
Methods

Large-scale directed network inference
with multivariate transfer entropy and

hierarchical statistical testing

Leonardo Novelli 1, Patricia Wollstadt 2,∗, Pedro Mediano 3,
Michael Wibral 4, and Joseph T. Lizier 1

1Centre for Complex Systems, Faculty of Engineering, The University of Sydney, Sydney, Australia
2Honda Research Institute Europe, Offenbach am Main, Germany

3Computational Neurodynamics Group, Department of Computing, Imperial College London, London, United Kingdom
4Campus Institute for Dynamics of Biological Networks, Georg-August University, Göttingen, Germany

∗First authors contributed equally to this work.

Keywords: Neuroimaging, Directed connectivity, Effective network, Multivariate transfer entropy,
Information theory, Nonlinear dynamics, Statistical inference, Nonparametric tests

ABSTRACT

Network inference algorithms are valuable tools for the study of large-scale neuroimaging
datasets. Multivariate transfer entropy is well suited for this task, being a model-free measure
that captures nonlinear and lagged dependencies between time series to infer a minimal
directed network model. Greedy algorithms have been proposed to efficiently deal with
high-dimensional datasets while avoiding redundant inferences and capturing synergistic
effects. However, multiple statistical comparisons may inflate the false positive rate and are
computationally demanding, which limited the size of previous validation studies. The
algorithm we present—as implemented in the IDTxl open-source software—addresses these
challenges by employing hierarchical statistical tests to control the family-wise error rate and
to allow for efficient parallelization. The method was validated on synthetic datasets
involving random networks of increasing size (up to 100 nodes), for both linear and
nonlinear dynamics. The performance increased with the length of the time series, reaching
consistently high precision, recall, and specificity (>98% on average) for 10,000 time
samples. Varying the statistical significance threshold showed a more favorable
precision-recall trade-off for longer time series. Both the network size and the sample size are
one order of magnitude larger than previously demonstrated, showing feasibility for typical
EEG and magnetoencephalography experiments.

INTRODUCTION

The increasing availability of large-scale, fine-grained datasets provides an unprecedented op-
portunity for quantitative studies of complex systems. Nonetheless, a shift toward data-driven
modeling of these systems requires efficient algorithms for analyzing multivariate time series,
which are obtained from observation of the activity of a large number of elements.

In the field of neuroscience, the multivariate time series typically obtained from brain record-
ings serve to infer minimal (effective) network models which can explain the dynamics of the
nodes in a neural system. The motivation for such models can be, for instance, to describe a
causal network (Ay & Polani, 2008; Friston, 1994) or to model the directed information flow
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Large-scale network inference with multivariate transfer entropy

in the system (Vicente et al., 2011) in order to produce a minimal computationally equivalent
network (Lizier & Rubinov, 2012).

Information theory (Cover & Thomas, 2005; Shannon, 1948) is well suited for the latter
motivation of inferring networks that describe information flow as it provides model-free mea-
sures that can be applied at different scales and to different types of recordings. These mea-
sures, including conditional mutual information (Cover & Thomas, 2005) and transfer entropy
(Schreiber, 2000), are based purely on probability distributions and are able to identify non-
linear relationships (Paluš et al., 1993). Most importantly, information-theoretic measures al-
low the interpretation of the results from a distributed computation or information processing
perspective, by modeling the information storage, transfer, and modification within the system
(Lizier, 2013). Therefore, information theory simultaneously provides the tools for building the
network model and the mathematical framework for its interpretation.

The general approach to network model construction can be outlined as follows: for any
target process (element) in the system, the inference algorithm selects the minimal set of pro-
cesses that collectively contribute to the computation of the target’s next state. Every process
can be separately studied as a target, and the results can be combined into a directed network
describing the information flows in the system. This task presents several challenges:

The state space of the possible network models grows faster than exponentially with
respect to the size of the network;
Information-theoretic estimators suffer from the “curse of dimensionality” for large sets
of variables (Paninski, 2003; Roulston, 1999);
In a network setting, statistical significance testing requires multiple comparisons. This
results in a high false positive rate (type I errors) without adequate family-wise error rate
controls (Dickhaus, 2014) or a high false negative rate (type II errors) with naive control
procedures;
Nonparametric statistical testing based on shuffled surrogate time series is computation-
ally demanding but currently necessary when using general information-theoretic esti-
mators (Bossomaier et al., 2016; Lindner et al., 2011).

Several previous studies (Faes et al., 2011; Lizier & Rubinov, 2012; Sun et al., 2015; Vlachos
& Kugiumtzis, 2010) proposed greedy algorithms to tackle the first two challenges outlined
above (see a summary by Bossomaier et al., 2016, sec 7.2). These algorithms mitigate the curse
of dimensionality by greedily selecting the random variables that iteratively reduce the uncer-
tainty about the present state of the target. The reduction of uncertainty is rigorously quantified
by the information-theoretic measure of conditional mutual information (CMI), which can also
be interpreted as a measure of conditional independence (Cover & Thomas, 2005). In partic-
ular, these previous studies employed multivariate forms of the transfer entropy, that is, con-
ditional and collective forms (Lizier et al., 2008, 2010). In general, such greedy optimization
algorithms provide a locally optimal solution to the NP-hard problem of selecting the most
informative set of random variables. An alternative optimization strategy—also based on con-
ditional independence—employs a preliminary step to prune the set of sources (Runge et al.,
2012, 2018). Despite this progress, the computational challenges posed by the estimation of
multivariate transfer entropy have severely limited the size of problems investigated in previous
validation studies in the general case of nonlinear estimators, for example, Montalto et al.
(2014) used 5 nodes and 512 samples; Kim et al. (2016) used 6 nodes and 100 samples;
Runge et al. (2018) used 10 nodes and 500 samples. However, modern neural recordings
often provide hundreds of nodes and tens of thousands of samples.
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Large-scale network inference with multivariate transfer entropy

These computational challenges, as well as the multiple testing challenges described above,
are addressed here by the implementation of rigorous statistical tests, which represent the main
theoretical contribution of this paper. These tests are used to control the family-wise error rate
and are compatible with parallel processing, allowing the simultaneous analysis of the targets.
This is a crucial feature, which enabled an improvement on the previous greedy algorithms.
Exploiting the parallel computing capabilities of high-performance computing clusters and
graphics processing units (GPUs) enabled the analysis of networks at a relevant scale for brain
recordings—up to 100 nodes and 10,000 samples. Our algorithm has been implemented in

IDTxl:
The “Information Dynamics Toolkit
xl” is an open-source Python
package available on GitHub (see
Supporting Information).

the recently released IDTxl Python package (the “Information Dynamics Toolkit xl”; Wollstadt
et al., 2019).

