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Abstract

We present an algorithm for computing the correlation energy in the random phase

approximation (RPA) in a Gaussian basis requiring O(N3) operations and O(N2)

memory. The method is based on the resolution of the identity (RI) with the overlap

metric, a reformulation of RI-RPA in the Gaussian basis, imaginary time and imaginary

frequency integration techniques and the use of sparse linear algebra. Additional

memory reduction without extra computations can be achieved by an iterative scheme

which overcomes the memory bottleneck of canonical RPA implementations. We

report a massively parallel implementation which is the key for the application to large

systems. Finally, cubic-scaling RPA is applied to a thousand water molecules using a

correlation-consistent triple-zeta quality basis.
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1 Introduction

The random phase approximation (RPA) for computing electron correlation energies1,2 has

emerged as an accurate tool for predicting properties of isolated molecules3–11 and condensed

phase systems12–32. In its simplest form, the RPA total energy is the sum of the Hartree-Fock

(HF) energy EHF and the RPA correlation energy ERPA
c ,33

E = EHF[{ψn}] + ERPA
c [{ψn, εn}] . (1)

The RPA total energy is typically evaluated after a self-consistent field (SCF) procedure, i.e.,

the converged molecular orbitals ψn from the SCF and their corresponding eigenvalues εn

are employed to evaluate the HF energy and the RPA correlation energy. RPA combines a

number of attractive features, most importantly that long-range dispersion is included – in

contrast to semilocal density functionals.33–40

The drawback connected with RPA is the computational cost: For canonical implemen-

tations of RPA in a plane-waves basis41–43 or in a localized basis within the resolution of

the identity (RI)33,44–46, the computational cost of RPA scales as O(N4) with respect to

the system size N . Recently, low-scaling RPA algorithms have been explored: Moussa47

employed the connection of RPA to coupled-cluster theory for constructing an O(N3) scaling

RPA+SOSEX algorithm. In this case, the cubic scaling has been demonstrated employing

chains of hydrogen atoms. Kaltak et al.48 use a plane-wave basis, minimax grids in imaginary

frequency and imaginary time to arrive at a cubic-scaling algorithm. They applied their imple-

mentation for studying supercells of silicon49 containing up to 256 atoms. Linear-scaling RPA

algorithms have also been reported50–53 which either rely on localization techniques50, stochas-

tic sampling51,52 or sparsity of density matrices53. Large-scale applications of linear-scaling

RPA have only been reported so far in Ref. 51 and 52 using stochastic sampling.

In this work, we employ localized Gaussian basis functions. We combine the O(N4) RI-

RPA method by Eshuis et al.33 and the minimax grids in imaginary frequency and imaginary
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time from Kaltak et al.48 To achieve the cubic scaling algorithm, we rely on the sparsity

introduced by the RI approximation with the overlap metric54–56 combined with the back

transformation from occupied and virtual orbitals to Gaussian atomic orbitals53. Practically,

the sparsity is efficiently handled by the DBCSR (Distributed Block Compressed Sparse Row)

library57,58. Stochastic sampling, sparsity of density matrices and localization techniques are

not necessary for the O(N3) scaling behavior in our algorithm.

The manuscript is organized as follows: In Sec. 2, we review the resolution of the identity

with the overlap metric. As we explain in Sec. 3, cubic-scaling RPA is well-known in a

formulation in imaginary time and in real space. We use this formulation of cubic-scaling

RPA to construct a cubic-scaling algorithm using Gaussian basis functions (Sec. 4), while we

focus on the parallel implementation in Sec. 5. Benchmark calculations on the accuracy and

the scaling of the O(N3) RPA method are reported in Secs. 6 and 7.

2 Resolution-of-the-identity approximation (RI) using

the overlap metric

The following index notation has been adopted: i, j (a, b) refer to occupied (virtual)

molecular orbitals (MOs) ψ; µ, ν, λ, σ to primary Gaussian basis functions φ and P,Q to

auxiliary Gaussian RI basis functions ϕ. The number of primary Gaussian basis functions is

referenced as Nprim, the number of RI basis functions as NRI and the system size as abstract

symbol N , where Nprim and NRI are both proportional to N . The spin index has been

dropped for convenience.

Four-center electron repulsion integrals (4c-ERIs) are of central importance for computing

the RPA correlation energy. These integrals, in Mulliken notation, are defined as

(µν|λσ) :=

∫

Ω

dr

∫

R3

dr′φP
µ(r

′)φP
ν (r

′)φP
λ(r)φ

P
σ (r)v(r, r

′) (2)
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where v(r, r′)= 1/|r − r′| is the bare Coulomb interaction, Ω the simulation cell and the

superscript P indicates that the basis functions are periodically repeated for condensed phase

systems,

φP
µ(r) =

∑

i

φµ(r−Ri) , (3)

where Ri are the lattice vectors and φµ is a Gaussian basis function being localized on a

single atom. Within the RI approximation based on the overlap metric, the 4c-ERIs are

factorized to54

(µν|λσ)RI =
∑

PQRS

(µνP )S−1
PQVQRS

−1
RS(Sλσ) . (4)

Here, S denotes the overlap matrix in the RI basis,

SPQ =

∫

R3

dr ϕP
P (r)ϕQ(r) , (5)

and V the Coulomb matrix in the RI basis,

VPQ =

∫

Ω

dr

∫

R3

dr′ϕP
P (r)ϕ

P
Q(r

′)v(r, r′) . (6)

The three-center overlap integrals (µνP ) are given by

(µνP ) =

∫

R3

drφP
µ(r)φ

P
ν (r)ϕP (r) . (7)

We compute the two- and three-center overlap integrals from Eqs. (5) and (7) employing

the Obara-Saika recurrence scheme59. In the periodic case, neighboring cells have to be

considered for the Obara-Saika scheme as long as the overlap of Gaussians from the unit cell

and the replica are non-vanishing.

