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Large-scale differences in microbial 
biodiversity discovery between 16S 
amplicon and shotgun sequencing
Michael Tessler1,2, Johannes S. Neumann3, Ebrahim Afshinnekoo4,5,6, Michael Pineda  4,5, 
Rebecca Hersch1, Luiz Felipe M. Velho7,8, Bianca T. Segovia7, Fabio A. Lansac-Toha7, Michael 
Lemke9, Rob DeSalle1, Christopher E. Mason  4,5,10 & Mercer R. Brugler1,11

Modern metagenomic environmental DNA studies are almost completely reliant on next-generation 
sequencing, making evaluations of these methods critical. We compare two next-generation 
sequencing techniques – amplicon and shotgun – on water samples across four of Brazil’s major river 
floodplain systems (Amazon, Araguaia, Paraná, and Pantanal). Less than 50% of phyla identified via 
amplicon sequencing were recovered from shotgun sequencing, clearly challenging the dogma that 
mid-depth shotgun recovers more diversity than amplicon-based approaches. Amplicon sequencing 
also revealed ~27% more families. Overall the amplicon data were more robust across both biodiversity 
and community ecology analyses at different taxonomic scales. Our work doubles the sampling size 
in similar environmental studies, and novelly integrates environmental data (e.g., pH, temperature, 
nutrients) from each site, revealing divergent correlations depending on which data are used. While 
myriad variants on NGS techniques and bioinformatic pipelines are available, our results point to 
core differences that have not been highlighted in any studies to date. Given the low number of taxa 
identified when coupling shotgun data with clade-based taxonomic algorithms, previous studies that 
quantified biodiversity using such bioinformatic tools should be viewed cautiously or re-analyzed. 
Nonetheless, shotgun has complementary advantages that should be weighed when designing 
projects.

With the advent of next-generation sequencing (NGS), studies on DNA from environmental samples (environ-
mental DNA or eDNA) have �ourished. It is well known that inferences made from these studies can vary with 
the �eld, lab, and analytic techniques utilized1, 2. �ere are two principal ways that comparisons can be made 
when assessing the impact of NGS approaches on eDNA studies. �e �rst entails comparison of sequencing 
platforms, such as 454 Roche vs. Illumina MiSeq using the same amplicon sequencing approach. �e second com-
pares sequencing approaches, the primary techniques being amplicon (sequencing all ampli�ed products from a 
single gene; e.g., 16S) and shotgun (random sequencing across entire genomes). Several studies have performed 
such comparisons, with foci ranging from humans to studies of water and soil (Table 1).

�e results of prior comparative studies regarding eDNA sequencing vary (Table 1). When Sanger meth-
ods are compared to 454 and SOLiD, these approaches perform comparably3, 4. Illumina and 454 platforms also 
behave similarly2, 5–7. In contrast, for amplicon strategies, higher error rates are found with the Ion Torrent due 
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Strategy Platform Sample # Target Comment Reference

A Illumina HiSeq, MiSeq 24

Bacteria: Soil, 
human, and canine 
stool, mouth and 
skin

�e results were very similar across lanes, read directions, 
and platforms (P < 0.0001), and also comparable to results 
obtained with the older GA-IIx. Increased sequencing depth 
did not provide additional information on beta diversity, 
but helped detect rare species. �e HiSeq platform was 
recommended for large projects that aim at minimizing 
sequencing cost, while the MiSeq platform can give faster 
results for monitoring or preliminary studies.

Caporaso, J. G. 
et al. (2012)19

A 454, Illumina MiSeq 10
Eukaryotes 
(microbial): Soil

�e two NGS approaches were extremely similar in the results 
they provided, especially for abundant amplicons.

Mahé, F. et al. 
(2015)5

A 454, Illumina MiSeq 7

Bacteria: Human 
stool, mouse, cow, 
leech, termites, 
sewage, mock

Reference-based operational taxonomic unit (OTU) clustering 
alone introduced biases compared to de novo clustering, 
preventing certain taxa from being observed. Low levels 
of dataset contamination were observed with Illumina 
sequencing. �is cost-e�ective alternative to 454 was best 
when the same template primers, read merging, chimera 
checking, control libraries, and alternating indices between 
runs were applied.

Nelson, M. C. et 
al. (2014)7

A
Ion Torrent, Illumina 
MiSeq

3 Bacteria: Soil

�e UniFrac distances between samples sequenced on both 
Illumina MiSeq and Ion Torrent were signi�cantly correlated. 
“Di�erences between sequence technologies can be adjusted 
by adopting the correct pipeline of analysis”. �e Q scores 
generated by di�erent platforms were not directly comparable.

Pylro, V. S. et al. 
(2014)9

A
Ion Torrent, Illumina 
MiSeq

19
Bacteria: Human- 
derived, mock

�e Ion Torrent platform had comparatively higher error 
rates and a pattern of premature sequence truncation speci�c 
to semiconductor sequencing. �is led to organism- and 
direction-dependent biases provoking underrepresentation or 
failed identi�cation of species.