We validated our method on synthetic datasets involving random structural networks of
increasing size (also referred to as ground truth) and different types of dynamics (vector auto-
regressive processes and coupled logistic maps). In general, effective networks are able to re-
flect dynamic changes in the regime of the system and do not reflect an underlying structural
network. Nonetheless, in the absence of hidden nodes (and other assumptions, including sta-
tionarity and the causal Markov condition), the inferred information network was proven to
reflect the underlying structure for a sufficiently large sample size (Sun et al., 2015). Experi-
ments under these conditions provide arguably the most important validation that the algorithm
performs as expected, and here we perform the first large-scale empirical validation for non-
Gaussian variables. As shown in the Results, the performance of our algorithm increased with
the length of the time series, reaching consistently high precision, recall, and specificity (>98%
on average) for 10,000 time samples. Varying the statistical significance threshold showed a
more favorable precision-recall trade-off for longer time series.

METHODS

Definitions and assumptions

Let us consider a system of N discrete-time stochastic processes for which a finite number of
samples have been recorded (over time and/or in different replications of the same experiment).
In general, let us assume that the stochastic processes are stationary in each experimental
time-window and Markovian with finite memory lM. Further assumptions will be made for theMarkovian with finite memory:

The present state of the target does
not depend on the past values of the
target and the sources beyond a
maximum finite lag lM.

validation study. The following quantities are needed for the setup and formal treatment of the
algorithm and are visualized in Figure 1 and Figure 2:

Target process Y : a process of interest within the system (where Y = {Yt | t ∈ N}); the
choice of the target process is arbitrary and all the processes in the system can separately
be studied as targets.

Source processes X i: the remaining processes within the system (where i = 1, . . . , N − 1 and
X i = {Xi,t | t ∈ N}).

Sample number (or size) T: the number of samples recorded over time.
Replication number R: the number of replications of the same experiment (e.g., trials).
Target present state Yt: the random variable (RV) representing the state of the target at time t

(where t ≤ T), whose information contributors will be inferred.
Candidate target past YC

<t: an arbitrary finite set of RVs in the past of the target, up to a max-
imum lag ltarget, i.e., Y C

<t = {Yt−1, . . . , Yt−ltarget}.

Candidate sources past XC
<t: an arbitrary finite set of RVs in the past of the sources, up to a

maximum lag lsources, i.e., XC
<t = {Xi,t−1, . . . , Xi,t−lsources | i = 1, . . . , N − 1}.

Selected target past Y S
<t: the subset of RVs within the candidate target past set YC

<t that max-
imally reduces the uncertainty about the present state of the target.
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Figure 1. Example of a possible definition of the candidate sets. The bottom row represents the
time series of the target process Y, with the present state Yt highlighted in green and the candidate
target past set YC

<t highlighted in red (up to a lag ltarget). The remaining rows represent the time
series of the source processes X i, with the candidate sources past set XC

<t highlighted in blue (up
to a lag lsources). For simplicity, only a single trial of the experiment is represented.

Selected sources past XS
<t: the subset of RVs within the candidate sources past set XC

<t that
maximally further reduces the uncertainty about the present state of the target, in the
context of the selected target past (explained in detail in the following section).

Inference Algorithm

For a given target process Y , the goal of the algorithm is to infer the minimal set of infor-
mation contributors to Yt—defined as the selected sources past XS

<t—in the context of the

Figure 2. Example of a resulting nonuniform embedding of the time series relevant to Yt. The
bottom row represents the time series of the target process Y , with the present state Yt highlighted
in green and the selected target past set YS

<t highlighted in red (as a subset of the candidate target
past set shown in light red). The remaining rows represent the time series of the source processes
X i, with the selected sources past set XS

<t highlighted in blue (as a subset of the candidate sources
past set shown in light blue). The embedding only specifies the relative lags between the variables.
For simplicity, only a single trial of the experiment is shown.
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relevant information contributors from the candidate target past set, defined as the selected
target past YS

<t.

The algorithm operates in four steps:

1. Select variables in the candidate target past set YC
<t to obtain Y S

<t.
2. Select variables in the candidate sources past set XC

<t to obtain XS
<t.

3. Prune the selected sources past variables.
4. Test relevant variables collectively for statistical significance.

The operations performed in the four steps are described in detail hereafter; the result is a
nonuniform embedding of the target and sources time series (Faes et al., 2011; Takens, 1981;Nonuniform embedding:

A set of nonuniformly spaced time
lags that captures the underlying
state of the process, akin to a
Takens’ embedding.

Vlachos and Kugiumtzis, 2010), as illustrated in Figure 2.

Step 1: Select variables in the candidate target past set. The goal of the first step is to find the
subset of RVs within the candidate target past set YC

<t that maximally reduces the uncertainty
about the present state of the target while meeting statistical significance requirements. Let Y S

<t
be the selected target past set found via optimization under these criteria.

Finding the globally optimal embedding is an NP-hard problem and requires testing all the
subsets of the candidate target past set. Since the number of subsets grow exponentially with
the size of the candidate set, this is computationally unfeasible; therefore, a greedy approxi-
mation algorithm is employed to find a locally optimal solution in the search space of possible
embeddings. This approach tackles the challenge of computational complexity by aiming at
identifying a minimal conditioning set; in doing so, it also tackles the curse of dimensionality
in the estimation of information-theoretic functionals.