The Coulomb integrals VPQ are calculated by an integral scheme that has recently been
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developed in our group. This method is an analytical variant of the Gaussian and plane

waves (GPW) method44 for periodic ERIs over Gaussian-type functions. We choose a basis

of Hermite Gaussians60 Hl,a,A(r) = ∂lx+ly+lz/(∂Alx
x ∂A

ly
y ∂Alz

z ) exp (−a(r−A)2) and use the

reciprocal space representation of Eq. (6),

VHl,a,A,Hm,b,B
=

4π

V

∑

G 6=0

Ĥl,a,A(G)Ĥm,b,B(−G)

|G|2
. (8)

The Fourier transforms Ĥ(G) are conveniently given by Cartesian Gaussians. We expand

the reciprocal space Coulomb potential into Gaussians by the minimax approximation61

1

|G|2
≈

n∑

i=1

ωi exp(−αi|G|2) for |G| ∈ [Gmin, Gc] , (9)

where Gmin is the minimum of |G| 6=0 and Gc is the plane wave cutoff. For an orthorhombic

cell, the resulting lattice sum factorizes in the Cartesian directions such that it reduces to a

product of three one-dimensional sums. In a similar fashion as in Ewald summation62, the

reciprocal lattice sum can alternatively be carried out over direct lattice vectors R by Poisson

summation. This choice of summing over direct or reciprocal lattice vectors ensures rapid

convergence for arbitrary Gaussian exponents.

As in Ref. 44, we neglect the G=0 component of the summation in Eq. (8) which

is justified by the following argument: In RPA, only 4c-ERIs of the form (ia|jb) with

ψia(G=0)= 0 [ψia(r)=ψi(r)ψa(r)] are appearing. Since the RI basis is supposed to span

the space {ψia} of functions with vanishing G=0 component, the RI basis functions can be

chosen with vanishing G=0 component.

Since the Coulomb matrix V is positive definite, its Cholesky decomposition can be

computed as

VPQ =
∑

R

LPRL
T
RQ . (10)
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In this way, the RI factorization from Eq. (4) can be expressed in a compact form as

(µν|λσ)RI =
∑

P

Bµν
P Bλσ

P , (11)

where B is given by

Bµν
P =

∑

QR

(µνQ)S−1
QRLRP . (12)

We define the NRI×NRI matrix K,

K = S−1L , (13)

and Eq. (12) simplifies to

Bµν
P =

∑

Q

(µνQ)KQP . (14)

If required, we transform Bµν
P from pairs µν of Gaussian basis functions to occupied-virtual

pairs ia employing the MO coefficients Cµn:

Bia
P =

∑

µν

CµiCνaB
µν
P . (15)

3 Cubic-scaling RPA with real-space density response

The correlation energy in the random phase approximation can be computed as2,33,48,63

ERPA
c =

1

2π

∫ ∞

0

dω Tr [ln (1− χ(iω)v) + χ(iω)v] (16)
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where v(r, r′)= 1/|r− r′| is the bare Coulomb interaction and χ(r, r′, iω) the density response

in imaginary frequency:

χ(r, r′, iω) = 2
occ∑

i

virt∑

a

ψa(r
′)ψi(r

′)ψi(r)ψa(r)
εi − εa

ω2 + (εi − εa)
2 . (17)

The drawback of employing Eq. (17) to compute the density response function is the

O(N4) computational cost (N : system size) since the number of occupied and virtual orbitals

and the space coordinates r and r′ are each growing linearly with N . In contrast, the

computation of the density response in imaginary time,48,64

χ(r, r′, iτ) =
occ∑

i

ψi(r
′)ψi(r)e

−|(εi−εF)τ |

virt∑

a

ψa(r
′)ψa(r)e

−|(εa−εF)τ | , (18)

only requires O(N3) operations since the summation over occupied and virtual orbitals are

decoupled and can be executed separately. εF in Eq. (18) refers to the Fermi energy.

The density response is symmetric in time and frequency, χ(r, r′, iω)=χ(r, r′,−iω) and

χ(r, r′, iτ)=χ(r, r′,−iτ ). As a consequence, the Fourier transforms from imaginary frequency

to imaginary time and vice versa simplify to a cosine transformation48:

χ(r, r′, iω) = 2

∫ ∞

0

dτ χ(r, r′, iτ) cos(τω) , (19)

χ(r, r′, iτ) =
1

π

∫ ∞

0

dω χ(r, r′, iω) cos(τω) . (20)

Despite the simplicity of this formulation, the size of the real space coordinate r is of the

same order as the size of a plane-wave basis48 and thus can easily exceed millions of elements

even for a relatively small cell. One of the reasons of reformulating these equations in a

Gaussian basis is to reduce the size of the density response matrix without significant loss of

accuracy.