Salipante, S. J. et 
al. (2014)8

A 454, Ion Torrent 17

Bacteria and 
Archaea: River 
sediments & oil 
sands tailings 
ponds

454 and Ion Torrent allowed for highly similar relative 
abundance estimates for major taxa and almost identical 
community structure patterns. Emulsion PCR limited 
amplicon size, which resulted in di�erent forward primers 
being used. Apart from the following primer bias, “the 454 and 
Ion Torrent data sets were almost interchangeable, and both 
would have yielded the exact same ecological conclusions”. 
�ese ecological conclusions were based on physiochemical 
sediment data like clay and naphthenic acid values.

Yergeau, E. et al. 
(2012)37

A C 454 Sanger 6
Bacteria: Human 
dentition

454 resulted in signi�cantly higher coverage estimates than 
the clonal analysis and provided a higher chance of �nding 
rare species. Pyrosequencing, however, also signi�cantly 
underestimated the relative abundance of Actinobacteria 
compared to culture.

Schulze-
Schwei�ng, K. 
(2014)4

A C W
454, SOLiD Sanger 
SOLiD

1
Bacteria: Human 
stool

Sanger, 454, and SOLiD amplicon sequencing provided results 
comparable to the result based on SOLiD shotgun sequencing 
for overall community composition, but WGS sequencing 
allowed better identi�cation of species.

Mitra, S. et al. 
(2013)3

A W 
->W*

454, Illumina MiSeq 
Illumina GA-II, HiSeq

15 Bacteria: Soil

�e small subunit (SSU) extracted from the shotgun approach 
yielded higher diversity estimates than straight amplicon 
methods, both taxonomy- and OTU-based (mainly due to 
primer bias and chimeras in amplicon sequencing). On the 
other hand, samples were clustered in similar ways using the 
two approaches. Another advantage of shotgun sequencing 
was that it allowed the calculation of the fungus/bacteria 
ratio, which is an important measure of soil health. �e large 
subunit (LSU) rRNA gene provided even better phylogenetic 
resolution than SSU.

Guo, J. et al. 
(2015)2

A W
Illumina MiSeq 
Illumina HiSeq

1 each
Bacteria: Hot 
spring water 
thermophiles

Amplicon and shotgun sequencing allowed for comparable 
phylum detection, but shotgun sequencing found more. �e 
16S rarefaction curve indicated that a fraction of the species 
diversity remains to be discovered. Complete functional 
groups were missed by this approach, like thermophile 
denitrifying bacteria.

Chan, C. S.  
et al. (2015)13

A W
Ion Torrent, Illumina 
MiSeq Ion Torrent, 
Illumina MiSeq, HiSeq

6
Bacteria: Human 
stool

Changing sequencing methods and informatics approaches to 
binning sequences to taxa had the greatest impact on variance 
in the analysis – greater than the di�erence in between 
samples. Compared to amplicon sequencing, WGS approaches 
increased the information gained and reduced biases, but had 
their own issues mainly related to sequencing depth and read 
length. While HiSeq o�ered a much greater sequencing depth 
that allowed the detection of rare species, the high species 
count might have been in�ated due to misalignments of short 
reads. At the same time, it performed worst in predicting 
genes. Ion Torrent generally showed an intermediate 
performance.

Clooney, A. G. 
et al. (2016)14

A W
Illumina HiSeq 
Illumina GA-II

16
Bacteria: Soils 
(deserts, tundra, 
forests)

�e two methods yielded nearly identical estimates of the 
overall di�erences in soil bacterial community diversity and 
composition. �e study showed clear limitations of shotgun 
sequencing depth, that only 13–23% of reads could be 
annotated, and many of these were misannotated. Still, “for 
certain questions, shallower sequencing of many samples may 
be more useful than deeper sequencing of fewer samples”.

Fierer, N. et al. 
(2012)20

Continued
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Strategy Platform Sample # Target Comment Reference

A & W Illumina MiSeq 16

Bacteria: Ke�r, 
human stool, 
mouse stool, mock 
mix

Shotgun metagenomics o�ered a greater potential for 
identi�cation of strains, which still remained unsatisfactory. It 
also allowed increased taxonomic and functional resolution, as 
well as the discovery of new genomes and genes.

Jovel, J. et al. 
(2016)15

A W
454, Illumina MiSeq 
454, Illumina HiSeq

4 to 10, 
depending 
on 
comparison

Bacteria: Marine 
plankton

Metagenomic approaches were reported to have an advantage 
over amplicon approaches. �ey rendered more truthful 
community richness and evenness estimates by avoiding PCR 
biases, and provided additional functional information. While 
both platforms “presented a good agreement by recovering 
taxa from the same evolutionary groups” when comparing 
metagenomic shotgun sequencing, many more unique genera 
were recovered with Illumina than with 454 sequencing. �is 
was partly due to better detection of rare taxa.