The set Y S
<t is initialized as an empty set and it is iteratively built up via the following

algorithm:

a. For each candidate variable C ∈ YC
<t, estimate the CMI contribution I(C; Yt|YS

<t);
b. Find the candidate C∗ which maximizes the CMI contribution (reduction of uncertainty)

and perform a statistical significance test against the null hypothesis of conditional in-
dependence, that is, that the new variable does not further reduce the uncertainty in
the context of the previously included variables. If significant, add C∗ to Y S

<t and re-
move it from YC

<t. The maximum statistic is employed to control the family-wise error
rate (explained in detail in the Statistical Tests section);

c. Repeat the previous steps until the maximum CMI contribution is not significant or Y C
<t

is empty.

From a distributed, intrinsic computation perspective, the goal can be interpreted as finding
the embedding of the target’s past states that maximizes the active information storage (Lizier

Active information storage:
The mutual information between the
past and the present of the target:
I(YS

<t; Yt). et al., 2012) to ensure self-prediction optimality as suggested by Wibral et al. (2013). This
approach is similar to the one proposed by Garland et al. (2016) but uses nonuniform embed-
ding and additional statistical controls.

The nonuniform embedding of the time series was introduced by Vlachos and Kugiumtzis
(2010) and Faes et al. (2011), who used an arbitrary threshold for the conditional mutual in-
formation. Lizier and Rubinov (2012) introduced a statistical significance test to select the
candidates, which this study builds on in proposing the maximum statistic. In addition, they
embedded the target time series before embedding the sources, that is, the active information
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storage is modeled first and the information transfer is then examined in that context, thereby
taking a specific modeling perspective on the information processing carried out by the system.

Step 2: Select variables in the candidate sources past set. The goal of the second step is to find
the subset of RVs within the candidate sources past set XC

<t that maximally further reduces the
uncertainty about the present state of the target, in the context of the selected target past found
in the first step. Let XS

<t be the selected sources past set found via optimization under these
criteria.

As for step 1, a greedy approximation algorithm is employed, and the statistical significance
is tested throughout the selection process. XS

<t is initialized as an empty set and it is iteratively
built up via the following algorithm:

a. For each candidate variable C ∈ XC
<t, estimate the conditional transfer entropy contri-

bution I(C; Yt|Y S
<t, XS

<t) (Lizier et al., 2008, 2010; Vakorin et al., 2009; Verdes, 2005).
When XS

<t is empty, this is simply a pairwise or bivariate transfer entropy (Schreiber,
2000); using the conditional form serves to prevent candidates carrying only redundant
information (due to, e.g., common driver or pathway effects) from being selected, as well
as to capture synergistic interactions between C and XS

<t.
b. Find the candidate C∗ which maximizes the conditional transfer entropy contribution

(reduction of uncertainty) and perform a statistical significance test against the null hy-
pothesis of conditional independence: if significant, add C∗ to XS

<t and remove it from
XC

<t. The maximum statistic is employed to control the family-wise error rate.
c. Repeat the previous steps until the maximum conditional transfer entropy contribution

is not significant or XC
<t is empty.

From a distributed computation perspective, the goal can be interpreted as finding the
nonuniform embedding of the source processes’ past that maximizes the collective transfer
entropy to the target, defined as I(XS

<t; Yt|YS
<t) (Lizier et al., 2010). As above, the rationale

for embedding the past of the sources as a second step is to achieve optimal separation of the
storage and transfer contributions (Lizier & Rubinov, 2012).

Step 3: Prune the selected sources past variables. The third step of the algorithm is a pruning
procedure performed to ensure that the variables included in the early iterations of the second
step still provide a statistically significant information contribution in the context of the final
selected sources past set XS

<t. The pruning step involves the following operations:

a. For each variable C ∈ XS
<t, estimate the conditional mutual information contribution

I(C; Yt|Y S
<t, XS

<t \ {C}), where the set difference operation is performed to exclude the
variable C from the conditioning set;

b. Find the variable C∗ which minimizes the CMI contribution and perform a statistical sig-
nificance test: if not significant, remove C from XS

<t. The minimum statistic is employed
to test for significance against the null hypothesis of conditional independence while
controlling the family-wise error rate;

c. Repeat the previous steps until the minimum CMI contribution is not significant or XS
<t

is empty.

The pruning step was introduced by Lizier & Rubinov (2012); remarkably, Sun et al. (2015)
proved that this step is essential for the theoretical convergence of the inferred network to the
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causal network in the Granger-Wiener framework; they also rigorously laid out the mathemat-
ical assumptions needed for such convergence (see Validation Tasks section).

Step 4: Test relevant variables collectively for statistical significance. The fourth and final step of
the algorithm is the computation of the collective transfer entropy from the selected sources
past set XS

<t to the target and the performance of an omnibus test to ensure statistical signifi-
cance against the null hypothesis of conditional independence. The resulting omnibus p value
can further be used for correction of the family-wise error rate if the inference is carried out for
multiple targets. The set XS

<t is only accepted as a result if all the statistical tests are passed.
Importantly, the selected sources set XS

<t, inferred in the context of Y S
<t, is the final result of

the algorithm for a given target process Y . The order in which variables were inferred is not
relevant.

The statistical tests play a fundamental role in the inference and provide the stopping con-
ditions for the iterations involved in the first and second steps of the algorithm. These stopping
conditions are adaptive and change according to the amount of data available (the length of the
time series). Given their importance, the statistical tests are described in detail in the following
section.

Statistical Tests

The crucial steps in the inference algorithm rely on determining whether the CMI is positive.
However, due to the finite sample size, the CMI estimators may produce nonzero estimates in
the case of zero CMI, and it may even return negative estimates if the estimator bias is larger
than the true CMI (Kraskov et al., 2004; Roulston, 1999). For this reason, statistical tests are
required to assess the significance of the CMI estimates against the null hypothesis of no CMI
(i.e., conditional independence) (Chávez et al., 2003; Lindner et al., 2011; Lizier et al., 2011;
Vicente et al., 2011).

For certain estimators, analytic solutions exist for the finite-sample distribution under this
null hypothesis (see Lizier, 2014); in the absence of an analytic solution, the null distributions
are computed in a nonparametric way by using surrogate time series (Schreiber & Schmitz,
2000). The surrogates are generated to satisfy the null hypothesis by destroying the temporal
relationship between the source and the target while preserving the temporal dependencies
within the sources.