7



4 Cubic-scaling RPA in a Gaussian basis

4.1 Quartic-scaling RPA in a Gaussian basis

Eshuis et al.33 applied the RI [Eq. (11)] to Eq. (16) and obtained

ERPA
c =

1

2π

∫ ∞

0

dω Tr [ln(1+Q(ω))−Q(ω)] (21)

where Q(ω) is a matrix of size NRI×NRI and is given by

QPQ(ω) = 2
occ∑

i

virt∑

a

Bia
P

εa − εi
ω2 + (εa − εi)2

Bia
Q , (22)

where Bia
P is defined in Eq. (15). For a derivation of Eq. (21) from Eq. (16), we refer to the

supporting information. In the O(N3) implementation, we do not compute Q(ω) by means

of Eq. (22) due to the O(N4) computational cost. Instead, we compute Q(τ ) as presented in

the following and we obtain Q(ω) by the cosine transform adapted from Eq. (19):

QPQ(ω) = 2

∫ ∞

0

dτ QPQ(τ) cos(τω) . (23)

We obtain a representation for Q(τ) by comparing Eqs. (17), (18) and (22):

QPQ(τ) =
occ∑

i

virt∑

a

Bia
P e

−|(εi−εF)τ |e−|(εa−εF)τ |Bia
Q . (24)

The computation of Q(τ) according to Eq. (24) still scales as O(N4).
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4.2 Cubic-scaling reformulation of RPA in the Gaussian basis

To arrive at a O(N3) scaling algorithm, we transform Bia
P in Eq. (24) from occupied-virtual

pairs ia to pairs µν of primary basis functions:

Bia
P =

∑

µν

Bµν
P CµiCνa , (25)

where we used the MO coefficients Cµn being defined as ψn(r)=
∑

µCµnφµ(r). By inserting

Eq. (25) into Eq. (24), we separate the summation over occupied and virtual states which is

the key for the O(N3) implementation:

QPQ(τ) =
∑

µνλσ

Bµν
P Bλσ

Q

occ∑

i

CµiCλie
−|(εi−εF)τ |

virt∑

a

CνaCσae
−|(εa−εF)τ | . (26)

We introduce the pseudo-density matrices65–67 Docc
µλ (τ) and D

virt
νσ (τ) which are computed in

O(N3) operations as

Docc
µλ (τ) =

occ∑

i

CµiCλie
−|(εi−εF)τ | ,

Dvirt
νσ (τ) =

virt∑

a

CνaCσae
−|(εa−εF)τ | .

(27)

Inserting the definitions of Docc
µλ and Dvirt

νσ [Eq. (27)] and the definition of Bµν
P from Eq. (14)

into Eq. (26), we obtain

QPQ(τ) =
∑

R

KRP

∑

T

KTQ

∑

µσ

[
∑

λ

(λσR)Docc
µλ (τ)

][
∑

ν

(µνT )Dvirt
νσ (τ)

]
. (28)
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We introduce the three-index tensors Mocc
µσR(τ) and M

virt
µσT (τ):

Mocc
µσR(τ) =

∑

λ

(λσR)Docc
µλ (τ) ,

Mvirt
µσT (τ) =

∑

ν

(µνT )Dvirt
νσ (τ) .

(29)

Both tensors Mocc
µσR and Mvirt

µσT are computed from Eq. (29) in O(N2) operations and in

O(N) operations once the scaled density matrices from Eq. (27) are getting sparse67 for

non-metallic systems being very large in at least one dimension. The reason for the low-scaling

behavior O(N2)/O(N) is that the three-center overlap (µνT ) of localized basis functions µ, ν

and T is sparse in µ/ν, µ/T and ν/T .55,56 Inserting the definitions of Mocc
µσR and Mvirt

µσT in

Eq. (28) yields

QPQ(τ) =
∑

R

KRP

∑

T

KTQ

∑

µσ

Mocc
µσR(τ)M

virt
µσT (τ) . (30)

We introduce the NRI×NRI matrix P(τ) with elements

PRT (τ) =
∑

µσ

Mocc
µσR(τ)M

virt
µσT (τ) . (31)

According to the definition of Mocc
µσR and Mvirt

µσT in Eq. (29), Mocc
µσR is sparse in σ/R and Mvirt

µσT

is sparse in µ/T and we conclude that the computation of P(τ) in Eq. (31) only requires

O(N2) operations and, once the scaled density matrices from Eq. (27) are getting sparse,

only O(N) operations . By inserting Eq. (31) into Eq. (30), we finally obtain the working

expression

Q(τ) = KTP(τ)K . (32)
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The computational complexity of Eq. (32) is growing cubically, O(N3). Moreover, all previous

steps, Eq. (27), (29) and (31), are at most of O(N3) computational cost or in case sparse

matrix-matrix multiplication is employed [Eq. (29) and (31)], of O(N2) computational cost.

4.3 Minimax time and frequency grid

For the cosine transform of Q from τ to ω in Eq. (23) and for the subsequent frequency

integration to obtain the RPA correlation energy according to Eq. (21), we rely on a time

and a frequency grid: In a first step, we compute QPQ(τj) for a time grid {τj}
M
j=1 according

to Eq. (32), where M is the number of grid points which is independent of the system size.

