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Large-scale database searching using tandem 
mass spectra: Looking up the answer in the 
back of the book
Rovshan G Sadygov, Daniel Cociorva & John R Yates III

Database searching is an essential element of large-scale proteomics. Because these 
methods are widely used, it is important to understand the rationale of the algorithms. 
Most algorithms are based on concepts first developed in SEQUEST and PeptideSearch. 
Four basic approaches are used to determine a match between a spectrum and 
sequence: descriptive, interpretative, stochastic and probability–based matching. We 
review the basic concepts used by most search algorithms, the computational modeling 
of peptide identification and current challenges and limitations of this approach for 
protein identification.

An unintended consequence of whole-genome sequenc-
ing has been the birth of large-scale proteomics. What 
drives proteomics is the ability to use mass spectrome-
try data of peptides as an ‘address’ or ‘zip code’ to locate 
proteins in sequence databases. Two mass spectrom-
etry methods are used to identify proteins by database 
search methods. The first method uses a molecular 
weight fingerprint measured from a protein digested 
with a site-specific protease1–5. A second method uses 
tandem mass spectra derived from individual peptides 
of a digested protein6,7 (Fig. 1). Because each tandem 
mass spectrum represents an independent and verifi-
able piece of data, this approach to database searching 
has the ability to identify proteins in mixtures, enabling 
a rapid and comprehensive approach for the analysis of 
protein complexes and other complicated mixtures of 
proteins6,8–12.  New biology has been discovered based 
on fast and accurate protein identification13–18. As tan-
dem mass spectral protein identification has proliferat-
ed, it has become increasingly important to understand 
the rationale of individual database search algorithms, 
their relative strengths and weaknesses, and the math-
ematics used to match sequence to spectrum.

In this review we discuss the prevailing fragmentation 
models, spectral preprocessing, methods to match tan-
dem mass spectra to sequences and several approaches 

to matching tandem mass spectra of peptides whose 
exact sequences may not be present in the database. 
Space limitations restrict a detailed description of all 
algorithms in this rapidly expanding field. Also, some 
algorithms are proprietary, and thus, details on how 
they work are unknown. This review should supple-
ment and update earlier reviews on database search 
algorithms19–24.

Peptide fragmentation and data preprocessing
In tandem mass spectrometry (MS/MS), gas phase 
peptide ions undergo collision-induced dissociation 
(CID) with molecules of an inert gas such as helium 
or argon25. Other methods of dissociation have been 
developed, such as electron capture dissociation 
(ECD), surface induced dissociation (SID) and elec-
tron transfer dissociation (ETD), but gas-phase CID 
is the most widely used in commercial tandem mass 
spectrometers. The dissociation pathways are strongly 
dependent on the collision energy, but the vast major-
ity of instruments use low-energy CID (<100 eV)26. 
At low collision energies fragmentation mainly occurs 
along the peptide backbone bonds, whereas at higher 
energies fragments generated by amino acid side-
chains are observed25,27. At low-energy CID, condi-
tions normally used in triple quadrupole, quadrupole 
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time of flight and ion trap (both linear and Paul) mass spectrom-
eters, b-ions, y-ions and neutral losses of water and ammonia 
dominate the mass spectrum (Box 1). Fragmentation patterns are 
also strongly dependent on the chemical and physical properties 
of the amino acids and sequences of the peptide28,29. Most algo-
rithms assume that peptides preferentially fragment into b- and 
y-ions. The distribution of intensities between b- and y-ions is 
the subject of intensive studies, and this distribution can vary by 
type of instrument (for example, ion trap as compared to Q-TOF), 
but this information is not yet fully exploited in most matching 
models. A mobile proton model30 has been proposed to explain 
intensity patterns observed in MS/MS, and Zhang has developed 
a theoretical model that predicts fragment ion intensities well31. 
As with any measurement process, tandem mass spectra may have 
some level of uncertainty. The accuracy of the mass-to-charge 
ratio (m/z) and the mass resolving power are limited, electronic 
and chemical noise may be present and ion signals may fluctuate 

as a result of changes in the concentrations of peptides entering 
the ion source. Given a precursor m/z value and a list of fragment 
ions, the goal is to match these to an amino acid sequence within 
the measurement and fragmentation uncertainty of the mass spec-
trometer (Fig. 1).

