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In this perspectives paper, we identify major challenges for space crop production: altered
convection in the microgravity environment, scheduling and logistics, crew time and the
need for advanced automation, robotics, modeling, and machine learning. We provide an
overview of the existing space crop production gaps identified by the Kennedy Space
Center (KSC) space crop production team and discuss efforts in current development in
NASA projects to address these gaps. We note that this list may not be exhaustive but
aims to present the baseline needs for space crop production implementation and a
subset of current solutions to the greater scientific community in order to foster further
ingenuity.
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1 INTRODUCTION

As humanity ventures into the Solar System and settles on other planetary bodies, movement
towards independence from Earth to produce consumables such as food, oxygen, and water will be
crucial. In-situ food production will depend on biological organisms such as plants and to a lesser
extent, unicellular organisms. Large-scale crop growth systems included in bioregenerative life-
support systems (BLSS) will allow for resource recycling and minimize resupplying from Earth.
Several projects have aimed to identify the requirements for Lunar and Martian greenhouses, by
assessing their feasibility, and developing concepts, theoretical designs, or prototypes at different
scales and maturity levels (Wheeler and Martin-Brennan 2000; Stutte et al., 2009; Boscheri et al.,
2016; Furfaro et al., 2016; Zeidler et al., 2017). KSC has a long history in controlled environment crop
research. This began with the Biomass Production Chamber (BPC), extends to on-orbit platforms
such as Veggie and the Advanced Plant Habitat (APH) and will continue with Ohalo III (a crop
production chamber currently in development), with each platform deliberately selected and
designed to lead to future crop production units destined for the Moon or Mars (Figure 1).
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FIGURE1 | Examples of KSC’s prior, current and future space crop production platforms selected and designed to lead to crop production units destined for the
Moon or Mars.
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Larger-scale platforms will bring new engineering challenges and
needs. A set of logistical and physical obstacles have been
identified as informed by the lessons learned from KSC’s space
crop production efforts on the International Space Station (ISS)
using small scale platforms.

2 SPACE CROP PRODUCTION GAPS AND
NEEDS

Space crop production efforts utilize the lessons learned from
growing plants on the ground and in orbit. This knowledge, in
combination with the expertise across NASA centers, academia,
and industry serves to provide a framework for crop production
systems for deep space travel (Johnson et al., 2021). Prior work
conducted in plant chambers aboard the Shuttle and ISS has
helped identify knowledge gaps and technology needs for space
crop production (Supplementary Table S1). Throughout the
remainder of this perspectives paper, we present a sampling of the
current technologies being explored at NASA centers to address
specific gaps, and we discuss their associated limitations and
challenges.

2.1Water and Nutrient Delivery: Challenges,
Needs, and Current Research
Plant testing on the Shuttle and ISS revealed challenges with water
and nutrient delivery. The lack (or reduction) of buoyancy-driven
convection and the domination of surface-tension forces in
reduced gravity leads to thick boundary layers of water
(respectively air) forming around plant roots (respectively
leaves) (Kitaya et al., 2003; Jones et al., 2012). Without
appropriate water and nutrient delivery systems, roots suffer
from hypoxia. Although substrate-based watering systems
using capillary forces to guide water to the roots without
suffocating them, are currently used on the ISS (e.g. Veggie
and Advanced Plant Habitat (APH)) (Zabel et al., 2016),
substrate-free or reduced-substrate water and nutrient delivery
systems are being considered for future missions to reduce up-
mass and waste (Morrow et al., 2017). We present recent work
investigating spaceflight testing of a hydroponics system and an
Earth-based analog demonstration of aeroponics.

2.1.1 Substrate-Less Growth Systems
Space crop production efforts to date have focused on substrate-
based approaches mainly using arcillite for plant growth, for
proof of concept demonstration of crop growth (Massa et al.,
2018). The approach is similar to terrestrial methods, yet as
discussed above, watering proves a challenge in the microgravity.
Among water solutions for substrate-based growth methods is a
passive watering system named Passive Orbital Nutrient Delivery
System (PONDS) where plants will draw from a free-standing
reservoir of water (Levine et al., 2021). Recently, NASA has tested
on-orbit a substrate-less hydroponics approach known as Plant
Water Management (PWM). The PWM uses capillary geometry
to contain poorly wetting aqueous solutions (e.g., sugary or
nutrient-rich water), and provide sufficient aeration and

hydration for low-g hydroponics (Mungin et al., 2019). Initial
low-g data analysis showed that this could be a viable method,
and further testing will include the use of space crops rather than
the current simulated plants.

