case (45% - 50%). The obvious conclusion is that
the optimal number of cores to run the calculation on is
proportional to the size of the system. For instance, a
speedup efficiency of about 80% is obtained by running
X4 (2316 atoms/cell) on 1024 processors, or X8 (4632
atoms/cell) on 2048 processors, or X16 (9264 atoms/cell)
on 4096 processors.

Overall, the wall-clock time speedup as a function of
the number of adopted processors shows a regular behav-
ior and a high scalability efficiency, due to the very high
degree of parallelization of the whole code. By following
the prescription by Corsetti,7 the last statement can be
quantified by fitting the speedup values as a function of
the number of processors to the popular Amdahl’s model,
which assumes that the code can be divided into a per-
fectly parallelized fraction p, and into a complementary
sequential fraction s = 1− p.22 Dashed lines in Figure 2
represent the fitting to Amdahl’s law. Despite the over-
simplification introduced by this model, the measured
speedup values are found to be nicely described by Am-
dahl’s law. In each panel of the figure, the value of the
fraction of the non-parallelized code s is reported, as de-
termined from the fitting (the smaller the s values, the
better the parallelization of the code). From these re-
sults it can be seen that: i) the value of s decreases as
the size of the system increases because for large systems
the most expensive tasks are dominating, which are typ-
ically well-parallelized (general feature of most codes);23

ii) very low absolute values of s are obtained, showing
the high degree of parallelization of the calculation.
The speedup of the code for hybrid functionals (B3LYP

in this case) is documented in the top-right panel of Fig-
ure 2 for the X8 system (blue crosses). The scaling of the
wall-clock time with respect to the adopted number of
processors for hybrid functionals turns out to be slightly
more efficient than for pure DFT functionals. This is
due to the fact that the typical additional computational
cost of the inclusion of exact Fock exchange is localized
in those parts of the code which display the most efficient
scalability (i.e. integral evaluation). Indeed, the compu-
tational cost of Fock matrix diagonalization is the same
for pure DFT and hybrid functionals.
The total time needed (per SCF cycle) to run the PBE

calculations discussed above is reported in Table I for the
four systems X4, X8, X16 and X24 and for the different
numbers of processors used.

C. System Size Scaling

In Section II B we have discussed the scalability of the
program with respect to the number of adopted proces-
sors for a system of fixed size. In order to be able to
study large systems, another scaling is crucial: the scal-
ing of the wall-clock time with respect to the system
size. Ideally, one would aim at a linear scaling with sys-
tem size. However, this is not possible for conventional
Kohn-Sham DFT codes, which evaluate eigenvalues and
eigenvectors either by explicit diagonalization (as done in
MPPcrystal via the Divide & Conquer algorithm im-
plemented in ScaLAPACK) or by iterative minimization,
as both these algorithms scale cubically with system size.
Linear-scaling methods, which make use of approximate
spatial truncations based on the principle of electronic
nearsightedness, have been proposed in recent years to
overcome this limitation.24,25

When use is made of a localized basis set (as in Crys-

tal), diagonalization turns out to be fairly inexpensive
for relatively small systems so that other tasks possibly
characterized by a non-linear scaling would become the
limiting steps. Until a few years ago, this was indeed
the case in Crystal because of the quadratic scaling of
the routines devoted to the selection (i.e pre-screening)
of the two-electron integrals to be evaluated. This was
due to the fact that some preliminary quantities were al-
ways computed before the decision whether an integral
should be evaluated or not was made. This inefficiency
in the selection implied an almost negligible overhead for
small- or medium-sized systems but a progressively more
significant one for large systems. The routines for the se-
lection of Coulomb and exchange two-electron integrals
have now been revised in such a way to compute the same
set of integrals as before (i.e. results are unchanged)
with an improved (linear) scaling with respect to system
size. This improvement turns out to be particularly rele-
vant for calculations performed with hybrid functionals,
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FIG. 3: (Bottom panel) Wall-clock time (in seconds) of a SCF
cycle run in parallel over 1024 processors for MCM-41 super-
cells of increasing size with the hybrid B3LYP functional. The
time required by the main computational tasks at each SCF
cycle are also separately reported. (Upper panel) The same
quantity as extrapolated to a single processor by use of Am-
dahl’s law.