Some of the methods described below are used in our labora-
tory and illustrate a general approach for the analysis of large data 
sets. One source of uncertainty in analyzing tandem mass spectra 
of multiply charged ions is determination of the charge state of 
the precursor peptide, which is critical to accurately calculating a 
peptide’s molecular weight. A highly accurate molecular weight 
measurement or calculation can be very effective in restrict-
ing search results. Methods to determine the charge state of ions 
involve deconvolution or determination of the m/z spread of iso-
tope peaks32. On low-resolution instruments, where these methods 
are ineffective, MS/MS of peptides with charge states higher than 
1 are typically searched twice, once calculating a molecular weight 
assuming that the charge state is +2 and the second time assuming 
the charge state is +3. Based on observations by Dancik and col-
leagues33 that complementary fragment ions (N-terminal and C-
terminal fragment ions) can be used to improve molecular weight 
calculations, our group and others used a variation of this approach 
to determine peptide ion charge state34,35. In good-quality tandem 
mass spectra there are numerous complimentary ions; thus, if the 
precursor ion is assumed to be doubly charged, the complementary 
ions present in the spectrum should sum to this molecular weight. 
If the ion is triply charged, then the complementary fragment ions 
will sum to this molecular weight. Both situations are tested, and 
the molecular weight calculation that accounts for the most com-
plementary ions is assumed to be the correct charge state. In addi-
tion to the above method, ion traps can also be used to perform a 
narrow mass range scan at resolutions sufficient to determine the 
charge state, but this necessitates an additional scan and reason-
ably abundant signal36. The newer linear ion traps with higher scan 
speeds can accommodate the high-resolution scan without decreas-
ing the efficiency of data acquisition.

Most large-scale tandem mass spectrometry data is acquired 
using automated methods such as data-dependent data acquisi-
tion, which triggers MS/MS based on ion abundance. When the 
ion abundance level to trigger MS/MS is set just above the back-
ground noise level, MS/MS data is almost continuously acquired. 

Figure 1 | Overview of the protein identification process. A protein mixture 
is digested, and the resulting peptides are analyzed by MS/MS to obtain 
experimental spectra. Search programs find database candidate sequences 
whose theoretical spectra are compared to the experimental spectrum. The 
best match (highest-scoring candidate sequence) defines the identified 
database peptide and the corresponding database protein. Validation 
software then determines whether the peptide and protein identifications 
are true or false.

BOX 1  PEPTIDE FRAGMENTATION
Low-energy CID dissociates the amide bond along the 
peptide backbone. As a result, two fragments are produced, 
one containing the N terminus and the other containing 
the C terminus. Nomenclature denotes the N-terminal 
fragments with letters a, b and c and the C-terminal 
fragments with letters x, y and z59. Internal ion fragments 
are formed by simultaneous cleavage of N and C termini. 
Immonium ions are of the structure HN = CH–R25. A 
numerical subscript for each fragment ion indicates the 
position of the amino acid at which the bond cleavage 
occurs. For N-terminal fragments, the numbering starts 
from the N terminus, and for C-terminal fragments, the 
numbering starts from the C terminus.