Finally, the inference algorithm is based on multiple comparisons and requires an appro-
priate calibration of the statistical tests to achieve the desired family-wise error rate (i.e., the
probability of making one or more false discoveries, or type I errors, when performing multiple
hypotheses tests). The maximum statistic and minimum statistic tests employed in this study
were specifically conceived to tackle these challenges.

Maximum statistic test. The maximum statistic test is a step-down statistical test used to controlStep-down statistical test:
A test which proceeds from the
smallest to the largest p value. When
the first non-significant p value is
found, all the larger p values are also
deemed not significant.

the family-wise error rate when selecting the past variables for the target and source embed-
dings, which involves multiple comparisons.

Let us first consider the first step of the main algorithm and assume that we have picked
the single candidate variable C∗ (from the candidate target past set YC

<t), which maximizes
the CMI contribution. The maximum statistic test mirrors this selection process by picking the
maximum value among the surrogates. Specifically, let I∗ := I(C∗; Yt|YS

<t) be the maximum
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contribution (i.e., the maximum statistic); the following algorithm is used to test I∗ for statistical
significance:

1. For each Cj ∈ Y C
<t, generate S surrogates time series C′

j,1, . . . , C′
j,S and compute the

corresponding surrogate CMI values I′j,1 = I(C′
j,1; Yt|YS

<t), . . . , I′j,S = I(C′
j,S; Yt|YS

<t).
More details about the surrogate generation are provided at the end of this section. The
number of surrogates S must be chosen according to the desired significance level αmax,
i.e., such that S > 1/αmax.

2. Compute the maximum CMI value over candidates I∗s := max(I′1,s, . . . , I′n,s) for each
surrogate s = 1, . . . , S. Here, n denotes the number of candidates and hence the number
of comparisons. The obtained values I∗1 , . . . , I∗S provide the (empirical) null distribution
of the maximum statistic (see Table 1).

3. Calculate the p value for I∗ as the fraction of surrogate maximum statistic values that are
larger than I∗.

4. I∗ is deemed significant if the p value is smaller than αmax (i.e., the null hypothesis of
conditional independence for the candidate variable with the maximum CMI contribu-
tion is rejected at level αmax).

The variables and quantities used in the above algorithm are presented in Table 1. The key
goal in the surrogate generation is to preserve the temporal order of samples in the target time
series Yt (which is not shuffled) and preserve the distribution of the sources Cj while destroying
any potential relationships between the sources and the target (Vicente et al., 2011). This can
be achieved in multiple ways. If multiple replications (e.g., trials) are available, surrogate data is
generated by shuffling the order of replications for the candidate Cj while keeping the order of
replications for the remaining variables intact. When the number of replications is not sufficient
to guarantee enough permutations, the embedded source samples within individual trials are
shuffled instead (see Chávez et al., 2003; Lizier et al., 2011; Verdes, 2005; Vicente et al., 2011;
and the summary by Lizier, 2014, Appendix A.5). Note that the generation of surrogates (steps
1-3) can be avoided when the null distributions can be derived analytically, for example, with
Gaussian estimators (Barnett & Bossomaier, 2012).

The same test is performed during the selection of the variables in the candidate sources
past set (step 2 of the main algorithm), with the only difference that Cj ∈ XC

<t and that XS
<t is

added to the conditioning set, that is, I′j,s = I(C′
j,s; Yt|YS

<t, XS
<t) for each surrogate s = 1, . . . , S.

Family-wise error rate correction. How does the maximum statistic test control the family-wise
error rate? Intuitively, one or more statistics will exceed a given threshold if and only if the

Table 1. Computing the null distribution of the maximum statistic. The null distribution is empirically described by the values I∗1 , . . . , I∗S ,
obtained as I∗s := max(I ′1,s, . . . , I ′n,s), for each surrogate s = 1, . . . , S. Here, n denotes the number of candidates and hence the number of
comparisons. The null distribution is used to test the significance of I∗ against the null hypothesis of zero CMI.

Variable CMI Surrogate variables Surrogate CMI

Cj ∈ YC
<t Ij = I(Cj; Yt|YS

<t) 1 2 · · · S 1 2 · · · S

C1 I1 C′
1,1 C′

1,2 · · · C′
1,S I′1,1 I′1,2 · · · I′1,S

C2 I2 C′
2,1 C′

2,2 · · · C′
2,S I′2,1 I′2,2 · · · I′2,S

...
...

...
...

...
...

...
...

Cn In C′
n,1 C′

n,2 · · · C′
n,S I′n,1 I′n,2 · · · I′n,S

max CMI I∗ I∗1 I∗2 · · · I∗S
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maximum exceeds it. This relationship can be used to obtain an adjusted threshold from the
distribution of the maximum statistic under the null hypothesis, which can be used to control
the family-wise error rate both in the weak and strong sense (Nichols & Hayasaka, 2003).

Let us quantify the false positive rate vFPR for a single variable when the maximum statistic
at the significance level αmax is employed. For simplicity, the derivation is performed under
the hypothesis that the information contributors to the target have been selected in the first
iterations of the greedy algorithm and removed from the candidate sources past set XC

<t. Under
this hypothesis, the target is conditionally independent of the remaining n variables in XC

<t
given the selected source and target variables. Let I1, . . . , In be the corresponding CMI estimates
and let Imax := max(I1, . . . , In) be the maximum statistic. As discussed above, the estimates
might be positive even under the conditional independence hypothesis, due to finite-sample
effects. Since the estimates are independently obtained from shuffled time series, they are
treated as i.i.d. RVs.

Let ithreshold be the critical threshold corresponding to the given significance value αmax,
that is, ithreshold := sup{x ∈ R|P(Imax ≥ x) = αmax}. Then

αmax = P (Imax > ithreshold)

= 1 − P (I1 ≤ ithreshold, . . . , In ≤ ithreshold)

= 1 −
n

∏
j=1

P
(

Ij ≤ ithreshold
)

= 1 − P (I1 ≤ ithreshold)
n

= 1 − (1 − vFPR)
n (1)

Therefore,

vFPR = 1 − (1 − αmax)
1/n (2)

Interestingly, Equation 2 shows that the maximum statistic correction is equivalent to the
Dunn-Šidák correction (Šidák, 1967). Performing a Taylor expansion of Equation 2 around
αmax = 0 yields:

vFPR =
∞

∑
j=1

−
j−1
∏

k=0
(kn − 1)

j!