where the evaluation of the exact Fock exchange implies
an overall increased computational cost for the integral
evaluation (by a factor from 2 to 5 depending on the
system) with respect to pure DFT functionals.
The selection routines have also been optimized for sys-

tems with no point-symmetry so as to reduce the number
of integrals to be evaluated. The Crystal program was
originally implemented in such a way to take full ad-
vantage of point-symmetry equivalences rather than per-
mutation equivalences among two-electron integrals. It
follows that, when no point-symmetry was present, this
strategy provided no computational gain. In the latest
version of the program, two selection routines are avail-
able: one for systems with rich point-symmetry where
symmetry equivalences are exploited and one for systems
with no point-symmetry where advantage is now taken
of permutational equivalences. As a consequence, the
revised selection not only improves the system size scal-
ing but also reduces the absolute cost of the procedure
for systems with no point-symmetry. For example, for

MCM-41, the computational cost for integral evaluation
with a hybrid functional was 4.5 times larger than with
a pure functional, which is now reduced to a factor of 2.6
by the new strategy.

The wall-clock time required for a SCF cycle of the
MCM-41 system with the hybrid B3LYP functional is re-
ported in Figure 3 as a function of the size of the adopted
supercell. Timings of different computational subtasks at
each SCF cycle are also reported separately. The overall
evaluation of two-electron integrals shows a linear scaling,
thus documenting the effectiveness of the improvements
discussed above. While integral evaluation still repre-
sents the most demanding task (taking 36% of the total
time) for the primitive cell X1 (579 atoms/cell), it pro-
gressively becomes less critical as it falls to just 6% for
the X12 case (6948 atoms/cell). As expected, for large
systems the time required by Fock matrix diagonaliza-
tion now dominates the overall scaling. The evaluation
of one-electron integrals and long-range Coulomb inter-
actions through the Ewald method (almost negligible for
small systems) scales quadratically with the system size
and thus becomes the second most expensive task for
large cells.

Let us note that, generally, system size scalings as the
one reported in Figure 3 might be affected by the choice
made for the number of processes used to run the calcu-
lations on (1024 in this case) through the parallel scal-
ing of the code, which typically corresponds to different
efficiencies for systems of different size. Strong scaling
profiles (as discussed in Section II B) come to the res-
cue as they allow us to extrapolate each system to the
single-process wall-clock time (characterized by an effi-
ciency of 100% by definition for all systems). The upper
panel of Figure 3 reports the total wall-clock time of a
SCF cycle as a function of the system size, as extrapo-
lated to the single-process case. The overall scaling of
MPPcrystal is seen to be somehow between quadratic
and cubic (closer to quadratic for systems smaller than
about 8000 atoms/cell in this case and closer to cubic for
larger systems).

III. OVERVIEW OF STUDIED SYSTEMS

The parallel versions of Crystal have been ex-
tensively used in recent years to perform quantum-
mechanical simulations of structural, energetic, elec-
tronic, thermodynamic, spectroscopic, optical, elastic,
piezoelectric, topological properties of a large variety of
systems characterized by different chemical features and
periodicity (0D, 1D, 2D and 3D). In this section, we shall
briefly review those studies where the largest systems
have been investigated, so as to provide an overview of
the current capabilities of the code. A graphical repre-
sentation of the structure of the systems to be discussed
below is given in Figure 4, where their size is also indi-
cated.
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FIG. 4: Selected large-scale systems studied with the parallel versions of the Crystal program in recent years. The size of
each system is reported in terms of number of atoms per cell (or per molecule/cluster). See the text for a brief account of the
respective studies.