H2N-CH-CO-NH-CH-CO-NH-CH-CO-NH-CH-CO-NH-CH-COOH

R1 R2

R3 R4 R5
a2

b2

c2

z3

y3

x3

Fragment ion nomenclature. Schematic diagram of N-terminal 
a2, b2 and c2 ions and C-terminal x3, y3 and z3 ions for a five-
amino-acid peptide.
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Distinguishing data acquired from nonpeptide ions or identifying 
poor-quality MS/MS of peptides can potentially lower false-posi-
tive rates, as these spectra should not correctly match to peptide 
sequences, but most algorithms will still attempt a match to a 
sequence. Peptide ions selected for MS/MS at very low signal lev-
els will produce spectra with poor signal-to-noise ratios and often 
incomplete sequence ions. Methods have been devised to sort the 
good from the bad spectra34,37,38. Recently, Bern et al. presented 
two different algorithms for assessing spectral quality prior to a 
database search: a binary classifier, which predicts whether or not 
the search engine will be able to make an identification, and a sta-
tistical regression, which predicts a more universal quality met-
ric, independent of the database search program39. A quadratic 
discriminant analysis, a classical machine learning algorithm, was 
trained on a data set of manually validated good and bad spec-
tra. Each spectrum is assigned a ‘feature vector,’ including number 
of peaks, total intensity and relative normalized intensity of the 
peaks that (i) differ by the mass of an amino acid,  (ii) differ by a 
mass of 18 Da (mass of a water molecule) (iii) add up to the mass 
of the precursor ion and (iv) have associated isotope peaks. We 
report that the parameters with the best discriminant power are 
the relative normalized intensity of the peaks that differ by the 
mass of an amino acid and the relative normalized intensity of 
complimentary ions.

Review of database search algorithms
The goal of a tandem mass spectral database search is to identify 
the best sequence match to the spectrum. For tandem mass spectra 
with good signal-to-noise ratio and uniform fragmentation, it is 
reasonably straightforward to identify the correct sequence match. 
In situations where a tandem mass spectrum is of poorer quality 
or the peptide ion undergoes unusual fragmentation, an analysis 
may benefit from the use of multiple search algorithms. A number 
of algorithms and scoring models have been developed to assess 
the likelihood of a match. They can show different selectivity and 
sensitivity at the edge of good spectral quality, and some programs 
have enough flexibility to permit the use of different types of MS/
MS data or modification patterns6,7,40–53. Four basic approaches 
have been developed to model matches to sequences: descriptive, 

interpretative, stochastic and probability-based modeling (Box 2). 
Some of these programs can be accessed through websites (Table 
1), but most are run on local computers to allow large-scale analyses 
(Box 3).

Descriptive models for database searching
SEQUEST is an example of a program that uses a descriptive model 
for peptide fragmentation and correlative matching to a tandem 
mass spectrum6. It uses a two-tiered scoring scheme to assess 
the quality of the match between the spectrum and amino acid 
sequence from a database. The first score calculated, the preliminary 
score (Sp), is an empirically derived score that restricts the number 
of sequences analyzed in the correlation analysis. Sp sums the peak 
intensity of fragment ions matching the predicted sequence ions 
and accounts for the continuity of an ion series and the length of a 
peptide. The original Sp score is:

S
p
=(ΣI

k
)m(1+β)(1+ρ)/L

k

Descriptive models
Descriptive algorithms are based on a mechanistic prediction of 
how peptides fragment in a tandem mass spectrometer, which is 
then quantified to determine the quality of the match between 
the prediction and the experimental spectrum. Mathematical 
methods such as correlation analysis have been used to assess 
match quality.

Interpretative models
Interpretative approaches are based on manual or automated 
interpretation of a partial sequence from a tandem mass 
spectrum and incorporation of that sequence into a database 
search. Matches between the sequence and the spectrum have 
been scored using probabilities or correlation methods.

Stochastic models
Stochastic models are based on probability models for the 
generation of tandem mass spectra and the fragmentation 
of peptides. Basic probabilities of fragment ion matches are 
obtained from training sets of spectra of known sequence 
identity. Stochastic models use statistical limits on the 
measurement and fragmentation process to create a likelihood 
that the match is correct.

Statistical and probability models
Statistical and probability models determine the relationship 
between the tandem mass spectrum and sequences. The 
probability of peptide identification and its significance are 
then derived from the model.