Then, QPQ(ωk) is obtained for a frequency set {ωk}
M
k=1 by the cosine transform according to

Eq. (23):

QPQ(ωk) = 2
M∑

j=1

λkjQPQ(τj) cos(τjωk) , (33)

where λkj are the integration weights. The RPA correlation energy is computed by numerically

integrating Eq. (21):

ERPA
c =

1

2π

M∑

k=1

σk [ln[det(1+Q(ωk))]− Tr(Q(ωk))] , (34)

where the identity Tr[ln(A)] = ln[det(A)] has been used which holds for any positive-definite

matrix A.45 We follow the work of Kaltak et al.48 and employ minimax quadratures68,69 to

reduce the number of integration nodes M to 10 – 20. Practically, we employ the pretabulated

minimax parameters {ωk}, {σk} and {τj} from Ref. 45 which have been created for imaginary-

frequency RPA calculations and for Laplace scaled-opposite-spin second-order Møller-Plesset

perturbation theory. The integration weights λkj are computed by a least-square optimization

using singular value decomposition48.

The outline of the cubic-scaling RPA correlation energy algorithm is summarized in Fig. 1.
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Compute SPQ =
∫

drϕP(r)ϕQ(r) O(N1)

Compute VPQ =
∫

dr dr′ϕP(r)ϕQ(r′)|r − r′ |−1 O(N2)

Factorize VPQ by Cholesky decomposition: VPQ =
∑
R

LPRLT
RQ

O(N3)

Invert SPQ with use of Cholesky decomposition O(N3)

Obtain KPQ by matrix-matrix multiplication: KPQ =
∑
R

S −1
PR

LQR O(N3)

Compute (µνP)=
∫

dr φµ(r)φν(r)ϕP(r) O(N1)

Set up the minimax grids {ωk}
M
k=1

, {τj}
M
j=1

, {λk j}
M
k, j=1

and {σk}
M
k=1

Get input: MO coefficients Cµn and eigenvalues εn of MOs from SCF

Set QPQ(ωk)= 0 for all ωk =ω1, ω2, . . . , ωM

Do τj = τ1, τ2, . . . , τM

Docc
µλ

(τj)=
occ∑

i
CµiCλie

−|(εi−εF)τj | O(MN3)

Dvirt
νσ (τj)=

virt∑
a

CνaCσae−|(εa−εF)τj | O(MN3)

Mocc
µσR

(τj)=
∑
λ

(λσR)Docc
µλ

(τj) O(MN2)

Mvirt
µσT

(τj)=
∑
ν

(µνT )Dvirt
νσ (τj) O(MN2)

PRT (τj)=
∑
µσ

Mocc
µσR

(τj)Mvirt
µσT

(τj) O(MN2)

QPQ(τj)=
∑
R

KRP

∑
T

KT QPRT (τj) O(MN3)

Do ωk =ω1, ω2, . . . , ωM

Fourier transform from τ to ω:

QPQ(ωk)=QPQ(ωk) + 2λk jQPQ(τj) cos(τjωk) O(M2N2)

End do ωk

End do τj

Set ERPA
c = 0

Do ωk =ω1, ω2, . . . , ωM

Update ERPA
c = ERPA

c + σk [ln[det(1 +Q(ωk))] − Tr(Q(ωk))] O(MN3)

End do ωk

Figure 1: Pseudocode and associated computational cost (N : system size, M : number of
time and frequency points, respectively) of the algorithm to compute the RPA correlation
energy in O(N3) operations. µ, ν, λ, σ refer to primary Gaussian basis functions, P,Q,R, T
to auxiliary Gaussian basis functions, a to virtual molecular orbitals (MOs), i to occupied
and n to general ones.

4.4 Comparison to similar work

Overall, the cubic-scaling RPA algorithm presented here is based on similar ideas as the

effective-linear-scaling RPA algorithm reported by Schurkus and Ochsenfeld53: As in our

algorithm, the basis is transformed from occupied and virtual MOs to Gaussian basis functions.

Moreover, RI with the overlap metric and an imaginary frequency integration is used. In Ref.

53, a contracted double-Laplace expansion is employed, where we use the Fourier transform

from imaginary time to imaginary frequency. In contrast to the double-Laplace expansion,

the Fourier transform does not suffer from a divergence for ω→0 and ω→∞. Moreover,

we use minimax grids with a typical number of 15 grid points needed for convergence while

in Ref. 53, a Clenshaw-Curtis grid is used with typically 60 grid points. The linear scaling

behaviour reported in Ref. 53 relies on the sparsity of the scaled density matrices Docc and

Dvirt. We only exploit this sparsity in Eq. (29), but not in Eq. (27) since the computation

time spent for Eq. (27) is far below the time spent for Eq. (32). The reason is that the RI

basis is typically three times larger than the primary basis and the matrix K defined in
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Eq. (13) is a dense matrix and therefore, Eq. (32) scales as N3
RI ≈ 27N3

prim where Nprim is the

number of primary basis functions and Eq. (27) scales as N3
prim.