Furthermore, KSC’s ongoing collaborative work with the
German Aerospace Center (DLR) Institute of Space Systems in
the analog extreme environmental setting of the EDEN ISS
greenhouse facility at the Neumayer Station III site in
Antarctica, has provided precedence for using an aeroponics
approach (Zabel et al., 2017). Aeroponic nutrient delivery and
a modified ebb/flow technique for plant growth systems in
microgravity will also be evaluated using the eXposed Root
On-Orbit Test System (XROOTS) (Morrow et al., 2017). In
addition, the Porous Tube Nutrient Delivery System (PTNDS),
which utilizes suction to hold plants seeded onto a porous
ceramic water delivery tube, is in current development with
additional watring approaches under development by
university and industry researchers (Monje et al., 2019).

2.1.2 Fertilizer/Nutrient Supply: Plasma Activation of
Water
In the realm of nutrient delivery, a recent and interesting
development in plasma agriculture (use of plasma, the fourth
state of matter, to generate reactive species that interact
chemically) is the plasma activation of water (PAW). For
PAW, the introduction of plasma to water is able to change its
properties (Foster et al., 2018). Plasma research is underway at
KSC to explore the use of low temperature plasma to treat water,
serve as a microbial sanitization method for hardware, and to
explore plasma introduction of NOx groups and changes in pH
for fertilizer-like applications. There is yet to be a complete
understanding of plasma water chemistry, with prior and
ongoing research at UC-Berkeley (Graves 2012) and recent
modeling efforts at the University of Michigan (Kruszelnicki
et al., 2019).

2.2 Crop Cultivation: Challenges, Needs,
and Current Research at KSC
Volume is a limited resource in space, and future crop production
systems will need to use available growth space effectively. In
microgravity, plants can grow in all dimensions, thus making use
of the entire available volume. Trade-off studies between
monocrop and multicrop cultivation will help to determine if
growth units will benefit from one or multiple crop species
(Boscheri et al., 2016; Zeidler et al., 2017). To use volume
efficiently, crop scheduling is also key. Depending on the
growth cycles of individual species, crop planting could be
staggered to meet dietary needs of the crew (Zeidler et al., 2017).

Together, NASA and the United States Department of
Agriculture (USDA) are investigating the use of microgreens,
plants that are small in size, nutrient-dense, and quick to grow
with little crew time. Ready-to-eat plants like microgreens are
easy to maintain and the rich nutrient and phytochemical
composition of microgreens can help mitigate spaceflight-
induced health risks (Anderson et al., 2017; Cooper et al.,
2017). Microgreens have a high-volume optimization potential,
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and efficiently use light, fertilizer, and water, all of which are
important selection criteria for plants grown in space (Romeyn
et al., 2019). These crops are harvested one to 3 weeks after
planting, when the cotyledons are fully expanded, and the first
true leaves have emerged (Xiao et al., 2012; Xiao et al., 2016). The
short growth cycle of microgreens adds flexibility to crop systems,
especially if disruptions occur. Microgreen production would
require more seeds than full size crop production, but seeds
are small and light, and the mass of seeds is largely offset by the
reduced mass of fertilizer and their small volume requirements.
An upcoming project at KSC will work to quantify this trade-off.

2.3 Environmental Monitoring Platform:
Stress Detection and Food Safety
Technologies
Studying plant growth in simulated and actual space flight
environments, will enable the development of plant growth
mechanistic and knowledge models. Such models can account
for the combined physical, biochemical, and morphological
phenomena involved; a necessary tool to accurately control
and predict plant growth in life-support systems (Hézard
et al., 2010; Poulet et al., 2020). In addition, we aim to achieve
an advanced level of autonomy by implementing an integrated
machine learning approach to monitor and coordinate space crop
production systems, including the plant compartment
atmospheric conditions, plant and microbiome genomic and
metabolomic trends, water system microbiome and chemistry,
and biomass recycling. Crew time for crop cultivation in future
missions will be limited, as the primary activity of astronauts will
be to accomplish mission tasks (Russell et al., 2006). Future space
crop systems will need to be less crew time-intensive than current
systems (Poulet et al., 2021; Zeidler et al., 2021) and utilize
automation (e.g., watering or health monitoring). Small space
crop production chambers on ISS, such as Veggie and the APH,
can be used to validate and inform automation efforts, such as
disease detection by imaging.