BOX 2  DATABASE SEARCHING ALGORITHMS

Table 1  Database search programs and websites where information 
about these programs can be obtained

Program Web site

Mascot http://www.matrixscience.com/

Masslynx http://www.waters.com

MS-Tag/MS-Seq http://prospector.ucsf.edu/

PeptideSearch http://www.narrador.embl-heidelberg.
de/GroupPages/Homepage.html

PepFrag http://prowl.rockefeller.edu/PROWL

ProbID http://projects.systemsbiology.
net/probid

SEQUEST http://fields.scripps.edu or 
http://www.thermo.com

SpectrumMill http://www.chem.agilent.com/

X!Tandem http://www.thegpm.org/TANDEM/
index.html
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where the first term in the product is the sum of ion abundances 
of all matched peaks, m is the number of matches, β is a ‘reward’ 
for each consecutive match of an ion series (for example, 0.075), 
ρ is a ‘reward’ for the presence of an immonium ion (for example, 
0.15) and L is the number of all theoretical ions of an amino acid 
sequence.

The second score is a cross-correlation of the experimental and 
theoretical spectra. This score is referred to as XCorr. The theoreti-
cal spectrum is generated from the predicted fragment ions, the 
b- and y-ions for each of the sequences. In the theoretical spectrum 
the main ion series products are assigned an abundance of 50, a 
window of 1 atomic mass unit around the main fragment ions is 
assigned intensity 25, and water and ammonia losses are assigned 
intensity of 10. The theoretical and normalized experimental spec-
tra are cross-correlated to obtain similarities between the spectra. 
First, a cross-correlation of the two discrete data sets, experimental 
data (E) and theoretical spectrum (T), is taken:

Corr(E,T)=Σxiyi+τ

N–1

I=0

The correlation is processed and averaged to remove the periodic 
noise in the interval of (−75 to 75). In addition to the preliminary 
and cross-correlations scores, SEQUEST produces another impor-
tant quantity, normalized difference of Xcorr values between the 
best sequence and each of the other sequences. This value, ∆Cn, is 
important in distinguishing the best match from other lower-scor-
ing matches. That is, ∆Cn is useful to determine the uniqueness of 
the match. If a match is reasonably unique to a sequence, the ∆Cn 
value will be large (>0.1). XCorr is independent of database size and 
reflects the quality of the match between spectrum and sequence, 
whereas ∆Cn is database dependent and reflects the quality of the 
match relative to near misses.

The cross-correlation score is a sensitive measure. However, 
like other measures based on additive features, it is dependent on 
peptide mass, charge state and spectral quality. Thus it has been 
observed that larger peptides score higher than similar-quality 
smaller peptides. Very dense (potentially noisy) spectra can have 
high cross-correlation scores. To address these issues, a few modifi-
cations have been made to the cross-correlation score. To normal-
ize XCorr for spectral noise and peptide size, the XCorr value is 
divided by auto-correlation of the experimental spectrum or by 
the square root of the products of auto-correlations of experimen-
tal and theoretical spectra54,55. A statistical confidence can then 
be readily derived from the normalized cross-correlation scores. 
SEQUEST has been shown to have good sensitivity and flexibility 
and is applicable to data generated by different types of mass spec-
trometers56,57.

Other programs in this group include SONAR52 and SALSA49. 
To determine the quality of the spectral match, SONAR uses a dot 
product of experimental and theoretical spectra. The dot product 
is the zero shift cross-correlation. SALSA scores the correspondence 
between the experimental fragment ion series and theoretical ion 
series regardless of their absolute position on the m/z axis. A virtual 
ruler is used with the relative separations of ions fixed and then 
superimposed on the experimental mass spectrum by aligning the 
first ion in the ion series to the fragment ion with the highest exper-
imentally determined m/z. SALSA is adept at identifying peptides 
with unanticipated modifications or amino acids.