Logares, R.  
et al. (2014)24

A W 454 Illumina GA-II 4
Bacteria: 
Freshwater

Taxonomic composition of each 16S rRNA gene library was 
generally similar to its corresponding metagenome at the 
phylum level. At the genus level, however, there was a large 
amount of variation between the 16S rRNA sequences and 
the metagenomic contigs, which had a tenfold resolution and 
sensitivity for genus diversity.

Poretsky, R.  
et al. (2014)10

A W
Illumina MiSeq 
Illumina HiSeq, MiSeq

1
Bacteria: Human 
stool

Whole genome sequencing approaches “enhanced detection 
of bacterial species, increased detection of diversity and 
increased prediction of genes”. �e MiSeq platform provided 
better de novo contig assembly and species detection with its 
longer reads.

Ranjan, R.  
et al. (2016)11

A W 454 Illumina GAIIx 51

Bacteria: Human 
Microbiome 
Project, vaginal 
microbiomes

�e developers of the Metagenomic Phylogenetic Analysis tool 
MetaPhlAn showed that it was advantageous to comparable 
tools. �ey further underlined the advantages of analyzing 
taxonomically speci�c marker genes selected from WGS 
data (~4% of genes) over amplicon approaches, by “enabling 
e�cient, high-resolution taxonomic pro�ling”. Yet, while 
they reported better statistical support for metagenomic 
sequencing (~108 as compared to <104 reads/sample), the 
advantages were not evident from their data, as the results for 
relative abundances of genera were “remarkably similar in 
all clusters”, and they did not include species level results for 
amplicon data.

Segata, N. et al. 
(2012)30

A W
454 454, Illumina 
HiSeq

3

Bacteria and 
Archaea: Synthetic 
communities of 64 
sequenced species

“Both Illumina and 454 metagenomic data outperformed 
amplicon sequencing in quantifying the community 
composition, but the outcome was dependent on analysis 
parameters and platform.” Metagenomic sequencing 
outperformed most SSU rRNA gene primer sets, with V13 
recovering the best accuracy. Archaea had distinct biases to 
Bacteria.

Shakya, M.  
et al. (2013)38

A: SSU, 
LSU, 
ITS W

Illumina MiSeq 
Illumina HiSeq

14 Fungi: Soil

�e metagenomic shotgun and amplicon approaches 
performed similarly for identi�cation of most fungal classes. 
WGS was far inferior in detecting OTUs and identifying 
species than the amplicon approach using internal transcribed 
spacers (ITS) as an amplicon target. �is was largely due to 
low (0.005% of DNA) and uneven recovery of fungal rDNA 
sequences, and lacking fungal data in the reference databases. 
�is “identi�cation bias” was very di�cult to quantify or 
compare among studies.

Tedersoo, L. et 
al. (2015)12

W
454, Illumina GA-II 
(HiSeq)

1

Bacteria: 
Freshwater 
planktonic 
community

�e two platforms performed similarly as 90% of the 
microbial taxa from the two methods overlapped and the 
abundance of taxa as determined by the two approaches 
was highly correlated (R2 = 0.9). While Illumina recovered 
longer & more accurate contigs and 14% more complete 
genes; pyrosequencing might be superior for resolving 
sequences with repetitive structures or palindromes, and for 
metagenomic studies based on unassembled reads. Illumina 
HiSeq seemed to perform similarly to GA-II.

Luo, C. et al. 
(2012)6

W
PacBio RS, Ion 
Torrent, Illumina GA-
IIx, HiSeq, MiSeq

4 genomes Bacteria: 4 species

Paci�c Biosciences RS needed far more DNA, but may be 
useful for studies focused on de novo sequencing, alternative 
splicing or epigenetics. It featured read lengths an order 
of magnitude higher than the other platforms (average: 
1500 bases) and insert sizes of up to 10 kb. �is read length 
combined with a very high raw error rate of 13% led to 0% 
of reads being error-free (75% and 15% for Illumina and Ion 
Torrent, respectively), which complicated single nucleotide 
polymorphism (SNP) calling. �e errors were evenly 
distributed, though, while Illumina had higher error rates a�er 
long homopolymer tracts and the GGC motif. Ion Torrent 
failed at sequencing homopolymer tracts, had strand-speci�c 
errors, and severe coverage bias for AT-rich genomes.

Quail, M. A. et 
al. (2012)39

Table 1. Summary of studies comparing di�erent NGS sequencing strategies and sequencing platforms. In 
the Strategy column abbreviations are A = 16S amplicon, C = clonal ampli�cation, W = WGS shotgun, and 
W* = WGS where SSU sequences are extracted and used.



www.nature.com/scientificreports/

4SCIENTIFIC REPORTS | 7: 6589 | DOI:10.1038/s41598-017-06665-3

to premature sequence termination, as compared to Illumina8. However, the right choice of analysis pipeline can 
sometimes ameliorate di�erences between these sequencing technologies9.