2.3.1 Hyperspectral Imaging
Monitoring plant growth and health during the entire life cycle of
a crop is needed to ensure food safety of crops eaten by astronauts
during cis-lunar, lunar and Martian missions (Anderson et al.,
2017; Monje et al., 2019). Hyperspectral imaging can collect
relevant spectral data for developing suitable vegetation
indices, providing non-destructive and autonomous estimates
of plant health with minimal crew time (Gowen et al., 2007;
Araus and Cairns 2014; Huang et al., 2018; Zeidler et al., 2019).
Early identification of plant responses to nutrient deficiencies,
drought, flooding, or microbial/fungal infections, will provide the
crew with enough time to mitigate these problems (Kim et al.,
2001; Gowen et al., 2007). To this end, a prototype Plant Health
Monitoring (PHM) system was developed by the USDA
Environmental Microbial and Food Safety Laboratory (EMFSL,
Beltsville, MD) and is in operation at KSC (Monje et al., 2021).
The PHM is being used to develop a database of images from
plants exposed to abiotic (e.g. drought) or biotic (e.g. fungal
infection) stresses. This database will be used to develop suitable

vegetation indices for autonomous early stress detection and for
training future AI algorithms for plant health monitoring and to
ensure food safety. In the future, miniature imaging systems will
be deployed for monitoring plant health and microbial
composition remotely in spacecraft such as ISS, Gateway, and
Deep Space Transport.

2.3.2 Microbial Sequencing
Molecular methods have been essential for understanding plant-
associated microbiomes (Bulgarelli et al., 2012; Chaparro et al.,
2014; Knief 2014) and plant pathogens (Pecman et al., 2017; Díaz-
Cruz et al., 2019; Piombo et al., 2021). Monitoring the microbes
present in the spaceflight environment has been important since
Apollo, but with short mission durations, not practical to perform
during flight. For the ISS, requirements were generated to ensure
that microbial contamination was periodically assessed in the ISS
air, water, and on surfaces (Castro et al., 2004; Yamaguchi et al.,
2014). From the beginning of plant growth on ISS, plants and
plant growth hardware have been routinely sampled to
understand the plant microbiome interaction and pathogen
control in supplemental food production (Hummerick et al.,
2010, Hummerick et al., 2011, Hummerick et al., 2012; Massa
et al., 2017b; Khodadad et al., 2020). Veggie plant samples have
been evaluated by culture-based isolation and identification, as
well as microbiome analysis using Next Generation Sequencing
on the Illumina MiSeq platform upon return to Earth (Khodadad
et al., 2020). Such assessments of the microbiological food safety
of crops grown on orbit has led to the development of a hazard
analysis critical control point plan (HACCP) for space crop
cultivation (Hummerick et al., 2011; 2012). The goal for
spaceflight microbiology is to move beyond the need to
culture potentially harmful microorganisms and to this end,
culture-independent, swab-to-sequencer processes using the
Oxford Nanopore MinION are now conducted onboard the
ISS (Stahl-Rommel et al., 2021).

Future paths to assess plant-microbe interactions in the space
crop production environment can benefit from the development
of system level approaches where the power of automated sensing
through imaging, omics (genomics, transcriptomics) and
spectrometry (metabolomics, nutrients, volatiles) is realized.
This surveillance, in combination with correlative and
machine learning techniques, will allow for the detection of
stress indicators, plant and human pathogens, reduced
nutrient content, or the formation of health-hazardous
volatiles, respectively.

2.4 Microbiome Ecosystem-Related Needs
2.4.1 Microbial Control Solutions for Watering
Systems
Microbial biofilms have been a cause for concern in ISS
biodeterioration, and as such, represent a risk to safe long-
term human space exploration (Landry et al., 2020). Research
into the effects of spaceflight on microbes has unveiled changes in
virulence and biofilm formation under microgravity conditions
(Kim et al., 2013), further underlining the need to develop robust
biofilm management solutions (Landry et al., 2020). NASA
continues to explore treatment methods such as biocides,
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antimicrobial surfaces, nutrient filters, applied shockwaves,
thermal and UV treatments (Velez-Justiniano et al., 2020).
Biofilm management studies explore the use of other biological
agents (such as bacteriophages or plasmids) to balance the ISS
Water Processor Assembly (WPA) ecosystem (Sillankorva and
Azeredo 2014) and even consider plasma-based approaches. The
identification of the best solution for microbial control can be
tailored to the relevant platform, be this a space crop production
chamber, or the water processing system used for downstream
irrigation.

2.4.2 Plasma for Seed Sanitization
To avoid contamination by plant or human pathogens in space
crop production platforms, seed surface sanitization is carried out
before flight. Traditional methods of seed sanitization on the
ground include alcohol soaking and chemical gas fumigation
(Khamsen et al., 2016; Massa et al., 2017a), but these methods are
not effective for all seeds. Plasma treatment of seeds, surfaces, or
containers inoculated with fungi or bacteria have demonstrated
significant log reductions after exposure (Filatova et al., 2009;
Takemura et al., 2014; Puligundla et al., 2017a, Puligundla et al.,
2017b; Zahoranová et al., 2018). The effectiveness of seed or
surface sanitation may vary greatly based upon the plasma source
and plasma gaseous medium being employed. Preliminary work
is being conducted at KSC to test space crop production seed
sanitization using different plasma sources and their effects on the
associated seed microbiome.