Interpretative models for database searching
PeptideSearch7 is a program based on the assumption that in 
tandem mass spectra there is a continuous series of fragment 
ions that are clearly identifiable as a short amino acid sequence 
(Fig. 2) . A search engine has been fashioned using the partial 
sequence by dividing every candidate sequence into three parts: 
region 1 of unknown mass, region 2, containing the sequence 
tag and another region 3. The sequence ions associated with 
the sequence tag can be from the b- or y-ion series (defined in 
Box 1). Both possibilities are equally likely and must be consid-
ered by the algorithm. The assumption about the directional-
ity of the partial sequence leads to the determination of masses 
of the region 1 (m1) and 3 (m3). For example, if the sequence 
ions are assumed to be b-ions, then m1 is simply the mass-to-
charge ratio of the smallest ion in the series, whereas m3 is the 
difference between peptide mass and the mass-to-charge ratio 
of the largest ion in the series. The algorithm searches the data-
base for sequences using the information from regions 1 (m1), 
2 (partial sequence tag) and 3 (m3), as well as information from 
the peptide molecular weight, the protease specificity and mass 
accuracy. A sequence match is scored by computing the random 
probability match of each region and the N- and C-terminal 
amino acids expected from protease cleavage specificity. For 
the sequence tag it is assumed that the probabilities of all amino 
acids are equally likely. In this case, unique mass amino acids 
have a probability of 1/20, whereas amino acids with the same 
mass (within a specified accuracy) will have higher probability of
 N × 1/20, where N is the number of amino acids with the same 
mass. Thus, for amino acids leucine and isoleucine, or glutamic 
acid and lysine, this probability will be 1/10, whereas for glycine it 
is 1/20. The probability of randomly matching regions 1 and 3 are 
equal and set to the ratio of mass accuracy to the average molecu-
lar weight of amino acid residues, 1/110 for a unit mass accuracy. 
Also, a probability is assigned to the amino acids at the cleav-
age sites. Complete tryptic cleavage of a protein results in pep-
tides terminating in one of two amino acids—lysine or arginine. 
Therefore, if a sequence is tryptic, the random match probability 
is multiplied by 1/100, and if it is half tryptic by 1/10. Combining 
the probabilities of all regions and cleavage probabilities, a prob-
ability that a sequence match is random is set:

p
random

=p
NtermCleavage

 ×p
m1

 ×p
1sttagposition 

×...p
lassttagposition 

×p
m3

 ×p
CtermCleavage
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Figure 2 | Simplified representation of an MS/MS spectrum for the peptid 
e IYEVEGMR. The b-ion ladder is shown in red and the y-ion ladder in blue. 
Distances between peaks on the horizontal mass-to-charge (m/z) axis can 
be used to infer partial sequences of the peptide. This example shows how 
the partial sequence YEV can be inferred from the y-ion ladder.
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The probability of a nonrandom match in a database with N amino 
acids would then be

p
nonrandom

=(1–2 ×p
random

)
N

In the above formula the random match probability is multi-
plied by 2 to account for the fact that the direction of the partial 
sequence is not known. As it is seen from the formula for a non-
random match, the identification is dependent on the size of the 
database. In general, the larger the database, the longer the sequence 
tag should be for higher confidence matches.

One of the advantages of the approach taken by PeptideSearch 
is that it is an error-tolerant algorithm. There could be a difference 
between the mass of the peptide as predicted in the database and the 
actual peptide. For example, the database sequence could have been 
predicted incorrectly, or there could have been a mutation or a post-
translational modification in the peptide represented by the mass 
spectrum. The molecular weights of these altered peptides would 
not agree with molecular weights predicted from the database and 
they will not be identified by direct searches. PeptideSearch suggests 
using partial information from a combination of any two out of 
three regions, to identify peptides and map the region of alteration. 
If the origin of the sample is known, then the database search can 
be restricted to a smaller number of known proteins (for exam-
ple, a particular species), in which case searches with short partial 
sequences (one or two amino acids) can yield reliable results.

The scoring model of PeptideSearch assumes the probability of 
each amino acid occurring is the same, 1/20. It is known, however, 
that amino acids occur in a database at different frequencies; for 
example, leucine occurs eight times more frequently than tryp-
tophan). Furthermore, the probability scores are calculated using 
an incomplete model. The sum of probabilities of all database se-
quences is not 1: the probabilities for mass accuracy and enzyme 
specificity are arbitrary, as they represent a different probability 
space, and longer sequences naturally produce smaller probabilities. 
Despite these problems with the scoring model, sequence tagging is 
a useful approach for database searching.