By far the most common comparison is shotgun vs. amplicon10–15. Shotgun approaches regularly infer more 
diversity than amplicon2, 10, 11, 14. �ese studies use sample sizes ranging from 1–51, with an average of 11 samples 
(Table 1). In the present study we compare amplicon and shotgun analyses of 49 samples from across the principal 
river �oodplain systems in Brazil16. Ecological metadata associated with all 49 samples allows us to compare the 
impact of sequencing platform on ecological interpretations, which has only minimally been explored previously.

Results
Overall Taxonomic Comparison. Amplicon sequences were classified into 20 phyla while shotgun 
sequences were classi�ed into only nine. Eight of the nine phyla recognized by shotgun were also recognized 
from amplicons. Deinococcus-�ermus is the only unique phylum to the shotgun results and is only detected at 
one site out of 49. Furthermore, it was not found in global comparisons of freshwater bacteria16, 17, suggesting that 
further exploration is needed to determine if this is a false positive.

Figure 1 shows strongly contrasting proportions of phyla per sample for the two sequencing approaches, 
with only two phyla dominating the shotgun identifications. While both approaches had sequences classi-
�ed as Bacteroidetes, the amplicon approach detects higher proportions of this phylum. �is bias is also seen 
for Actinobacteria and Firmicutes. �e most evident similarity of the two approaches is that Proteobacteria, 
Actinobacteria, and Cyanobacteria are found as major components of the identi�ed sequences.

Results of the family-level classi�cation reveal even less overlap between the two approaches. �e amplicon 
approach results in classi�cation of 56 families, while the shotgun approach recognizes 41 families, but only 18 
families show overlap between the two strategies. Di�erences in the percentages of families detected using the 
two sequencing approaches are striking (Fig. 1). Several families, however, are similarly recognized as major com-
ponents of each sample by the two approaches - Burkholderiaceae, Comamonadaceae, and Methylophilaceae.

Figure 1. Bar plots showing the proportion of reads of the 49 samples in this study at the phylum (top) and 
family (bottom) levels, comparing the shotgun (le�) and amplicon (right) techniques. �e samples in both 
phylum-level and family-level panels are sorted on the percentage of Proteobacteria and Cyanobacteria Family 
II, respectively, in the shotgun data set.
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�ere are over 50 phyla represented in the whole genome database, which currently contains over 83,000 fully 
sequenced prokaryotic genomes. �ese genomes show the upper extent of species representation that would be 
available for searching in any of the currently available classi�cation programs. We examined the distribution of 
phyla found in our samples for both the amplicon and shotgun approaches in the context of these fully sequenced 
genomes. Supplementary Figure 1 shows the phyla available in the National Institutes of Health (NIH) genome 
database, while highlighting those found using either amplicon or shotgun sequencing that are also in this data-
base. Of the 20 phyla we identi�ed in the amplicon based study, 16 have phyla members with whole genomes 
sequenced in the NIH database. �e four phyla identi�ed using the amplicon approach that do not have whole 
genome sequences in the NIH database are Aminicenantes, Latescibacteria, Parcubacteria, and Saccharibacteria. 
All nine shotgun-identi�ed phyla have representatives with whole genomes sequenced (17 phyla have data avail-
able for MetaPhlAn).

We next compared the overall composition of phyla in the 49 samples for shotgun and amplicon-derived 
sequences to global datasets of lake bacteria (Fig. 2). We found strong congruence between the amplicon results 
and those from all prior amplicon research across the globe. While there is overlap in some of the major phyla in 
lake systems, the shotgun approach detects di�erent proportions of these phyla that are dissimilar to known fresh-
water systems. Speci�cally, the shotgun approach detects higher proportions of Proteobacteria and Cyanobacteria 
than the amplicon approach conducted here, the Newton study17, and our prior global amplicon-based com-
parison16, with the exception being somewhat similar levels of Proteobacteria in our prior global amplicon 
comparisons.

Impact on Ecological Inference. In order to assess the impact of the two sequencing strategies on ecolog-
ical inferences, we compared both datasets using a variety of standard comparisons used in community ecology, 
focusing on taxonomic richness, taxonomic abundance, and community composition. Our simplest comparison 
for sequencing strategy – box and whisker plots of taxonomic richness across each of the river �oodplain systems 
– revealed clear di�erences (Fig. 3). Each river �oodplain system had lower taxonomic richness from shotgun 
sequencing, which corresponds with the overall richness �ndings mentioned above. However, more notable is 
that in the amplicon results, the Pantanal stands out based on taxonomic richness. �is pattern is not recovered 
with shotgun sequencing. In fact, shotgun sequencing at the family level hints at the Paraná being slightly richer.

Heatmaps show the abundance of taxa at each site to be more homogenous in shotgun sequences (Fig. 4). �is 
is partially a re�ection of fewer taxa being found with this method, as noted in the comparisons above. However, 
Cyanobacteria and Proteobacteria at the phylum level particularly drive this pattern, as is further re�ected by the 
accompanying cluster diagrams.