5 Parallel implementation

Compute S−1 and Cholesky decomposition L of V (ScaLAPACK)

Compute and store K= S−1L (ScaLAPACK)

Assign each process a group p

Create ranges [P
p

start, P
p

end
] for RI basis functions

Allocate single DBCSR matrix Sp in the p group (elements S
p

µ(σP)
, row

index µ, combined column index σP for P∈ [P
p

start, P
p

end
] and all µ, σ;

blocks as overlap matrix S, column block sizes scaled by P
p

end
−P

p
start + 1)

Compute and store S
p

µ(σP)
= (µσP) for all µ, σ and P∈ [P

p
start, P

p

end
]

Allocate Mocc,p and Mvirt,p as copy of Sp

Assign each process a second group q

Create ranges [µ
q
start, µ

q

end
] and [σ

q
start, σ

q

end
] for primary basis functions

Allocate DBCSR matrices Mocc/virt,q in the q group (elements M
occ/virt,q

(µσ)Q
,

combined row index (µσ), column index Q for all Q and µ∈ [µ
q
start, µ

q

end
],

σ∈ [σ
q

start, σ
q

end
]; single block for (µσ) index, atom blocks for Q)

Do τj = τ1, τ2, . . . , τM

C̃occ
µi

(τj)=Cµie
−|(εi−εF)τj |/2, i: occupied orbital

C̃virt
µa (τj)=Cµae−|(εa−εF)τj |/2, a: virtual orbital

Docc(τj)= [C̃occ)(τj)]
TC̃occ(τj) (ScaLAPACK)

Dvirt(τj)= [C̃virt)(τj)]
TC̃virt(τj) (ScaLAPACK)

Replicate Docc(τj) and Dvirt(τj) to every group p and store them in a

DBCSR matrix (atom blocks for rows and columns, respectively)

Mocc,p(τj)=Docc(τj)S
p (DBCSR, locally in p group)

Mvirt,p(τj)=Dvirt(τj)S
p (DBCSR, locally in p group)

Reorder data from p groups to q groups: Mocc/virt,p(τj) to Mocc/virt,q(τj)

Pq(τj)= [Mocc,q(τj)]
TMvirt,q(τj) (DBCSR, locally in q group)

Sum up Pq(τj) from every q group, fill it into P(τj)=
∑

q Pq(τj)

and spread P(τj) to all processes

Q(τj)=KTP(τj)K (ScaLAPACK)

Do ωk =ω1, ω2, . . . , ωM

Fourier τ→ ω: Q(ωk)=Q(ωk) + 2λk jQ(τj) cos(τjωk)

End do ωk

End do τj

Set EPPA
c = 0

Do ωk =ω1, ω2, . . . , ωM

EPPA
c = EPPA

c + σk[ln[det(1 +Q(ωk))] − Tr(Q(ωk))] (ScaLAPACK)

End do ωk

Figure 2: Parallel implementation of the algorithm to compute the RPA correlation energy in
O (N3) operations. Some matrices and their indices have already been defined in Fig. 1. As
dense linear algebra library, we employ ScaLAPACK. All calls to ScaLAPACK are executed
employing all processes.

The pseudocode for the parallel implementation of the cubic-scaling RPA algorithm is

presented in Fig. 2. In the following section, we discuss this figure in detail.

5.1 General strategy for the parallel implementation

For the parallelization, we are guided by three strategies: First, the three-index tensors

(µνP ), Mocc
µσR(τ) and M

virt
µσT (τ) (as defined Fig. 1) are not replicated due to the huge amount

of memory needed for these tensors. Second, all two-index matrices as Docc
µλ (τ), D

virt
νσ (τ) and
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PRT (τ ) (as defined Fig. 1) are replicated into small subgroups. Third, all sparse matrix-matrix

multiplications are carried out in these small subgroups in order to reduce the communication

needed for the sparse matrix-matrix multiplications.

5.2 Parallel matrix-tensor operations

We define two different MPI subgroups p and q. Every p group hosts a range [P p
start, P

p
end]

of RI basis functions. After computing the scaled density matrices Docc
µλ (τ) and Dvirt

νσ (τ)

employing all processes and the dense linear algebra library ScaLAPACK, Docc
µλ (τ) and

Dvirt
νσ (τ) are replicated to every p group. Then, the multiplication of Docc

µλ (τ) and D
virt
νσ (τ)

with the three-center overlap integrals (µνP ) [Eq. (29)] is carried out by DBCSR57 locally in

the p group for P ∈ [P p
start, P

p
end] and µ, σ∈ [1, Nprim]:

M
occ/virt,p
µσP (τ) =

Nprim∑

λ=1

(λσP )D
occ/virt
µλ (τ) , (35)

where Nprim is the number of primary basis functions.

After completing the computation from Eq. (35), we redistribute Mocc
µσR(τ) and M

virt
µσT (τ)

from p groups to q groups: The subgroup q is defined by cutting the index pair µσ of Mocc
µσR(τ )

and Mvirt
µσT (τ) into ranges [µq

start, µ
q
end] and [σq

start, σ
q
end] covering all primary basis functions:

Nq⋃

q=1

[µq
start, µ

q
end]× [σq

start, σ
q
end] = [1, Nprim]× [1, Nprim] , (36)

whereNq is the number of q groups. A q group hostsMocc
µσR(τ ) andM

virt
µσT (τ ) for µ∈ [µq

start, µ
q
end],

σ∈ [σq
start, σ

q
end] and all RI basis functions R, T . Each of Mocc

µσR(τ) and M
virt
µσT (τ) is stored in

the q group in a single DBCSR matrix with a single row block consisting of a combined

(µσ) index and atom blocks for the RI index R and T , respectively. The ranges [µq
start, µ

q
end]

and [σq
start, σ

q
end] are chosen such that all µ∈ [µq

start, µ
q
end] and all σ∈ [σq

start, σ
q
end] belong to

neighboring atoms, respectively. Then, Mocc
µσR(τ) and M

virt
µσT (τ) in the q group are sparse in

14



the combined row index (µσ) and the column index R/T . The DBCSR matrix PRT (τ) is

replicated in the q group and the operation from Eq. (31) is carried out locally in the q group

for the given ranges [µq
start, µ

q
end] and [σq

start, σ
q
end] and all R, T :