Other implementations of the PeptideSearch algorithm are 
MS-Seq, by Clauser et al., and the recently developed program 
GutenTag42,47. In GutenTag, the partial sequence is generated auto-
matically before the search by using empirically derived knowledge 
of specific amino acid contributions to fragment ion intensities 
in the spectrum. The program compares the sequences derived 
from the database search to the tandem mass spectrum using a dot 
product. GutenTag uses a fragmentation model for peptides that 
is based on the empirical observations and works well for dou-
bly charged peptides derived from trypsin digestion. Sequence 
tagging approaches are useful for the identification of peptides 
with unknown modifications, amino acid sequence variations or 
sequence errors. Manual sequence interpretation can also lead to 
answers from spectra with unusual fragmentation that does not fit 
an algorithm’s fragmentation model.

Stochastic models for database searching
Stochastic methods are based on probability estimates for peptide 
fragmentation and the subsequent generation of tandem mass spec-
tra. In SCOPE43, one of the early algorithms in this category, the 
MS/MS spectrum generation is modeled by a two-step stochastic 

process: fragmentation and measurement. The first step, fragmen-
tation, enumerates all the possible fragmentation patterns of a pep-
tide, and it determines the empirical probabilities associated with 
the pattern. The second step, measurement, generates tandem mass 
spectra from the fragments obtained in the first step, according to 
the distribution of the instrument measurement error.

The first step, the fragmentation probability estimation, allows 
the incorporation of physical and chemical properties of a peptide 
in the scoring process. A trivial fragmentation probability model 
would be, for example, to consider that the b- and y-ions of a pep-
tide have a 100% chance of appearing in the MS/MS spectrum, the 
a-ions have a 50% chance and all the other possible fragment ions 
have a zero chance. Of course, the actual fragmentation process is 
more complex, and a more representative model can be derived 
from the analysis of large databases of manually curated spectra or 
by experienced mass spectrometrists.

Assuming that a large database of manually curated spectra 
is available, it is straightforward to generate a list of the observed 
fragment ions for each peptide. From here, the probability of 
appearance of each cleavage event in the tandem mass spectrum 
can be estimated by counting the number of times it is observed. In 
addition, using data mining techniques on this fragment data set, it 
is also possible to find those properties of a peptide that lead to sig-
nificantly more cleavage events than would otherwise be expected.

Once the fragmentation probabilities have been estimated using 
one of the methods above, or a combination of the two, the second 
step of the algorithm is to compute the probability that a fragmen-
tation pattern results in a tandem mass spectrum measurement. In 

BOX 3  STRATEGY FOR LARGE SCALE 
DATA ANALYSIS
Large-scale proteomic experiments can present big challenges 
for data analysis. Most database searching algorithms can 
confidently identify amino acid sequences from tandem mass 
spectra showing good fragmentation and signal-to-noise 
ratio. Spectra of poorer quality or those containing aberrant 
fragmentation processes present the greatest challenge, 
as often the spectra are of peptides from low-abundance 
proteins. What are the strategies that can be used to mine a 
data set most thoroughly?

To limit the number of spectra and ensure an enriched set 
of unique spectra, poor-quality spectra could be removed and 
duplicates identified and eliminated39,60,61. Spectra should 
be searched with at least two algorithms to take advantage of 
the different selectivities of algorithms (for example, SEQUEST 
and Mascot). Unassigned spectra should be searched for 
modified amino acids. Any remaining spectra can be analyzed 
by automated or manual sequence tagging. Lastly, automated 
or manual de novo analysis can be applied to the remaining 
unassigned spectra.

