
Graphical Abstract

© 2016. This manuscript version is made available under the Elsevier user license

http://www.elsevier.com/open-access/userlicense/1.0/

1

Large-scale dynamic transportation network simulation: a space-time-event

parallel computing approach

Yunchao Qu

Xuesong Zhou* (Corresponding Author)

http://ees.elsevier.com/trc/viewRCResults.aspx?pdf=1&docID=10708&rev=2&fileID=140377&msid={925455A2-DE7C-4AB5-B997-41E113007115}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

2

Abstract: This paper describes a computationally efficient parallel-computing framework for mesoscopic

transportation simulation on large-scale networks. By introducing an overall data structure for mesoscopic

dynamic transportation simulation, we discuss a set of implementation issues for enabling flexible parallel

computing on a multi-core shared memory architecture. First, we embed an event-based simulation logic

to implement a simplified kinematic wave model and reduce simulation overhead. Second, we present a

space-time-event computing framework to decompose simulation steps to reduce communication

overhead in parallel execution and an OpenMP-based space-time-processor implementation method that

is used to automate task partition tasks. According to the spatial and temporal attributes, various types of

simulation events are mapped to independent logical processes that can concurrently execute their

procedures while maintaining good load balance. We propose a synchronous space-parallel simulation

strategy to dynamically assign the logical processes to different threads. The proposed method is then

applied to simulate large-scale, real-world networks to examine the computational efficiency under

different numbers of CPU threads. Numerical experiments demonstrate that the implemented parallel

computing algorithm can significantly improve the computational efficiency and it can reach up to a

speedup of 10 on a workstation with 32 computing threads.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

3

Keywords: synchronous parallel strategy; mesoscopic transportation simulation; space-time-event

network; parallel discrete event simulation

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4

1. Introduction

Compared to the sequential computing mode utilized in most existing traffic simulation and planning

models, parallel computing not only efficiently utilizes widely available distributed computing powers

and communication networks, but also redefines what is tractable for time-critical transportation

simulation and management strategy optimization. Emerging multi-core computer processor techniques

are offering unprecedented available parallel computing resources, through a wide range of high-

performance laptops and desktops currently available in the market. This paper aims to develop a parallel

algorithm design for transportation simulation to exploit this paradigm change in computing and to

facilitate the most efficient use of emergent parallel hardware.

1.1. Literature review

At the core of transportation simulation, traffic flow models are interested in the quantitative

relationship between flow, density and speed, and modeling the interactions between different agents. In a

transportation network, there may be many routes between each origin and destination and agents choose

better routes to reduce travel time. Motivated by network-wide traffic management application needs,

such as regional traffic mobility analysis and real-time route guidance, dynamic traffic assignment (DTA)

models has been increasingly recognized as an important approach for assessing performance of different

traffic system management and information provision strategies. There are macroscopic, mesoscopic or

microscopic simulation-based methods for generating time-dependent travel time measures in general

traffic simulators and DTA models (Mahmassani et al., 1994; Mahmassani, 2001; Ben Akiva 2002; Peeta

and Ziliaskopoulos, 2001; Adler and Blue, 2002; Celikoglu and Dell’Orco, 2007; Chen et al., 2009; Di

Gangi and Cantarella, 2016; Dell’Orco et al., 2016). In an effort to reach the right balance between

representation detail and computational efficiency, this study focuses on how to implement a mesoscopic-

based dynamic network loading model, within a parallel computing framework, on medium and large-

scale real-world networks.

One key method to achieve computational efficiency while simulating medium and large-scale

networks is parallel computing. A parallel simulation implementation is valuable for researchers to

quickly examine the interactions of vehicular flow and analyze the complex traffic phenomena on a larger

scale. It also helps to improve the computational efficiency of traffic model validation and calibration, as

well as on-line traffic state estimation and prediction, e.g., through a simulation-based optimization

framework. In early studies, parallel computing techniques have been applied in several transportation

simulation systems (Junchaya and Chang, 1993; Wong, 1997; Ziliaskopoulos et al, 1997). PARAMICS

(Cameron and Duncan, 1996) was implemented on a Connection Machine CM-2, and its graph partition

algorithm divided the set of links into different sequences of queues and each queue contained a certain

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5

number of moving vehicles. Based on a shared memory platform, Nagel and Schmidt (2000) and Cetin et

al. (2003) studied the parallelization of microscopic transportation simulation based on TRANSIMS

(Transportation Analysis and Simulation System) using another sophisticated graph partition algorithm.