As an example of non-periodic 0D systems, the struc-
tural, electronic and energetic properties of a family of
(n,n) giant icosahedral carbon fullerenes have been in-
vestigated as a function of n (an integer number that
determines the size of the fullerene). The largest system
that was studied corresponds to n = 10 and is consti-
tuted by 6000 atoms. A basis set of double-zeta quality
with 14 atomic orbitals per carbon atom was used (corre-
sponding to a total of 84000 AOs for the largest system)
and the global hybrid B3LYP functional adopted. Be-
cause of the particularly rich symmetry of this family of
fullerenes (120 symmetry operators), a single-point SCF
calculation for this system could be run on a single pro-
cessor with 2 GB of memory in about 24 hours. The
shape of giant carbon fullerenes was shown to present
hybrid features, being closer to a sphere for small val-
ues of n and closer to a polyhedron for larger values
of n. At small n, hexagonal rings at face centers are
strained with respect to the graphene reference while as
n increases, they recover a planar, graphene-like, config-
uration. Figure 4 (h) shows a graphical representation
of the atomic structure of the giant (10,10) icosahedral
carbon fullerene, where the color scale measures the local
strain in the bond lengths. The electronic energy gap Eg

is predicted to become zero for n ≥ 34.21

In a recent study, several features (structural, en-
ergetic, electronic, vibrational spectroscopic) of non-
periodic 0D clusters of defective diamond have been in-
vestigated at the hybrid B3LYP level as a function of
their increasing size (containing up to 1293 atoms). A

graphical representation of the atomic structure of the
largest cluster is given in Figure 4 (c). Two different
defects were put in the center of the clusters: a vacancy
and the 〈100〉 split self-interstitial, whose structural, elec-
tronic and vibrational features were recently investigated
with periodic calculations.26,27 The SCF energy calcu-
lation for the largest cluster took 1.7 hours when run
in parallel over 256 processors. The convergence of the
computed properties of clusters of increasing size to the
predictions of periodic calculations based on the super-
cell approach was discussed. While structural and ener-
getic features of the defects are found to be rather local
and show a fast convergence with respect to the size of
the model, other properties, such as the electronic band
gap and the spectroscopic Raman fingerprint of such a
covalently-bonded system, are much more collective in
nature and do show a very slow convergence to the bulk
values.28

As an example of a 1D periodic system, we refer to the
recent investigation of structural and energetic properties
of single-walled chrysotile, Mg3Si2O5(OH)4, nanotubes
of increasing size, containing up to 5004 atoms per unit
cell and corresponding to a tube radius up to 205 Å. A
graphical representation of the atomic structure of such
a nanotube, as obtained by rolling up a layered mineral,
is given in Figure 4 (g). Hybrid B3LYP calculations were
performed to study their structural and energetic proper-
ties. The stability with respect to the flat slab of lizardite
of the rolled structures was investigated as a function of
n. Two nanotube families, (n,−n) and (n,n), were con-
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sidered with different chirality. The appearance of clear
minima in the energy profile as a function of the tube
radius at about 89 Å was observed for both families.29

A cutting-edge study has recently been performed, by
exploiting the capabilities of MPPcrystal, of struc-
tural and energetic properties of the crystalline form of
a “small” structural protein: crambin, which is a thionin
hydrophobic protein with 46 aminoacids with a distinct
secondary structure characterized by both α-helices and
β-sheets. The molecular structure of the crambin protein
(642 atoms) is graphically given in Figure 4 (a). The unit
cell of its crystalline form hosts two protein molecules. A
single-point SCF plus gradient calculation on this sys-
tem takes about 36 minutes if run in parallel over 240
processors, about 21 minutes over 480 processors, about
10 minutes over 1440 processors. Two models of further
structural complexity were considered by including an
increasing number of explicit solvating water molecules,
up to 172, which brought the system to contain up to
about 1800 atoms and 16482 AOs per cell. A graphi-
cal representation of this system is given in Figure 4 (d).
Use of the B3LYP global hybrid functional was made in
combination with a semi-empirical correction for disper-
sive interactions. The structure was fully-relaxed at the
quantum-mechanical level and found to agree to a large
extent to that experimentally determined. The crystal
formation, protein-water, and protein-protein interaction
energies could also be computed.30