Nonmetric multidimensional scaling (NMDS) analyses for both the amplicon and shotgun approach do not 
result in any of the four river �oodplain systems in the study being particularly distinct (Fig. 5). �e environ-
mental variables signi�cantly corresponding with the ordinations are only somewhat similar between amplicon 
and shotgun approaches both in terms of which variables are signi�cant and how they align with the ordination 
(Supplementary Table 1). Notably there are many more environmental correlates in the shotgun dataset, while 
variables signi�cant for amplicon-generated sequences represent a subset of those found with shotgun.

Figure 6 depicts Procrustes tests of the NMDS ordinations produced for the two data sets: signi�cant correla-
tion of the sequencing strategies was found, but it was weak given their use of the same extracted DNA. �e �ner 
scale family level comparisons are more similar, despite the actual taxa named for each sequencing strategy at the 
family level having poor overlap.

To get a further sense of the quality of the datasets and to compare the strength of their correspondence to one 
another, we compared each dataset (amplicon or shotgun) to themselves using the phylum and family level identi-
�ers. �is showed much stronger congruences for the amplicon dataset than the shotgun dataset. �e correlation 
was only slightly stronger for the shotgun comparison than it was for the family level comparison of shotgun vs. 
amplicon, whereas the amplicon comparisons at the phylum and family level were about twice as strong as the 
comparisons between sequencing methods.

Quality Assessments of Analyses. Our comparisons verifying the quality of our data showed our sam-
pling was thorough. Following QC of the 454 GS Junior generated sequences, 346,042 reads were moved down-
stream. �is number is only a small fraction of the reads generated by the Illumina HiSeq 2500, which, a�er QC, 
was ~575 M reads (averaging 12 M pairs of 125 × 125 bp reads per sample). Despite the discrepancies in read 
count, on a per site basis, it was clear that rarefaction curves reached their asymptotes consistently, indicating 
that read depth was likely su�cient for both methods, given these taxonomic classi�ers (Fig. 7A). �e asymptotes 
are higher and more consistent in taxon richness for the amplicon data. For example, the shotgun data for both 
taxonomic levels revealed approximately one third of the taxon richness found from amplicons, corroborating 
our comparisons of taxon richness above.

�ese rarefaction results are further borne out by the species accumulation curves, where both methods at 
each taxonomic level have generally reached their asymptote (Fig. 7B). �e amplicon data reached full asymptotes 
with around 10 sites, showing that the method has robust taxonomic sampling even for small numbers of sites. In 
contrast, the shotgun asymptotes never fully level out, indicating that a large number of sites would be necessary 
to have a robust taxonomic sample. �is is further indicated by our estimates of true taxon richness, which found 
that, while still lower than amplicon richness, true taxon richness is notably higher with shotgun than could be 
found with the total sites used in this study (Supplementary Table 2); also note the predictions for shotgun data 
have a high degree of uncertainty.

http://1
http://1
http://2
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Discussion
Our study compares the e�cacies of the two NGS sequencing strategies used for eDNA studies (amplicon vs. 
shotgun) over one of the largest datasets of environmental samples to date. We found the amplicon approach 
was far more discerning in almost all respects, contrasting general dogma in the �eld and all but one of eleven 

Figure 2. Bar plots of the summed proportion of reads (on Y axis) at the phylum level for the two sequencing 
strategies we have used to review Brazilian sites (labeled as 454 amplicon and Illumina shotgun) and the 
global comparisons of the meta-analysis17 (Newton) and our prior global amplicon comparisons16 (Global). 
�e color code for phyla in the plots is given at the bottom of the �gure. Taxonomic nomenclature follows 
that in the RDP. Note that several of these phyla have since been formally named: TM7 = Saccharibacteria; 
SR1 = Absconditabacteria; OP10 = Armatimonadetes; OD1 = Parcubacteria.
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empirical studies in Table 1 that compared these strategies. Unlike our study, that contrasting study di�ered pri-
marily because of issues with fungal rDNA recovery and de�cient databases, rather than due to the systematic 
biases of the method12.

Our study showed weak correlation between the two methods, indicating that while taxonomic overlap exists 
at both the phylum and family levels the methods are substantially di�erent. Under half the phyla identi�ed 
from amplicons were found with shotgun; almost all of the phyla recognized by the shotgun approach were also 
recognized by the amplicon approach. About 30% fewer families were identi�ed from shotgun. �is superior 
performance from amplicons comes despite having <1% of the total reads produced from shotgun. �e amplicon 
results were also far more consistent with prior research on the biodiversity of freshwater systems (Fig. 2). In 
addition, the Procrustes tests indicated that there is only weak correlation for community composition between 
the two sequencing strategies using NMDS.