P q
RT (τ) =

µ
q

end∑

µ=µ
q
start

σ
q

end∑

σ=σ
q
start

Mocc,q
µσR (τ)Mvirt,q

µσT (τ) . (37)

Then, all q-local DBCSR matrices P q
RT (τ) are summed up to obtain the full PRT (τ) matrix:

PRT (τ) =

Nq∑

q=1

P q
RT (τ) . (38)

The p and q groups are chosen such that they are as small as possible to minimize the

communication for the sparse matrix-matrix multiplication. On the other hand, p and q

groups have to be as large as necessary not to run out of memory since the replicated matrices

Docc
µλ (τ), D

virt
νσ (τ) and PRT (τ) can require a large amount of memory.

The matrix operation Q(τ)=KTP(τ)K is carried out using full matrices, all processes

and ScaLAPACK. We compute the determinant and the trace of Q(ω) to arrive at the RPA

correlation energy as in Ref. 45, see Fig. 2.

5.3 Memory reduction by an iterative scheme

The memory needed for Mocc
µσR(τ ) and M

virt
µσT (τ ) can be reduced by an additional loop over

µσ blocks (not sketched in Fig. 2): We break the ranges [µq
start, µ

q
end] and [σq

start, σ
q
end] of every

q group again in Ncut batches [µ
q,s
start, µ

q,s
end] and [σq,s

start, σ
q,s
end] with

Ncut⋃

s=1

[µq,s
start, µ

q,s
end]× [σq,s

start, σ
q,s
end] = [µq

start, µ
q
end]× [σq

start, σ
q
end] . (39)

Then,Mocc
µσR(τ ) andM

virt
µσT (τ ) are computed from Eq. (35) for µ∈ [µq,s

start, µ
q,s
end] and σ∈ [σq,s

start, σ
q,s
end]

which reduces the memory of Mocc
µσR(τ ) and M

virt
µσT (τ ) by a factor Ncut. Subsequently, M

occ
µσR(τ )
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and Mvirt
µσT (τ) are contracted [Eqs. (31) and (37)],

P q,s
RT (τ) =

µ
q,s

end∑

µ=µ
q,s
start

σ
q,s

end∑

σ=σ
q,s
start

Mocc,q,s
µσR (τ)Mvirt,q,s

µσT (τ) (40)

and the memory of Mocc,q,s
µσR (τ) and Mvirt,q,s

µσT (τ) is freed. We obtain P s
RT (τ) for a batch s by

summing up from the q groups,

P s
RT (τ) =

Nq∑

q=1

P q,s
RT (τ) , (41)

and PRT (τ) is computed by the loop over the s batches:

PRT (τ) =
Ncut∑

s=1

P s
RT (τ) . (42)

As already mentioned, we obtain a memory reduction for Mocc
µσR(τ) and M

virt
µσT (τ) by a factor

of Ncut by this procedure where no additional computations are necessary.

6 Validation

In this section, we compare the RPA correlation energy computed by the O(N3) algorithm

to the RPA correlation energy computed by the canonical O(N4) algorithm33,44,45. As starting

point for the RPA correlation energy calculation, we employ DFT with the PBE functional70.

6.1 Quartic-scaling RPA with the overlap metric vs. cubic-scaling

RPA with the overlap metric

We begin with a comparison of cubic-scaling RPA and quartic-scaling RPA employing the

overlap metric54 in both cases, see Table 1. The only difference between both algorithms is

the Fourier transform from τ to ω [Eqs. (23) and (33)] which is needed for the cubic-scaling
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Table 1: Convergence of the RPA correlation energy of 32 water molecules in a periodic box
with the number of grid points M . We use the same primary cc-TZVP basis and RI-cc-TZVP
Ri-basis for two different RPA algorithms: The canonical RI-RPA algorithm by Eshuis et
al.33 with the overlap metric and the cubic-scaling RPA algorithm proposed in this work.

Number of grid points M RPA correlation energy in Hartree computed with

O(N4) RPA (overl. metric) O(N3) RPA (overl. metric)

6 – 13.026873930 – 13.028861136

8 – 13.028957756 – 13.028909098

10 – 13.028897327 – 13.028898786

12 – 13.028899938 – 13.028899877

14 – 13.028899831 – 13.028899833

16 – 13.028899834 – 13.028899834

18 – 13.028899834 – 13.028899834

20 – 13.028899834 – 13.028899834

RPA algorithm and absent in the quartic-scaling RPA algorithm. The minimax grid for the

frequency integration [Eqs. (21) and (34), respectively] is identical for both cases. As it can

be seen from Table 1, both algorithms converge quickly with the number of minimax points:

An accuracy of ten digits is already reached for fourteen minimax points for both algorithms.

This observation is in agreement with Ref. 48. We conclude that the accuracy of the RPA

correlation energy is not affected by the additional Fourier transform from time to frequency.