To assist in the assignment of protein identifications, 
several algorithms have been developed to assess database 
searching results. Some programs simply filter the data 
and others assign a statistical confidence24,55,62,63. These 
programs are essential when dealing with large data sets.
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other words, the probability of observing a collection of spectral 
peaks given a particular peptide fragmentation pattern is comput-
ed. The stochastic approach to this problem is to model the distri-
bution of the measured m/z ratios, either as normal or uniform 
distributions centered at the m/z ratio for the predicted fragment.

Formally, the two-step process used by SCOPE can be described 
as follows: for a peptide p, a fragmentation pattern F and a tandem 
mass spectrum S, the first step of the algorithm estimates Pr(F|p), 
the probability of obtaining the fragmentation pattern F from the 
collision-induced dissociation of peptide p. The second step of the 
algorithm determines ψ (S⏐F, p), the probability of fragmentation 
pattern F to generate spectrum S. Finally, the probability of obtain-
ing the spectrum S from peptide p is computed combining the two 
steps:

ψ(S,p)= Σψ(S|F,p)Pr(F|p)
F⊆ℑ(p)

where  ℑ(p) is the fragment space, which contains all of the frag-
mentation patterns theoretically generated from peptide p. SCOPE 
implements a dynamic programming algorithm to efficiently com-
pute the above formula and reports the peptide p that maximizes 
the score, along with its corresponding P-value.

Stochastic models to determine the best fit between a tandem 
mass spectrum and a sequence have been used in other programs. 
The program OLAV uses an approach similar to the one used in 
SCOPE, except that some simplifications are made to avoid over-
expansion of terms51. OLAV uses the maximum likelihood ratio as 
the identification score. The likelihood ratio is the ratio of prob-
abilities from two alternative hypotheses, that peptide identifica-
tion is valid and the alternative that the identification is random. A 

program proprietary to Waters, MassLynx, uses Markovian chains 
to compute the statistical significance of a match, but a detailed 
description of the model used by the program is not available58. 
Most stochastic models require the use of training sets to deter-
mine the coefficients used to model features of the tandem mass 
spectrum. The magnitude of the coefficients may vary with the type 
of mass spectrometer used or other performance characteristics of 
the instrument, such as calibration. Therefore, the performance of 
these methods may be expected to depend on experimental settings, 
instruments used and limitations of the training set.

Statistical and probability models for database searching 
This group of methods uses models based on empirically generated 
fragment ion probabilities45,48,51. In these methods no a priori deter-
mined probabilities are used. They generate a model that relates the 
sequences to a spectrum and determine the peptide identification 
score from this model. Thus, in the simplest models the frequencies 
of matches of b- and y-ions are determined and used to calculate 
a probability of sequence identification determined by the prod-
uct of probabilities of its fragment matches. Several variations of 
this approach have been implemented in database searching algo-
rithms43,45,48,51. Mascot41 uses a model analogous to the one previ-
ously developed for identifying proteins from their peptide mass fin-
gerprint3. Mascot may also use some empirical observations about 
fragment intensities and ion series continuity. The actual description 
of the model is not available in peer-reviewed literature and there-
fore we are not able to describe this algorithm in detail, even though 
it is one of the most widely used database search programs.

Recently, a group of database search algorithms have been imple-
mented that use collective properties of database sequences to cal-
culate the probability that a sequence match is a random event. 

False positives are a perpetual concern in database searching. 
They can arise for several reasons. Data-dependent algorithms for 
large-scale acquisition of tandem mass spectra do not discriminate 
between peptide ions and other types of ions that may be present. 
Thus, search algorithms are often confronted with a collection 
of spectra that could be single peptide ions, chemical noise, 
nonpeptide molecules or mixtures of coeluting isobaric peptides, 
which are then matched to amino acid sequences. Good data 
preprocessing or a search of a library of contaminants can help 
remove nonpeptide spectra prior to a search.

Peptides are often present at a wide range of concentrations 
in a sample, and peptides present at the limit of detection can 
produce poor quality fragmentation. The issue of sensitivity 
is more difficult to correct as it is heavily dependent on the 
limit of detection of a mass spectrometer. The effects can range 
from incomplete dissociation to poor ion statistics for fragment 
ions, making them indistinguishable from noise. In these cases 
incomplete fragmentation patterns or poor signal-to-noise 
ratios may lead to a solution that is not unique or correct.