When the thermodynamic properties a material have
to be accurately determined, phonon dispersion must
be computed, which requires the use of fairly large
supercells if a “direct-space” approach is adopted, as
done in the Crystal program. In a recent inves-
tigation, fully-converged thermodynamic properties of
two end-members of the silicate garnet family of rock-
forming minerals (Pyrope Mg3Al2Si3O12 and Grossu-
lar Ca3Al2Si3O12) have been computed from harmonic
phonon dispersion.31 The hybrid B3LYP functional has
been used. The primitive cell of these cubic systems
contains 80 atoms; supercells Xn of increasing size have
been built and vibration frequencies computed for each of
them. The largest system, X27, corresponds to a 3×3×3
super-cell containing 2160 atoms (see Figure 4 (e) for a
graphical representation of its structure) and sampling
the phonon dispersion over 27 k-points within the Bril-
louin zone in reciprocal space. DFT methods are in-
trinsically size-consistent. However, accuracy of the re-
sults of a complex numerical procedure strongly depends
on the implementation robustness and the choice of the
computational parameters. In order to check the size-
consistency of the implemented algorithms in the Crys-

tal code, two properties that are invariant with respect
to the unit cell size (provided that a consistently scaled
grid is used for reciprocal space sampling) were consid-
ered: the total energy per formula unit and the full set
of wave-numbers associated with the normal vibration
modes at the Γ point. They were computed for six dif-
ferent supercells, namely X1, X2, X4, X8, X16 and X27.

TABLE II: Consistency of the total energy and vibration
wave-numbers of Pyrope in supercells of increasing number
of atoms (N) with reference to X27. ∆E is the total energy
difference per formula unit (in micro-hartree); ∆νMax and
RMS (in cm−1) are the maximum difference and the Root
Mean Square of the full set of wave-numbers obtained in Γ.
The various supercells belong to different lattice types: prim-
itive (P), body-centered (I) and face-centered (F). s denotes
the shrinking factor defining the Pack-Monkhorst net for each
cell.

SC Lattice N s ∆E ∆νMax RMS(ν)

X1 I 80 3 1.22 0.357 0.050

X2 P 160 3 1.64 0.066 0.016

X4 F 320 2 2.15 0.032 0.009

X8 I 640 2 0.99 0.025 0.007

X16 P 1280 1 0.74 0.012 0.001

X27 I 2160 1 - - -

Results are reported in Table II. The fifth column in
the table reports the total energy difference per formula
unit (∆E, in µHa) between X27 and the smaller cells. In
spite of the fairly large size of the cells, the total energy
per formula unit can be computed with extreme accu-
racy in all cases, fluctuations being in the order of the
µHa. It must be remarked that the total energy is not
only almost size-invariant, it is also shape-invariant as the
various supercells along the series span different kinds of
cubic lattices: body-centered (I), primitive (P) and face-
centered (F). Similar considerations hold true also for the
full set of wave-numbers at the Γ point. The two columns
on the right of Table II give the maximum differences in
the computed wave-numbers observed along the series
in the range between X1 and X27 and their root mean
square. All such indices correspond to just a fraction of
1 cm−1: a tiny uncertainty. Let us stress that the doc-
umentation of evidence of the numerical size-consistency
for implemented quantum-mechanical methodologies is
seldom reported and yet is crucial to any reliable large-
scale simulation.
The capabilities of MPPcrystal have also been ex-

ploited to shed some light on the atomistic details of the
interaction between ibuprofen (one of the most common
non-steroidal anti-inflammatory drugs) and a realistic
model of MCM-41 (one of the most studied mesoporous
silica materials for drug delivery). A structural model of
about 800 atoms/cell was designed, which is graphically
reported in Figure 4 (b). Quantum-mechanical calcula-
tions (at the B3LYP-D level of theory) were performed
to fully-relax the structure and to simulate the infrared
spectrum of the system.32

Structural, energetic and host/guest features of a gi-
ant metal-organic framework, MIL-100, containing 2812
atoms per unit cell (corresponding to 50256 AOs per cell)
were also investigated. A graphical representation of the
structure of this system is given in Figure 4 (f). In par-
ticular, the interaction energy for CO2 adsorption at dif-
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ferent sites of the cavities was computed.