6.2 Quartic-scaling RPA with the Coulomb metric vs. cubic-scaling

RPA with the overlap metric

As a second test, we compare the canonical RPA with the Coulomb metric to the cubic-

scaling RPA with the overlap metric, see Table 2. These algorithms share the same primary

and RI basis. As shown in Table 2, the cubic-scaling RPA correlation energy deviates by

71µH from the quartic-scaling RPA correlation energy using the Coulomb metric. In contrast,

the cubic-scaling RPA correlation energy agrees within an accuracy better than 10−3
µH
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with the quartic-scaling RPA correlation energy using the overlap metric, see Table 1. We

conclude, that there is a deviation between the RPA results using the overlap metric and the

RPA results using the Coulomb metric, but the deviation is small.

Table 2: RPA correlation energy of 32 water molecules computed by three different algorithms.
All algorithms share the same primary and RI basis (cc-TZVP and RI-cc-TZVP, respectively).
The RI-cc-TZVP basis has been generated as described in Ref. 44 and 71. For all RPA
calculations, 20 quadrature points for the minimax grids have been used.

Method ERPA
c in Hartree

O(N4) RPA (im. freq., Coulomb metric) – 13.0250

O(N4) RPA (im. freq., overlap metric) – 13.0289

O(N3) RPA (im. time, overlap metric) – 13.0289

6.3 Effect of sparsity

Finally, we investigate the effect of filtering blocks of sparse matrices occuring in the

cubic-scaling RPA algorithm, see Table 3: We choose the filter coefficients 10−8 and 3 · 10−6

for the atom blocks (for details on these coefficients, see caption of the table) such that the

relative accuracy of the RPA correlation energy is 0.01% compared to the non-filtered result.

We observe that the execution time is reduced by a factor three when this filter criterion is

applied and we conclude, that already two third of the computations can be avoided for 32

water molecules in a cubic box. For all following scaling benchmarks, we employ the filter

criteria 10−8 and 3 · 10−6, respectively.

7 Benchmark calculations on the system size scaling

After validating our implementation, we turn over to investigate the scaling of the

execution time with respect to the system size. As in Sec. 6, we use a cc-TZVP primary

basis with corresponding RI basis12,44,45,71, the parameters εfilter prim =3 · 10−6, εfilter RI =10−8

18



Table 3: RPA correlation energy of 32 water molecules computed by the cubic-scaling
algorithm and two different filtering thresholds for removing blocks from sparse matrices.
Every block belongs to basis functions of an atom pair. The filtering threshold for NRI×NRI

matrices refers to filtering P(τ ) in Eq. (31). The filtering threshold for Nprim×Nprim matrices
refers to filtering Docc(τ), Dvirt(τ) and all three-index tensors. The execution time was
measured on 576 CRAY-XC40 cores. With the filtering thresholds of 10−8 and 3 · 10−6 as
given in the table, the relative change of the RPA correlation energy due to the filtering is
0.01% where the computation time is reduced by a factor of three.

Filtering threshold for blocks in a ERPA
c in Hartree Execution time in s

NRI×NRI matrix Nprim×Nprim matrix

10−8 3 · 10−6 – 13.02970 260

no filtering no filtering – 13.02890 751

and a time and frequency grid of 15 points. For all calculations presented in this section, we

employ this setting.

7.1 Quartic- vs. cubic-scaling RPA

In Fig. 3 (a), we compare the execution time of O(N4)- and O(N3)-scaling RPA as

function of the system size for water molecules in a periodic box. We observe that for 32

water molecules, the O(N3)-scaling RPA algorithm44,45 requires ten times the execution time

of the O(N4)-scaling RPA algorithm. The reason is that the cubic-scaling RPA algorithm

is operating in the µν product basis, where µ and ν are Gaussian basis functions while the

quartic-scaling RPA is implemented in the ia basis, where i is an occupied MO and a a

virtual one: In a cc-TZVP basis, approximately fifteen Gaussian basis functions per occupied

MO are employed which means one order of magnitude more floating point operations for

cubic-scaling RPA compared to quartic-scaling RPA (without filtering). This explains that the

cubic-scaling RPA algorithm is unfavorable for small systems compared to the quartic-scaling

one. With increasing system size, the favorable scaling of the O(N3)-RPA algorithm is

appearing and the break-even point for the two algorithms is observed between 128 and 256

water molecules. Note that the break-even point is weakly dependent on the basis set size.
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O(N 1-2) steps fit 2: O(N 1.20)

O(N 3) steps fit: O(N 3.09)

Figure 3: (a) Comparison of the execution time of quartic-scaling RPA (blue dots) and
cubic-scaling RPA (green dots) on a CRAY XC40 machine with 36 cores per node. Both
methods share the high-quality cc-TZVP basis. The basic cell contains 32 water molecules
with a density of 1 g/ℓ. The larger systems consist of a n×1×1 supercell of the 32-water box
with n=2, 4, 8, 16, 32. For the largest system with 1024 water molecules (8192 electrons),
58366 primary basis functions and 139264 RI basis functions are used. For small systems, the
canonical O(N4) RPA method is one order of magnitude faster than the cubic-scaling RPA.
The break-even point of both methods lies between 128 and 256 water molecules. For large
systems, the cubic-scaling RPA exceeds the canonical RPA in terms of the execution time. (b)
Execution time and scaling of intermediate steps of the cubic-scaling RPA algorithm where the
total execution time (green marks) is identical to (a). The cubic-scaling steps (brown color)
and the linear- and quadratic-scaling steps (magenta) are categorized according to Fig. 1 and
Eqs. (29) and (31). The quadratic-scaling steps dominate for small systems. Moreover, the
quadratic-scaling steps turn into nearly-linear scaling steps for systems containing 256 water
molecules or more since the density matrix is becoming sparse, see Fig. 4. The cubic-scaling
steps (brown color) exhibit a small prefactor and are dominating for systems with more than
1000 water molecules.
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For 512 water molecules, the cubic-scaling RPA outperforms the canonical RPA in terms of

the execution time by one order of magnitude.