�e key di�erence between the amplicon and shotgun derived data in our study was taxonomic breadth and 
abundance, whether looking at the overall results or site-by-site. �e lower taxon counts for shotgun sequencing 
appear to be due to issues inherent to the shotgun technique, as well as to the database size. As genome databases 
are continuously improving and expanding in size, this problem should become less signi�cant. New approaches 
in multi-enzyme and mechanical shotgun extraction and sequencing techniques may also help18. Additionally, 
shotgun sequencing is complicated by having many reads map to unknown species, which reduces the number of 
taxonomically-applicable reads (o�en the majority of reads), and this issue may be more problematic in complex 
environments such as river basins.

�e fundamental issue with the shotgun technique was that taxon richness reached an asymptote on a per 
site basis at low and unpredictable levels, as compared to amplicon results (Fig. 7A). While this high degree of 
variability can potentially be overcome by using a large number of sites (note the high variance in total predicted 

Figure 3. Box-and-whisker plots of shotgun vs. amplicon sequencing strategies showing taxon richness at the 
phylum and family levels. Boxes are middle quartiles divided by the medians, whiskers are 1.5x the interquartile 
range, and dots are outliers.
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taxa in Supplementary Table 2 and the longer asymptote in Fig. 7B), this is not particularly helpful, as it is a funda-
mental goal in biodiversity studies to get at the true richness and abundance of organisms at each individual site. 
Yet, the environmental correlates were greater with the shotgun data (more below). �e rarefaction asymptotes 
of Fig. 7A indicate that further sequencing is unlikely to provide additional insight on a per site basis, at least 
when using MetaPhlAn2. In contrast, some studies have shown that a greater sequencing depth can be useful 
for the detection of rare species; unfortunately, it generally comes at the cost of shorter reads that are frequently 
misaligned - a process that leads to an in�ation of both species count and diversity estimates4, 14, 19.

As for genomic databases, even for microbes, they are in their infancy11, 12, 20. While genomes deposited in 
these databases are increasing at an astonishing pace, they have a long way to go15. �is is especially true when 
compared to the well-curated 16S microbial databases like RDP21, SILVA22, and Greengenes23. �is appears to be 
less of a problem in studies on well-characterized systems like the human microbiome (Table 1).

By de�nition, all nine of the phyla recognized in the shotgun dataset have whole genome sequences in the 
database. On the other hand, the 20 amplicon phyla determinations use 16S rDNA sequences to make the iden-
ti�cations, so not all of them necessarily have sequences in the whole genome database. Indeed, only 80% of the 
phyla identi�ed using the 16S amplicon approach also have whole genomes sequenced from members of those 

Figure 4. Heatmaps of shotgun vs. amplicon sequencing strategies showing taxon abundance at the phylum 
and family levels. Please note that data were double standardized for better visualization of low abundance taxa 
and because this is common for ordinations.

http://2
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phyla (Supplementary Fig. 1), leaving us with only a minor taxonomic overlap between databases. �is discrep-
ancy at the phylum level clearly entails a massive lack of resolution at �ner taxonomic levels (e.g., for families 
reviewed here). Missing a single phylum is disconcerting, let alone 20% of phyla.

Given the 16S vs. genome database discrepancy, many shotgun sequences are surely assigned to inappropriate 
taxa. �ese incorrect IDs are most likely close relatives of taxa that have sequenced genomes. �us, the IDs may 
still have some merit based on the fact that closely related taxa generally have phylogenetically constrained traits 
that make them more similar (ecologically, physiologically, etc.) to one another than to more distant relatives24. 
However, ecological analyses using higher taxa as surrogates for species achieve variable results depending on 
the types of input data25. In microbial communities, functional diversity cannot be directly predicted from phy-
logenetic diversity. For example, while in the macroscopic world it is an accepted paradigm that an ecosystem 
with a low level of taxonomic richness will also have a reduced functional diversity, this does not seem to apply 
to microbial communities20.

Because of the putative cases of mistaken identity with shotgun sequencing, we chose not to use UniFrac 
or any of its derivative distances (e.g., weighted and generalized; see ref. 26) for community level analyses. For 
microbial eDNA community ecology, multivariate analysts now generally favor these phylogenetically adjusted 
measures rather than simply considering taxa as independent entities. However, without highly accurate iden-
ti�cations, accounting for a speci�c phylogeny makes little sense: recall that only half the amplicon-recovered 
phyla were found with shotgun, indicating that many shotgun sequences were identi�ed to incorrect phyla - a 
phylogenetically gigantic distance.

�e biases of close, but not exact, identi�cations are almost surely less extreme when considered as fully inde-
pendent entities (i.e., not using UniFrac, but more traditional non-phylogenetic distance matrices). Considering 

Figure 5. NMDS plots for datasets from the shotgun and amplicon techniques for the family and phylum level. 
Color codes for sites and con�dence ellipses are as follows: black = Amazon, red = Araguaia, green = Pantanal, 
and blue = Paraná. Blue arrows indicate environmental variables that correlate to ordinations. See 
Supplementary Table 1 for a list of expanded environmental variable names.

http://1
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taxa as fully independent entities is standard for community ecology of large eukaryotic organisms. Yet, despite 
the acceptability of both methods, it is still a notable di�erence that shotgun data should not – in our opinion 
– rely on phylogenetically accountable methods until the databases become larger and the tools more sensitive.