The chemistry of peptide fragmentation is also not 
completely understood, and thus, fragmentation models 
used in database searching may not accommodate aberrant 

fragmentation processes and result in false positives. Several 
statistical studies of peptide fragmentation have been 
performed to better understand the contributions of specific 
amino acids to fragmentation processes. In time, improved 
models will account for more of the aberrant fragmentation 
processes. 

Sequence conservation can lead to confusing results. If the 
same peptide sequence exists in multiple proteins, all of the 
proteins will be identified. Without additional peptide data it 
would be impossible to determine which protein produced the 
peptide that generated the tandem mass spectrum. Identifying 
this situation is straightforward, as most algorithms track all 
proteins that a spectrum matches.

A final possibility, and perhaps of more concern, are amino 
acid sequences that do not produce a unique fragmentation 
pattern but share enough of the same fragment ions to be 
indistinguishable from one another. In these cases a unique 
amino acid sequence can not be determined directly from 
the fragmentation pattern and other means are required to 
determine the absolute identity of the peptide. In particular, 
small peptides, less than eight amino acids in length, may not 
produce a fragmentation pattern that achieves a unique result.

BOX 4  FALSE POSITIVES IN DATABASE SEARCHING
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Thus, we have proposed to divide all database fragment ions into 
two groups: matches and misses46. Then, we assume that a hyper-
geometric probability models the frequencies of database peptides 
based on the number of matches. According to this model a prob-
ability that a peptide match is a random event is predicted from the 
hypergeometric probability of choosing K1 matches (number of 
matches of a peptide) in N1 trials (the number of fragment ions of 
the peptide) from a pool of fragments consisting of N fragments 
(number of all database fragments) K of which are matches (num-
ber of matches of all fragment ions to a spectrum). The hypergeo-
metric probability of this event is:

P
K,N

(K
1
,N

1
)=

C
K

K1 ×        C
N  –K1

1

1

N – K

        C
N

N 

The probability of a peptide being a random match to the tandem 
mass spectrum is defined in the space that comprises all peptides 
whose mass match the mass of the precursor peptide. The signifi-
cance of a peptide match is determined as a type I error of the null 
hypothesis—all fragment matches are random. OMSSA, a recently 
developed database search algorithm, uses a similar approach, 
where the peptide matches are modeled after the Poisson distribu-
tion53. Database search algorithms based on the number of matches 
trend to spectral quality owing to the fact that a match to a back-
ground peak and a match to a sequence ion are not distinguish-
able. Statistical models produce a statistical confidence for a match 
between the spectrum and database sequences. This confidence is 
based on the frequency of fragment ions in the database itself, and 
the probability a spectrum is a random match rather then the close-
ness of fit to a fragment model.

Conclusions
Automated analysis of tandem mass spectra is a critical process for 
new analytical strategies such as ‘shotgun proteomics’. As tandem 
mass spectrometers have improved, the acquisition of hundreds 
of thousands of spectra has become not uncommon, and thus, 
accurate approaches to identify and validate sequence matches 
will make this method all the more powerful. Although a vari-
ety of algorithms have been demonstrated to provide accurate 
matches between tandem mass spectra and sequences, all suffer 
from an inability to provide verifiable matches to poor-quality 
spectra. Reliable and sensitive methods to assess spectral quality 
and assign quality indices to spectra will be critical for decreasing 
computational load and lowering false-positive rates (Box 4). Most 
algorithms are very accurate for peptides that follow general rules 
of fragmentation, but a subset of amino acid sequences and more 
highly charged peptide ions deviate from these rules; thus, a bet-
ter understanding of relationships between peptide sequences and 
fragment ion intensity will assist in designing better models for 
matching spectra to sequences. Additional studies to better under-
stand the strengths and weaknesses of the various algorithms will 
help to design algorithms with better sensitivity and selectivity.
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