(αtarget

n

)j
(3)

Truncating the Taylor series at j = 1 yields the first-order approximation

vFPR ≈ αmax

n
, (4)

which coincides with the false positive rate resulting from the Bonferroni correction (Dickhaus,
2014). Moreover, since the summands in Equation 3 are positive for every j, the Taylor series
is lower bounded by any truncated series. In particular, the false positive rate resulting from
the Bonferroni correction is a lower bound for the vFPR (the false positive rate for a single
variable resulting from the maximum statistic test), that is, the maximum statistic correction is
less stringent than the Bonferroni correction.

Let us now study the effect of the maximum statistic test on the family-wise error rate tFPR

for a single target while accounting for all the iterations performed during the step-down
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test, (i.e., tFPR is the probability that at least one of the selected sources is a false positive).
We have:

tFPR =
n

∑
j=1

P(“the source selected on step j is false positive”)

=
n

∑
j=1

α
j
max = αmax

(
1 − αn

max
1 − αmax

)
(5)

Therefore,

tFPR ≈ αmax (6)

for the typical small values of αmax used in statistical testing (even in the limit of large n), which
shows that αmax effectively controls the family-wise error rate for a single target.

Minimum statistic test. The minimum statistic test is employed during the third main step of
the algorithm (pruning step) to remove the selected variables that have become redundant in
the context of the final set of selected source past variables XS

<t, while controlling the family-
wise error rate. This is necessary because of the multiple comparisons involved in the pruning
procedure. The minimum statistic test works identically to the maximum statistic test (replacing
“maximum” with “minimum” in the algorithm presented above).

Omnibus test. Let T∗ := I(XS
<t; Yt|YS

<t) be the collective transfer entropy from all the se-
lected sources past variables XS

<t to the target Y . The value T∗ is tested for statistical signifi-
cance against the null hypothesis of zero transfer entropy (this test is referred to as the omnibus
test). The null distribution is built using surrogates time series obtained via shuffling of the re-
alizations of the selected sources (see Chávez et al. (2003); Lizier et al. (2011); Verdes (2005);
Vicente et al. (2011) and the summary by Lizier (2014, Appendix A.5)), i.e., using a similar
procedure to the one described in the Maximum statistic test section above. Testing all the se-
lected sources collectively is in line with the perspective that the goal of the network inference
is to find the set of relevant sources for each node.

Combining across multiple targets. When the inference is performed on multiple targets, the
omnibus p values can be employed in further statistical tests to control the family-wise error
rate for the overall network (e.g., via FDR-correction; Benjamini & Hochberg, 1995; Dickhaus,
2014; which is implemented in the IDTxl toolbox).

It is important to fully understand the statistical questions and validation procedure implied
by this approach. Combining the results across multiple targets by reusing the omnibus test
p values for the FDR-correction yields a hierarchical test. The test answers two nested questions:
(1) “which nodes receive any significant overall information transfer?” and, if any, (2) “what is
the structure of the incoming information transfer to each node?.” However, the answers are
computed in the reverse order, for the following reason: it would be computationally unfeasible
to directly compute the collective transfer entropy from all candidate sources to the target
right at the beginning of the network inference process. At this point, the candidate source set
usually contains a large number of variables so that estimation will likely fall prey to the curse
of dimensionality. Instead, a conservative approximation of the collective information transfer is
obtained by considering only a subset of the potential sources, that is, those deemed significant
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by the maximum and minimum statistic tests described in the previous sections. Only if this
approximation of the total information transfer is also deemed significant by the omnibus test
(as well as by the FDR test at the network level), then the subset of significant sources for that
target is interpreted post hoc as the local structure of the incoming information transfer. This
way, the testing procedure exhibits a hierarchical structure: the omnibus test operates at the
higher (global) level concerned with the collective information transfer, whereas the minimum
and maximum tests operate at the lower (local) level of individual source-target connections.

Compared with a nonhierarchical analysis with a correction for multiple comparisons across
all links (e.g., by network-wide Bonferroni correction or the use of the maximum statistic across
all potential links), the above strategy buys both statistical sensitivity (“recall”) and the possi-
bility to trivially parallelize computations across targets. The price to be paid is that a link with
a relatively strong information transfer into a node with nonsignificant overall incoming infor-
mation transfer may get pruned, while a link with relatively weaker information transfer into a
node with significant overall incoming information transfer will prevail. This behavior clearly
differs from a correction for multiple comparisons across all links. Arguably, this difference is
irrelevant in many practical cases, although it could become noticeable for networks with high
average in-degree and relatively uniform information transfer across the links. The difference
can be reduced by setting a conservative critical threshold for the lower-level greedy analysis.

Validation Tasks

For the purpose of the validation study, the additional assumptions of causal sufficiency and theCausal sufficiency:
The set of observed variables
includes all their common causes (or
the unobserved common causes have
constant values).

causal Markov condition were made, such that the inferred network was expected to closely

Causal Markov condition:
A variable X is independent of every
other past variable conditional on all
of its direct causes.

reflect the structural network for a sufficiently large sample size (Sun et al., 2015). Although
this is not always the case, experiments under these conditions allow the evaluation of the
performance of the algorithm with respect to an expected ground truth. An intuitive definition
of these conditions is provided here, while the technical details are discussed at length in
Spirtes et al. (1993). Moreover, the intrinsic stochastic nature of the processes makes purely
synergistic and purely redundant interactions unlikely (and indeed vanishing for large sample
size), thus satisfying the faithfulness condition (Spirtes et al., 1993).

The complete network inference algorithm implemented in the IDTxl toolkit (release v1.0)
was validated on multiple synthetic datasets, where both the structural connectivity and the
dynamics were known. Given the general scope of the toolkit, two dynamical models of broad
applicability were chosen: a vector autoregressive process (VAR) and a coupled logistic maps
process (CLM); both models are widely used in computational neuroscience (Rubinov et al.,
2009; Valdes-Sosa et al., 2011; Zalesky et al., 2014), macroeconomics (Lorenz, 1993; Sims,
1980), and chaos theory (Strogatz, 2015).