�roughout our study we focused on commonly used bioinformatic pipelines. While the RDP appears to 
work well for amplicons, our �ndings of MetaPhlAn having lower quality results for shotgun could be called into 
question. However, MetaPhlAn is one of the most popular taxonomic categorizers; for instance, it was used in 
the Human Microbiome Project27. More importantly, it relies on clade-speci�c marker genes, which is crucially 
important for accurate identi�cations in bacterial biodiversity studies and is a common algorithmic approach. 
We believe that current practices for analyzing shotgun data that do not use clade-speci�c markers may be inap-
propriate for bacterial taxonomic identi�cations. Future studies should compare less conservative approaches, 
such as PhyloSi�28.

Due to conjugation, horizontal gene transfer is rampant in bacteria. It is equally well established that there is 
a core set of genes across bacteria that are highly conserved and rarely transferred; this is generally referred to as 
the core genome29. While amplicon-derived analyses take advantage of a single gene in the core genome, shotgun 
relies on genes across the entire genome. Accordingly, the analytics of shotgun will inevitably lead to avoidable 
misidenti�cations if based around genes not found in the core genome. �is is a major problem for biodiversity 
and ecology studies, as con�dent identi�cations are paramount. Future shotgun analytics can therefore bene�t 
from limiting taxonomic identi�cations to sequences from the core genome or clade-speci�c marker genes (as 
done by MetaPhlAn30, 31.

Figure 6. Procrustes visualizations of NMDS plots compared at the phylum and family levels for the amplicon 
vs. shotgun approaches, as well as comparisons of amplicon or shotgun at both taxonomic levels. Test statistics 
for Procrustes tests are presented for each comparison.
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Furthermore, while our results could be confounded by the fact that we sequenced amplicons via 454 and 
shotgun via Illumina, we found the majority of studies in Table 1 comparing the amplicon procedure for 454 vs. 
Illumina agree that these sequencing platforms give highly similar results. Additionally, while Illumina is the 
dominant NGS platform, amplicon and shotgun studies generally use di�erent Illumina platforms to meet their 
goals (e.g., HiSeq and MiSeq, respectively; see Table 1). �us, we believe that our results and comparisons are 
valid. It is also worth noting that if there were to be an issue with one of these sequencers, it would be assumed 
that it would be the 454, as it had fewer than 1% of the reads sequenced for Illumina (as expected) - making our 
results akin to a �sherman with a single �shing rod catching more �sh than a commercial trawler.

�e only result that is agnostic towards (or at least di�cult to interpret for) shotgun or amplicons was in 
regards to the environmental correlates of the NMDS ordinations (Supplementary Table 1, Fig. 5), which found 
shotgun to have more signi�cant variables associated with certain metadata. While this could be in favor of shot-
gun, it is unlikely as the input matrix was so depauperate in terms of taxon richness and evenness across taxa. 
More likely, this result could be due to a more simpli�ed ordination space that is largely driven by clear divisions 
by site for a few taxa, as exempli�ed by the heat maps (Fig. 4). More correlates were found for the phylum level in 
both sequencing methods, further supporting the idea that the ordinations driven by fewer taxa could be increas-
ing the number of correlates we found. It is also worth noting that for more thoroughly researched microbial 
�oras that have many genomes sequenced, the shotgun system may outperform the amplicon-based approaches 
as it will provide useful data for a larger array of questions. �is already might be the case for urban environments 
or the human microbiome32.

While both amplicon and shotgun sequencing methods have their own advantages for microbial studies, 
amplicon sequencing was clearly superior for the goals of microbial eDNA community ecology in the reviewed 
lakes of �oodplain systems from Brazil. Further studies should strive for comparisons of even larger datasets 
across a greater number of habitats, as there can be major di�erences in conclusions drawn based on the type 
of sequencing conducted33. At this point, any large scale studies should at minimum conduct pilot comparisons 
between these techniques to choose the more appropriate option.

Methods
Sample Collection and DNA Isolation. �e samples compared in this study were analyzed with the 454 
amplicon approach in a previous publication16 and detailed information on the collection of the samples can 
be obtained from that publication. We used the DNA isolated from the water samples in our prior work16 for 
comparative sequencing with Illumina-generated shotgun data. Speci�cally, we matched 49 of the amplicon 
sequenced samples from our prior study (58 total) with the shotgun data generated here. �e list of samples is 
provided in Supplementary Table 3. Environmental data were also recorded for each site, as detailed in our prior 
work16.

Amplicon Library Preparation. 454 library construction, primer design targeting a speci�c segment of the 
16S rRNA gene (per the Earth Microbiome Project), and work up of amplicons (i.e., ampli�cation and sequenc-
ing) are as detailed in our previous work16.