Potuzak (2012) reported a distributed microscopic discrete time-stepped simulator DUTS (Distributed

Urban Traffic Simulator) and performed road traffic simulation on a cluster of computers with multi-core

processors. Kallioras (2015) applied a GPU-based accelerated metaheuristics approach to solve the transit

stop inspection and maintenance scheduling problem. In the field of traffic assignment, Florian and

Gendreau (2001) offered a good review on parallel computing approaches for performing the shortest

path algorithms, e.g., through network decomposition and network replication strategies. Liu and Meng

(2013) demonstrated a solid effort for accelerating the Monte Carlo simulation method for solving probit based

stochastic user equilibrium problems using a distributed computing system. Ng and Nguyen (2015) proposed a

spatial partitioning method to implement parallel computing. Morosan and Florian (2015) applied a

shared-memory strategy focused on parallel shortest path computation and reported that the speedup

could reach up to 20 when solving the traffic assignment problem. Auld et al. (2016) developed an agent-

based modeling software development kit POLARIS that contains a parallel discrete event simulation

engine.

Other early implementation of parallel transportation simulations are also introduced by Barceló et

al., (1996) and Lee & Chandrasekar (2002) and a parallel implementation of AIMSUN reported a speed-

up of 3.5 on 8 CPUs using multiple threads. As a macro-particle model, a parallel version of DYNEMO

has been implemented since 2001 (Nagel and Rickert, 2001). DYNASMART’s research team reported

their experiment in implementing functional decomposition (Mahmassani et al., 1994). DynaMIT

introduced a parallelization concept of functional decomposition (i.e., task parallelization) (Sundaram et

al., 2011). Based on GPU techniques, Zhen et al. (2011) recently proposed a parallel computing

framework to speed up the traffic simulation and optimize the traffic signal timing.

A significant amount of attention has been devoted to advancing parallel implementation for traffic

simulation models for specific hardware/software architecture. The major efforts are summarized as

follows: (1) in a static fashion, partitioning different geographical areas of the studied region to different

CPU cores, and (2) for distributed computing, designing sophisticated message passing and efficient

synchronization methods to reduce communication overhead among different computing cores. In our

research, from a broader perspective of parallel discrete event simulation, we aim to offer a more feasible

task decomposition methodology to synchronize inter-correlated space-time simulation events. This

space-time-event oriented approach could take advantages of automated coordination programming

interfaces (e.g. through OpenMP) between threads, processors, distributed computers, and Graphical

Processing Unit (GPU).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6

An important study by Nie et al. (2008) offered a comprehensive discussion on a unified dynamic

network loading/simulation framework in capturing congestion propagation effects. They also clearly

indicated that their double-buffer-based network loading framework could be used for further parallel

simulation prototype development and system implementation. However, to ensure the actual speedup

under specific parallel computing architecture, in-depth research is still critically needed to examine a

number of important system implementation issues and address how to select an appropriate space-time

resolution and simulation execution sequences for mesoscopic or microscopic simulation.

1.2. Space-time-event view for parallel computation

Many further developments (Fujimoto, 1990, 1993; Ferscha and Tripathi, 1998; Liu, 2009; Fujimoto,

2015) summarize a number of parallel processing algorithms in terms of time-parallel and space-parallel

categories. In a space-time view presented by Chandy and Sherman (1989), a space-time discrete event

simulation can be divided into regions of arbitrary shape and assigned to separate logical processors (LP)

according to the spatial and temporal decomposable features (Liu, 2009). In a parallel computing method,

a global simulation task is discretized into a set of communicating logical processes (LP), each LP has its

own memory space and maintains its own simulation clock and event-list, which can be concurrently

executed. One LP is only capable of processing events occurring in its sub-system and communications

between different LPs takes place exclusively by exchanging events.

In the general field of parallel discrete event simulation, early research proposed some fundamentally

important synchronization strategies, e.g., the CMB protocol (Chandy and Misra, 1979; Bryant, 1977) and

the time-warping method (Jefferson, 1985). In the CMB Chandy–Misra–Bryant (CMB) algorithm, LPs

are assumed to be connected statically via directional links. LPs communicate through timestamped

messages, also called event messages, which are transmitted from one LP to another in a non-decreasing

timestamp order (Jafer et al., 2013). The CMB mechanism avoids deadlocks by introducing null messages.

A null message essentially indicates the future arrival of the next message.