The primary goal was to quantify the scaling of the performance with respect to the size
of the network and the length of the time series. Sparse directed random Erdős-Rényi net-
works (Erdős & Rényi, 1959) of increasing size (N = 10 to 100 nodes) were generated with
a link probability p = 3/N to obtain an expected in-degree of 3 links. Both the VAR and the
CLM stochastic processes were repeatedly simulated on each causal network with increasingly
longer time series (T = 100 to 10000 samples), a single replication (or trial, i.e., R = 1), and
with 10 random initial conditions. The performance was evaluated in terms of precision, recall,
and specificity in the classification of the links. Further simulations were carried out to inves-
tigate the influence of the critical alpha level for statistical significance and the performance
of different estimators of conditional mutual information.
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Vector autoregressive process. The specific VAR process used in this study is described by the
following discrete-time recurrence relation:

Yt = βYt−1 + ∑
X∈XY

αX Xt−lX + ηt (7)

where XY denotes the set of causal sources of the target process Y and a single random lag
lX ∈ {1, 2, 3, 4, 5} was used for each source X ∈ XY . A Gaussian noise term ηt with mean
μ = 0 and standard deviation θ = 0.1 was added at each time step t; the noise terms added to
different variables were uncorrelated. The self-coupling coefficient was set to β = 0.5 and
the cross-coupling coefficients αX were uniform and normalized for each target such that
∑X∈XY

αX = 0.4. This choice of parameters guaranteed that the VAR processes were stable (the
resulting spectral radii were between 0.9 and 0.95) and had stationary multivariate Gaussian
distributions (Atay & Karabacak, 2006). As such, the Gaussian estimator implemented in IDTxl
was employed for transfer entropy measurements in VAR processes. Note that transfer entropy
and Granger causality (Granger, 1969) are equivalent for Gaussian variables (Barnett et al.,
2009); therefore, using the Gaussian estimator with our algorithm can be viewed as extending
Granger causality in the same multivariate/greedy fashion.

Coupled logistic maps process. The coupled logistic maps process used in this study is de-
scribed by the following discrete-time recurrence relations:

at = βYt−1 + ∑
X∈XY

αX Xt−lX

Yt = (4at(1 − at) + ηt) mod 1 (8)

At each time step t, each node Y computes the weighted input at as a linear combination of
its past value and the past of its sources, with the same conditions used for the VAR process
on the choice of the random lags lX and coupling coefficients β and αX . The value Yt is then
computed by applying the logistic map activation function f (x) = 4x(1 − x) to the weighted
input at and adding the Gaussian noise ηt with the same properties used for the VAR process.
Notice that the coefficient (r = 4) used in the logistic map function corresponds to the fully
developed chaotic regime. The modulo-1 operation ensures that Yt ∈ [0, 1] after the addition
of noise. The nearest-neighbor estimators were employed for transfer entropy measurements
in the analysis of the CLM processes (in particular, Kraskov’s estimator I(1) with k = 4 nearest
neighbors (Kraskov et al., 2004) and its extension to CMI Frenzel & Pompe, 2007; Gómez-
Herrero et al., 2015; Vejmelka & Paluš, 2008). Nearest-neighbor estimators are model-free and
are able to detect nonlinear dependencies in stochastic processes with non-Gaussian stationary
distributions; fast CPU and GPU implementations are provided by the IDTxl package.

RESULTS

Influence of Network Size and Length of the Time Series

The aim of the first analysis was to quantify the scaling of the performance with respect to the
size of the network and the length of the time series.

The inferred network was built by adding a directed link from a source node X to a target
node Y whenever a significant transfer entropy from X to Y was measured while building
the selected sources past set XS

<t (i.e., whenever X ∩ XS
<t 	= ∅). The critical alpha level for

statistical significance was set to αmax = 0.001 and S = 1000 surrogates were used for all
experiments unless otherwise stated. The candidate sets for the target as well as the sources
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were initialized with a maximum lag of five (i.e., ltarget = lsources = 5, corresponding to the
largest lag values used in the definition of the VAR and CLM processes).

The network inference performance was evaluated in comparison to the known underlying
structural network as a binary classification task, using standard statistics based on the number
of true positives (TP, i.e., correctly classified existing links), false positives (FP, i.e., absent links
falsely classified as existing), true negatives (TN, i.e., correctly classified absent links), and false
negatives (FN, i.e., existing links falsely classified as absent). The following standard statistics
were employed in the evaluation:

precision = TP/(TP + FP)
recall = TP/(TP + FN)

specificity = TN/(TN + FP)

The plots in Figure 3 summarize the results in terms of precision and recall, while the
specificity is additionally plotted in the Supporting Information. For both types of dynamics,
the performance increased with the number of samples and decreased with the size of the
network.

For shorter time series (T = 100 and T = 1000), the recall was the most affected perfor-
mance measure as a function of N and T, while the precision and the specificity were always
close to optimal (>98% on average). (Note that, while S = 1, 000 is minimal for αmax = 0.001,
recall was unchanged using S = 10, 000 for T = 100.) For longer time series (T = 10, 000),

Figure 3. Precision (top) and recall (bottom) for different network sizes, sample sizes, and dynamics. Left: Vector autoregressive process;
Right: Coupled logistic maps. Each subplot shows five curves, corresponding to different time series lengths (T = 100, 300, 1,000, 3,000,
10,000). The results for 10 simulations from different initial conditions are shown (low-opacity markers) in addition to the mean values (solid
markers). All the random networks have an average in-degree Np = 3.
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high performance according to all measures was achieved for both the VAR and CLM pro-
cesses, regardless of the size of the network. The high precision and specificity are due to
the effective control of the false positives, in accordance with the strict statistical significance
level αmax = 0.001 (the influence of αmax is further discussed in the following sections). The
inference algorithm was therefore conservative in the classification of the links.

Validation of False Positive Rate

The critical alpha level for statistical significance αmax is a parameter of the algorithm that is
designed to control the number of false positives in the network inference. As discussed in
the Statistical Tests section in the Methods, αmax controls the probability that a target is a false
positive, that is, that at least one of its sources is a false positive. This approach is in line with
the perspective that the goal of the network inference is to find the set of relevant sources for
each node.