3 DISCUSSION

3.1 Hyperspectral Imaging Current
Challenges and Prospects
Although hyperspectral imaging enables precision plant health
monitoring and early detection of diseases, it is currently limited
by several factors. Data collection and analysis is dependent on the
conditions in which measurements were performed, such as leaf
orientation, illumination, or even leaf texture (Mahlein, 2016; Zeidler
et al., 2019). Currently, spectral vegetation indices (SVI) are tied to
specific wavelengths and obtained with specific environmental
conditions and plant species, which means data to define SVI
need to be collected in a high-fidelity environment. It is hard to
apply SVIs to different conditions and plant types without risking
data misinterpretation (Lowe et al., 2017; Thomas et al., 2018). The
amount of data produced is large and therefore requires the
development of efficient data handling and analysis methods
(Mahlein, 2016; Thomas et al., 2018). For space applications, this
raises the issue of telemetry limitations, which translates into the
need for in situ processing. However, deep learning algorithms seem
to be a promising solution for hyperspectral data analysis and
interpretation (Thomas et al., 2018; Nagasubramanian et al.,
2019), provided that they can be trained on a big enough dataset
(Zeidler et al., 2019).

3.2 Substrate-Free vs. Substrate-Based
Alongside substrate-less systems presented in section 2.3.1,
substrate-based systems using lunar or Martian regolith are

being investigated (Wamelink et al., 2019; Eglin and
Guinan, 2020; Eichler et al., 2021; Fackrell et al., 2021).
Plant growth experiments have been conducted with
returned Moon material (Ferl and Paul, 2010) and
Wamelink et al. (2019) have successfully grown nine
different species in JSC-1A regolith simulant mixed with
organic material and further projects, such as the Mars
Gardens, have compared this regolith simulant approach to
hydroponic growth methods (Eglin and Guinan, 2020).
Among the concerns raised when cultivating plants in
regolith was the fact that it cannot be used as is; harmful
compounds (e.g., perchlorates) need to be removed from
Martian regolith and organic materials need to be added
(Eichler et al., 2021). Furthermore, geomicrobiological
methods have the potential to modify regolith to enable its
utilization for plant growth. In this scenario, microorganisms
are used to create soil from Lunar and Martian regolith
(Verseux et al., 2016). Previous studies on plant growth in
regolith simulants may have overlooked some important
chemical composition aspects. However, the recent
development of agriculturally relevant Martian regolith will
enable more accurate studies (Fackrell et al., 2021). For the
near term, hydroponic systems may prove a better option that
is more amenable to a BLSS infrastructure. Hydroponic
systems provide efficient absorption of nutrients as roots
are directly in contact with the nutrient solution (Eglin and
Guinan, 2020) and easy monitoring for subsequent control of
the root zone microbiome.

3.3 Plasma Technology Development and
Cost Reduction
Plasma applications in agriculture have largely focused on 1)
plasma activated water, 2) seed germination, growth, and
development, and 3) seed sanitization and biofilm sanitation.
Uunderstanding of the chemistry and uses of plasma
activated water is far from complete, but there are
potential benefits in terrestrial and off-Earth controlled
environment agriculture (Besten, 2019; Ranieri et al.,
2020). As resupply is costly, plasma based applications and
technologies provide an avenue of investigation worth
researching to reduce the reliance on conventional
methods of sanitation. The plasma source and gas
requirements can be small, potentially even using
breathable air. On Earth, use of plasma activated water is
not widespread due to the problem of scaling for industrial
use. Plasmas can be expensive outside of a laboratory setting
and conventional methods are cheaper and within regulatory
requirements. As advancements in electronics are rapidly
decreasing costs, and regulations become stricter on
particulate contaminants, plasma becomes a more
favorable option. Additionally, new research is providing
insight into plasma interactions with water and plasma-
water chemistry that allow for system optimization of
tasks. Although the application of plasma in various water
systems is in its infancy, it should be considered as an aid or
potential replacement to some current methodologies.
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4 CONCLUDING REMARKS

As NASA and its commercial partners are getting closer to
Gateway and robotic and crewed lunar surface missions, it is
imperative to plan for large-scale crop production systems that
will be deployed on the Moon andMars. These present numerous
challenges, and significant technology development and
knowledge gaps need to be resolved prior to successful
implementation. We have presented select considerations
currently under investigation at NASA centers that can be
integrated into large-scale crop production systems design to
address these gaps. While not exhaustive, these state-of-the-art
technologies include new methods for space crop production,
environmental monitoring, water processing, and microbial
containment approaches. Future crop production systems
must be resilient, but also evolvable, so that new advances can
be implemented as innovations occur. It will require
contributions from numerous disparate disciplines to feed
future exploration.
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