Shotgun Library Preparation. DNA fragments were prepared into sequencing libraries according 
to modified manufacturer’s standard protocols, using the TruSeq Nano DNA library preparation protocols 

Figure 7. Comparisons of the sampling e�orts for amplicon and shotgun sequence data at the phylum and 
family levels using (A) rarefaction curves for individual sites and (B) species accumulation curves for the 49 
total sampling sites in Brazil.
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(FC-121-4001) and the QIAGEN Gene Reader DNA Library Prep I Kit (cat. no. 180984). 50–100 ng of sample 
DNA went through Covaris fragmentation to ~500 nucleotides. AMPure XP beads were used for size selection 
(removal of small fragments <200 bp) and removal of excess reagents. DNA was end-repaired to create blunt ends 
on both 3′ and 5′ ends. �en A-tailing, or the addition of dATP to the 3′ end, was carried out, which increases 
the stability of the DNA fragments, prevents concatamer formation, and enables ligation to occur with a comple-
mentary T nucleotide found on indexes. Next, the DNA fragments were tagged with index ligation tags. Eighteen 
cycles of Polymerase Chain Reaction (PCR) were then used to amplify sample DNA fragments. An AMPure XP 
bead wash was then used to purify DNA libraries. Fragments were visualized on a BioAnalyzer 2100 to check 
quality and average nucleotide length and concentration was measured by Qubit quanti�cation (ng/uL).

Sequencing. Using HiSeq (v4) SBS chemistry, we multiplexed 24 samples per lane on a HiSeq 2500 and 
processed the raw data using the Illumina RTA so�ware and CASAVA 1.8.2. All samples were then checked for 
standard CASAVA QC parameters (all reads pass �lter). Speci�cally, all samples had high (>Q20) quality values 
at the median base, low percent alignment to PhiX (<1%), and similar insert size (550 ± SD of 70 bp).

Sequence Trimming and Quality Control. �e amplicon analysis pipeline is described in our prior 
work16. Concisely, we used a multi-tiered approach to assure the quality of downstream sequence data. We demul-
tiplexed the sequences and implemented �ve standard 454 quality �lters on the GS Junior (Dot, Mixed, Signal 
Intensity, Primer and TrimBack Valley). �erea�er, s�_extract (http://bioinf.comav.upv.es/s�_extract/index.
html) was used to create .fasta, .fasta.qual, .fastq, and .xml �les. Low quality reads were removed and key/adaptor 
sequences were clipped using s�_extract. �e results of this �ltering were visualized using FastQC (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/). Two binaries, FASTQ/A Trimmer and FASTQ Quality Trimmer 
(part of the FASTX toolkit; http://hannonlab.cshl.edu/fastx_toolkit/), were used to further trim low-quality 
regions. �e �nal data set consisted of sequences with bases having a Phred quality score ≥ 25.

Taxonomic Classification of Sequences. Diversity at the family and phylum levels for the 454 data set 
was assessed as in our prior work16. Succinctly, we used the RDP categorizer to obtain classi�cations at broad 
(phylum) and narrow (family) levels of taxonomic diversity; please see the Discussion section and our prior 
work16 for an explanation of why �ner (i.e., genus and species level) taxonomic resolution may be inappropriate. 
Over 50 phyla and 350 families are assessed by the RDP categorizer34. MetaPhlAn (v2.0)30, 31 was used to analyze 
the shotgun data. Samples were run with the –ignore viruses parameter to �lter out reads matching to phiX that 
is spiked during some library preparation procedures and becomes a contaminant in the microbiome analysis.

Comparisons of Amplicon and Shotgun Sequences. Results from each method were summarized in 
several formats. Percentages of reads by taxon were visualized for both phyla and family levels. Since our samples 
are from lakes of �oodplain systems, we compared their taxonomic distributions to a major survey of lake micro-
biota17 as well as our prior survey of freshwater microbiota16. Heatmaps with site and taxon cluster diagrams were 
produced for each method using the “heatmap” function in R35. Species richness was calculated and visualized 
with box-and-whisker plots in R. To compare the sequence quality in further detail, we produced species accumu-
lation curves (using “specaccum”), rarefaction curves (using “rarefy”), and estimates of true taxon richness (using 
“specpool”) in R with the vegan package36.

To compare community level di�erences between those taxa identi�ed with each sequencing method, NMDS 
ordinations were constructed using function “metaMDS” from the vegan package in R36; default settings were 
used except trymax = 10,000. For simplicity between comparisons, two-dimensional ordinations were selected. 
Environmental vectors were �t to the ordination results using “env�t” (vegan). Separation of �oodplains was 
tested with PERMANOVA analyses conducted with the “adonis” function (vegan). Non-randomness was tested 
between the two ordination results with “protest” (vegan); this was visualized with the “procrustes” function 
(vegan). �e last three analyses mentioned use permutations; to increase their accuracy total permutations were 
increased to 9,999.

Data Availability Statement. We deposited all 454 sequence data from16 in NCBI’s Short Read Archive 
under BioProject ID PRJNA310230 and all Illumina data were deposited under BioProject ID PRJNA389803.
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