A validation study was carried out to verify that the final number of false positives is consis-
False positive rate:
FP/(FP+ TN).

tent with the desired level αmax after multiple statistical tests are performed. The false positive
rate was computed after performing the inference on empty networks, where every inferred
link is a false positive by definition (i.e., under the complete null hypothesis). The rate was
in good accordance with the critical alpha threshold αmax for all network sizes, as shown in
Figure 4.

The false positive rate validation was replicated in a scenario where the null hypothesis
held for real fMRI data from the Human Connectome Project resting-state dataset (see
Supporting Information). The findings are presented in the Supporting Information, together
with a note on autocorrelation. Notably, the results on fMRI data are in agreement with the
results on synthetic data shown in Figure 4.

Figure 4. Validation of false positive rate for a single target (tFPR) on empty networks. The points
indicate the average false positive rate over 50 simulations of a vector autoregressive process
(T = 10,000). The horizontal marks indicate the corresponding 5th and 95th percentiles of the
expected range. These were computed empirically from the distribution of the random variable
〈Xj/N〉, where Xj ∼ Binomial(N, αmax) are i.i.d. random variables, and the angular brackets in-
dicate the finite average over 50 repetitions. The 5th percentile for N = 10 and N = 40 and
αmax = 10−3 are equal to zero and therefore omitted from the log-log plot. The identity function is
plotted as a reference (dashed line).
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Influence of Critical Level for Statistical Significance

Given the conservative results obtained for both the VAR and CLM processes (Figure 3), a
natural question is to what extent the recall could be improved by increasing the critical alpha
level αmax and to what extent the precision would be negatively affected as a side effect.

In order to elucidate this trade-off, the analysis described above (Figure 3) was repeated for
increasing values of αmax, with results shown in Figure 5. For the shortest time series (T = 100),
increasing αmax resulted in a higher recall and a lower precision, as expected; on the other
hand, for the longest time series (T = 10,000), the performance measures were not significantly
affected. Interestingly, for the intermediate case (T = 1,000), increasing αmax resulted in higher
recall without negatively affecting the precision.

Figure 5. Influence of statistical significance threshold on network inference performance. Preci-
sion versus recall for different statistical significance levels (αmax = 0.05, 0.01, 0.001), correspond-
ing to different colors. The plots summarize the results for different dynamics (Top: Vector autore-
gressive process; Bottom: Coupled logistic maps), different time series lengths (T = 100, 1,000,
10,000), and different network sizes (N = 10, 40, 70, 100, not distinguished). The arrows join
the mean population values for the lowest and highest significance levels, illustrating the average
trade-off between precision loss and recall gain.
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Inference of Coupling Lags

So far, the performance evaluation focused on the identification the correct set of sources
for each target node, regardless of the coupling lags. However, since the identification of the
correct coupling lags is particularly relevant in neuroscience (see Wibral et al., 2013, and
references therein), the performance of the algorithm in identifying the correct coupling lags
was additionally investigated.

By construction, a single coupling lag was imposed between each pair of processes (chosen
at random between one and five discrete time steps, as described in the Methods). The average
absolute error between the real and the inferred coupling lags was computed on the correctly
recalled sources and divided by the value expected at random (which is the average absolute
difference between two i.i.d. random integers in the [1, 5] interval). In line with the previous
results on precision, the absolute error on coupling lag is consistently much smaller than that
expected at random, even for the shortest time series (Figure 6). Furthermore, 1,000 samples
were sufficient to achieve nearly optimal performance for both the VAR and the CLM processes,
regardless of the size of the network. Note that as T increases and the recall increases, the lag
error can increase (cf. T = 100 to 300 for the CLM process). This is perhaps because while the
larger T permits more weakly contributing sources to be identified, it is not large enough to
reduce the estimation error to make lag identification on these sources precise.

Estimators

Given its speed, the Gaussian estimator is often used for large datasets or as a first exploratory
step, even when the stationary distribution cannot be assumed to be Gaussian. The availability
of the ground truth allowed us to compare the performance of the Gaussian estimator and the
nearest-neighbor estimator on the nonlinear CLM process, which does not satisfy the Gaus-
sian assumption. As expected, the performance of the Gaussian estimator was lower than the
performance of the nearest-neighbor estimator for all network sizes (Figure 7).

The hierarchical tests introduced in the Methods section allow running the network infer-
ence algorithm in parallel on a high-performance computing cluster. Such parallelization is
especially needed when employing the nearest-neighbor estimator. In particular, each target
node can be analyzed in parallel on a CPU (employing one or more cores) or a GPU, which
is made possible by the CPU and GPU estimators provided by the IDTxl package (custom

Figure 6. Average absolute error between the real and the inferred coupling lags, relative to the value expected at random. Results for
different dynamics (Left: Vector autoregressive process; Right: Coupled logistic maps), different time series lengths (T = 100, 300, 1,000,
3,000, 10,000), and different network sizes (N = 10, 40, 70, 100). The error bars indicate the standard deviation over 10 simulations from
different initial conditions.
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Figure 7. Gaussian versus nearest-neighbor estimator on the coupled logistic maps process. The precision (left) and recall (right) are plotted
against the network size and a fixed time series length (T = 10,000 samples). The results for 10 simulations from different initial conditions
are shown (low-opacity markers) in addition to the mean values (solid markers). The statistical significance level αmax = 0.05 was employed;
an even larger gap between the recall of the estimators is obtained with αmax = 0.001.

OpenCL kernels were written for the GPU implementation). A summary of the CPU and GPU
run times is provided in the Supporting Information.

DISCUSSION

The algorithm presented in this paper provides robust statistical tests for network inference to
control the false positive rate. These tests are compatible with parallel computation on high-
performance computing clusters, which enabled the validation study on synthetic sparse net-
works of increasing size (10 to 100 nodes), using different dynamics (linear autoregressive
processes and nonlinear coupled logistic maps) and increasingly longer time series (100 to
10,000 samples). Both the network size and the sample size are one order of magnitude larger
than previously demonstrated, showing feasibility for typical EEG and MEG experiments. The
results demonstrate that the statistical tests achieve the desired false positive rate and success-
fully address the multiple-comparison problems inherent in network inference tasks (Figure 4).