7.2 Analyzing the dominant steps in cubic-scaling RPA

In Fig. 3 (b), we break the total execution time of the cubic-scaling RPA algorithm down

into cubic-scaling steps and sub-cubic-scaling steps. The cubic-scaling steps (brown color)

and the linear- and quadratic-scaling steps (magenta) are categorized according to Fig. 1.

We observe that the quadratic-scaling steps dominate for small systems which means that for

small systems, the algorithm is effectively quadratic-scaling. Moreover, the quadratic-scaling

steps turn into nearly-linear scaling steps for systems containing 256 water molecules or more

since the density matrix is becoming sparse, see Fig. 4. The cubic-scaling steps exhibit a small

prefactor and are dominating for systems with more than 1000 water molecules. We conclude

that the bottleneck for large-scale RPA calculations is the matrix-matrix multiplication

from Eq. (32) and the Cholesky decomposition of 1+Q(ω) to compute the determinant in

Eq. (34).
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Figure 4: Occupation of the scaled density matrices from Eq. (27) with non-zero elements
for the systems from Fig. 3. The matrix blocks correspond to atoms and are filtered with
a threshold of 10 -6 for the Frobenius norm of the block.57 A similar occupation of scaled
density matrices has been reported in Ref. 67.
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7.3 Truly three-dimensional calculations

In Fig. 3, the basic cell of 32 water molecules was repeated in one dimension, e. g. an n×1×1

supercell was employed. For low-scaling algorithms in a Gaussian basis, low-dimensional

systems with large extend in one dimension are favorable since there are many pairs of

Gaussian basis functions which are far away from each other and therefore have zero overlap.

To test how the cubic-scaling RPA algorithm performs for truly three-dimensional systems,

we show the execution time for the cubic water supercells 2×2×2 and 3×3×3 in Fig. 5:

We observe a scaling O(N2.16) for the execution time from 1×1×1 to 3×3×3. As it can

be seen from Fig. 5, the execution time of the cubic n×n×n supercell slightly exceeds the

execution time for the corresponding n3×1×1 supercell. The reason is that the scaled density

matrices are not yet sparse for the n×n×n supercell (n=2, 3) in contrast to the linear chain

of supercells, see Fig. 4. We conclude that the cubic-scaling RPA algorithm from this work

also scales well for systems which are extended in all three dimensions.
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Figure 5: Execution time of cubic-scaling RPA for n×1×1 supercells (green, as in Fig. 3)
and n×n×n supercells (orange) on a CRAY XC40 machine with 36 cores per node. The
single cell consists of 32 water molecules. The execution time of the cubic supercells (orange)
is exceeding the one of the linear supercells (green) since the density matrix of linear cells is
getting sparse, see Fig. 4, in contrast to the density matrix of cubic cells.
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8 Conclusion and Outlook

We have presented an algorithm for computing the correlation energy in the random phase

approximation (RPA) in a Gaussian basis requiring O(N3) operations and O(N2) memory.

The method is a combination of several known techniques: As first technique, we employ the

resolution of the identity (RI) with the overlap metric as suggested by various authors53–56.

The advantage of RI with the overlap metric compared to RI with the Coulomb metric is

that the occurring three-center overlap integrals are sparse55,56. To exploit the sparsity of

the three-center overlap integrals, we reformulate RI-RPA in the Gaussian basis as suggested

by Schurkus and Ochsenfeld53. Since the density response has a convenient analytic form

in imaginary time, we follow Rojas et al.64 to compute the density response in the RI basis

in imaginary time. For the Fourier transform from imaginary time to imaginary frequency,

we employ the minimax grids as proposed in the seminal work of Kaltak et al.48 The final

formula for computing the RPA correlation energy by an integral over imaginary frequencies

was established by Eshuis et al.33 No localization schemes50 or stochastic approximations51,52

are needed in our algorithm.

Since the computation of the RPA correlation energy is still of high computational cost,

an efficient parallelization is crucial, especially for the sparse matrix operations. For this

purpose, we use the sparse linear algebra library DBCSR57 which turns out to be highly

efficient. Due to the low-scaling characteristics of the algorithm together with its efficient

parallel implementation, we could apply cubic-scaling RPA up to a thousand water molecules

using a cc-TZVP basis.

Our work can be seen as a prototype for a low-scaling wavefunction-based method using

a global RI with the overlap metric. With the techniques presented in this work, efficient

low-scaling algorithms can be designed for Hartree-Fock72–79, Laplace-SOS-MP280–86 and

GW 48,87–90.
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(24) Macher, M.; Klimeš, J.; Franchini, C.; Kresse, G. J. Chem. Phys. 2014, 140, 084502.

(25) Cheng, J.; VandeVondele, J. Phys. Rev. Lett. 2016, 116, 086402.

25



(26) Miyake, T.; Aryasetiawan, F.; Kotani, T.; van Schilfgaarde, M.; Usuda, M.; Terakura, K.

Phys. Rev. B 2002, 66, 245103.
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