IV. CONCLUSIONS AND PERSPECTIVES

The performance of the latest version of Crystal, an
ab initio DFT code for condensed mater systems, has
been documented with particular emphasis on the study
of large systems containing hundreds or thousands of
atoms per cell. In particular: i) strong scaling profiles
have been reported up to 32768 cores; ii) memory require-
ments have been quantified, which show that calculations
on systems containing several thousands atoms (up to
14000 atoms/cell) can be run with less than 2 GB/core
in parallel over just a few thousand cores (1024, 2048 or
4096 CPUs) on HPC machines; iii) the system size scal-
ing has been reported, where the contribution from the
two-electron integrals (including integral selection) has
been documented to be linear; iv) the high numerical
size-consistency of the implemented algorithms has been

quantified; v) recent applications of the various parallel
strategies of the program have been reviewed.

In order to further improve the performance and ca-
pabilities of the massively-parallel version of Crystal,
work is currently in progress in different respects: i)
the memory occupancy is being further reduced by the
use of shared memory to store a number of “write once,
read many” arrays, which are currently replicated. This
is implemented by use of the facilities provided within
the MPI-3 standard, and will allow storing of just one
copy of each array per node, rather than many identical
copies as at present; ii) the coupled-perturbed-Hartree-
Fock/Kohn-Sham procedure is being parallelized accord-
ing to a distributed-data strategy, which would make it
possible to study many properties of large systems (lin-
ear and non-linear optical properties, Raman intensities,
second-harmonic generation, Pockels effect, and others);
iii) a massively-parallel version is being finalized of the
module that computes the electronic band structure and
the density-of-states.
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Kirtman, B. CRYSTAL14: A Program for the Ab initio
Investigation of Crystalline Solids. Int. J. Quantum Chem.

2014, 114, 1287–1317.
17 Casassa, S.; Erba, A.; Baima, J.; Orlando, R. Electron

Density Analysis of Large (Molecular and Periodic) Sys-



10

tems: A Parallel Implementation. J. Comput. Chem. 2015,
36, 1940–1946.

18 Dovesi, R. On the Role of Symmetry in the Ab Ini-
tio Hartree-Fock Linear-Combination-of-Atomic-Orbitals
Treatment of Periodic Systems. Int. J. Quantum Chem.

1986, 29, 1755–1774.
19 Zicovich-Wilson, C.; Dovesi, R. On the Use of Symmetry-

Adapted Crystalline Orbitals in SCF-LCAO Periodic Cal-
culations. I. The Construction of the Symmetrized Or-
bitals. Int. J. Quantum Chem. 1998, 67, 299–309.

20 Zicovich-Wilson, C. M.; Noël, Y.; Ferrari, A. M.; Or-
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25 VandeVondele, J.; Borŝtnik, U.; Hutter, J. Linear scaling

self-consistent field calculations with millions of atoms in
the condensed phase. J. Chem. Theor. Comput. 2012, 8,

3565–3573.
26 Baima, J.; Zelferino, A.; Olivero, P.; Erba, A.; Dovesi, R.

Raman Spectroscopic Features of the Neutral Vacancy in
Diamond from Ab Initio Quantum-mechanical Calcula-
tions. Phys. Chem. Chem. Phys. 2016, 18, 1961–1968.

27 Salustro, S.; Erba, A.; Zicovich-Wilson, C.; Nöel, Y.; Mas-
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