The ability to control the false positives while building connectomes is a crucial prerequisite
for the application of complex network measures, to the extent that Zalesky et al. (2016) con-
cluded that “specificity is at least twice as important as sensitivity (i.e., recall) when estimating
key properties of brain networks, including topological measures of network clustering, net-
work efficiency and network modularity.” The reason is that false positives occur more preva-
lently between network modules than within them, and the spurious intermodular connections
have a dramatic impact on network topology (Zalesky et al., 2016).

The trade-off between precision and recall when relaxing the statistical significance thresh-
old was further investigated (Figure 5). When only 100 samples were used, the average recall
gain was more than five times smaller than the average precision loss. In our opinion, this result
is possibly due to the sparsity of the networks used in this study and suggests a conservative
choice of the threshold for sparse networks and short time series. The trade-off was reversed for
longer time series: when 1,000 samples were used, the average recall gain was more than five
times larger than the average precision loss. Finally, for 10,000 samples, high precision and
recall were achieved (>98% on average) for both the vector autoregressive and the coupled
logistic maps processes, regardless of the statistical significance threshold.

For both types of dynamics, the network inference performance increased with the length of
the time series and decreased with the size of the network (Figure 3). This is to be expected since
larger systems require more statistical tests and hence stricter conditions to control the family-
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wise error rate (false positives). Specifically, larger networks result in wider null distributions
of the maximum statistic (i.e., larger variance), whereas longer time series have the opposite
effect. Therefore, for large networks and short time series, controlling the false positives can
have a negative impact on the ability to identify the true positives, particularly when the effect
size (i.e., the transfer entropy value) is small.

In addition, the superior ability of the nearest-neighbor estimator over the Gaussian estima-
tor in detecting nonlinear dependencies was quantified. There is a critical motivation for this
comparison: the general applicability of the nearest-neighbor estimators comes at the price
of higher computational complexity and a significantly longer run time, so that the Gaussian
estimator is often used for large datasets (or at least as a first exploratory step), even when the
Gaussian hypothesis is not justified. To investigate such a scenario, the Gaussian estimator was
tested on the nonlinear logistic map processes: while the resulting recall was significantly lower
than the nearest-neighbor estimator for all network sizes, it was nonetheless able to identify
over half of the links for a sufficiently large number (10,000) of time samples (Figure 7).

The stationarity assumption about the time series corresponds to assuming a single regime
of neuronal activity in real brain recordings. If multiple regimes are recorded, which is typical
in experimental settings (e.g., sequences of tasks or repeated presentation of stimuli interleaved
with resting time windows), different stationary regimes can be studied by performing the anal-
ysis within each time window. The networks obtained in different time windows can either
be studied separately and compared against each other or collectively interpreted as a single
evolving temporal network. To obtain a sufficient amount of observations per window, multiple
replications of the experiment under the same conditions are typically carried out. Replica-
tions can be assumed to be cyclo-stationary and estimation techniques exploiting this property
have been proposed (Gómez-Herrero et al., 2015; Wollstadt et al., 2014); these estimators are
also available in the IDTxl Python package. The convergence to the (unknown) causal net-
work was only proven under the hypotheses of stationarity, causal sufficiency, and the causal
Markov condition (Sun et al., 2015). However, conditional independence holds under milder
assumptions (Runge, 2018) and the absence of links is valid under general conditions. The
conditional independence relationships can, therefore, be used to exclude variables in follow-
ing intervention-based causal experiments, making network inference methods valuable for
exploratory studies.

In fact, the directed network is only one part of the model and provides the scaffold over
which the information-theoretic measures are computed. Therefore, even if the structure of a
system is known and there is no need for network inference, information theory can still pro-
vide nontrivial insights on the distributed computation by modeling the information storage,
transfer, and modification within the system (Lizier, 2013). This decomposition of the predic-
tive information into the active information storage and transfer entropy components is one
out of many alternatives within the framework proposed by Chicharro & Ledberg (2012). Ar-
guably, the storage-transfer decomposition reflects the segregation-integration dichotomy that
has long characterized the interpretation of brain function (Sporns, 2010; Zeki & Shipp, 1988).
Information theory has the potential to provide a quantitative definition of these fundamental
but still unsettled concepts (Li et al., 2019). In addition, information theory provides a new
way of testing fundamental computational theories in neuroscience, for example, predictive
coding (Brodski-Guerniero et al., 2017).

As such, information-theoretic methods should not be seen as opposed to model-based
approaches, but complementary to them (Friston et al., 2013). If certain physically motivated
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parametric models are assumed, the two approaches are equivalent for network inference:
maximizing the log-likelihood is asymptotically equivalent to maximizing the transfer entropy
(Barnett & Bossomaier, 2012; Cliff et al., 2018). Moreover, different approaches can be com-
bined; for example, the recent large-scale application of spectral DCM was made possible by
using functional connectivity models to place prior constraints on the parameter space (Razi
et al., 2017). Networks inferred using bivariate transfer entropy have also been employed to
reduce the model space prior to DCM analysis (Chan et al., 2017).

In conclusion, the continuous evolution and combination of methods show that network in-
ference from time series is an active field of research and there is a current trend of larger valida-
tion studies, statistical significance improvements, and reduction of computational complexity.
Information-theoretic approaches require efficient tools to employ nearest-neighbor estimators
on large datasets of continuous-valued time series, which are ubiquitous in large-scale brain
recordings (calcium imaging, EEG, MEG, fMRI). The algorithm presented in this paper is com-
patible with parallel computation on high-performance computing clusters, which enabled the
study of synthetic nonlinear systems of 100 nodes and 10,000 samples. Both the network size
and the sample size are one order of magnitude larger than previously demonstrated, bring-
ing typical EEG and MEG experiments into scope for future information-theoretic network
inference studies. Furthermore, the statistical tests presented in the Methods are generic and
compatible with any underlying conditional mutual information or transfer entropy estimators,
meaning that estimators applicable to spike trains (Spinney et al., 2017) can be used with this
algorithm in future studies.
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