Within this modeling framework, time-parallel simulation methods divide the space-time graph

along the time axis into non-overlapping time intervals and assign them to different processors for parallel

processing, while space-parallel simulation aims to partition the graph into a collection of space-

independent subsystems. The space-parallel methods include two types of LP simulation frameworks:

synchronous vs. asynchronous (Ferscha and Tripathi, 1998). In synchronous LP simulation, all LPs have

the same global simulation clock and they are executed by a unique time-stepped procedure. In contrast,

the asynchronous technique allows each LP to have its own local virtual time with generally different

clock timestamps at a given point. The asynchronous LP simulation may cause causality errors, as some

events (from the other LPs) could arrive later carrying a timestamp earlier than the target LP’s current

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

7

simulation clock. Accordingly, a number of event-wise synchronization methods, including conservative

protocol and optimistic strategy, are used for efficiently avoiding potential causality problems.

For a large-scale transportation simulator, in our view, the synchronous space-parallel LP simulation

approach is a more desirable choice for several reasons. First, a transportation network is spatially

consisting of sets of links and nodes and space-parallel simulation offers a more robust solution to

decompose events. Second, in most mesoscopic transportation simulators, the length of simulation time

intervals should be no shorter than the free-flow travel time of the shortest links in the network (e.g., 6

seconds used in DYNASMART). As opposed to the possibility of extremely short event execution time

intervals such as 0.0001 s between two events in a generic discrete event simulator, the discretized time

interval with reasonably fine resolution (e.g. 6 s) in a mesoscopic simulator enables an efficient use of

barrier synchronization available in parallel processing environment.

1.3. Approach

A spatial graph partition approach has been implemented in several traffic simulation systems. In

these systems, the events are not completely or logically separated which leads to reduced computational

efficiency. To improve the computational efficiency, asynchronous LP simulation strategies, including a

conservative strategy and optimistic strategy, have been applied in distributed computing traffic

simulation. As an optimistic synchronization protocol, Hunter et al. (2009) proposed an innovative ad hoc

distributed traffic simulation framework with the key elements of space-time memory, state aggregation,

and rollback based synchronization.

In this paper, we introduce a space-time-event view to understand a parallel computation mechanism

for large-scale mesoscopic traffic network simulation. Inspired by the classical conservative CMB

protocol (Chandy and Misra, 1979; Bryant, 1977) and a few of early implementations by Mahmassani et

al. (1994) and Nie et al. (2008), we model a direct traffic link as two event buffers. This double-buffer

representation further classifies individual agent’s movements as two types of events: arrival events (AE)

and departure events (DE) at entrance buffers and exit buffers. This approach is consistent with the

cumulative flow count-based traffic kinematic wave model proposed by Newell (1993) described in the

Appendix. A unique space-time-event network-based parallel computing method is developed to

schedule the AEs and DEs of all agents at different shared-memory or distributed processors. This study

uses an Open Multi-Processing (OpenMP) Application Programming Interface (API) (Dagum and Enon,

1998) to facilitate our program to distribute computational tasks to different processors in a shared-

memory multiprocessing environment. Without directly dealing with Message Passing Interfaces (MPI),

the OpenMP API also provides a simple and flexible interface for developing parallel computing

programs for Graphical Computing Units (e.g., Nvidia Tesla) developed by Intel Inc.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8

The rest of the paper is organized as follows. The next section presents the problem statement,

network representation and a space-time-event view to decompose the event-based simulation to

independent logical processes. Section 3 discusses the synchronous parallel computing implementation in

a processor-space-time scheduling network. Finally, the proposed method is applied to four medium-scale

and large-scale real-world networks with an examination of different speedup ratios under different CPU

number configurations in Section 4.

2. Problem statement and framework of parallel computing

The parallel discrete event simulation system consists of events, actions (including movement

actions and waiting actions), buffers, logical processes, and processors. Notations and definitions are

listed below.

 Index of a physical node.

 Index of a physical link.

 Event: agent’s entering or leaving event with spatial and temporal attributes.

 Buffer: upstream (entrance buffer) and downstream (exit buffer) segments of a link. A buffer

stores a group of events occurring in this buffer.

 Action: connecting two adjacent agent events. There are two types of actions: movement action

and waiting action.

 Movement action: A movement action connects two events in different buffers and it represents

that an agent moves from a buffer to its spatially adjacent buffer. There are two categories of

movement actions: link transfer and node transfer.

 Waiting action: A waiting action connects two events in the same buffer and it represents that an

agent is waiting in a buffer for a certain period of time. There are two categories of waiting

actions: link waiting and node waiting.

 Logical Process: A LP contains events, buffers and actions. It independently executes a series of

movements.

 Processor: the logic circuitry that responds to and processes the basic instructions, e.g., CPU and

GPU. One processor may contain one or more LPs. If there are many LPs, the processor could

execute the LPs sequentially, e.g., LP1->LP2->LP3.

2.1. Problem statement

The proposed parallel computing method aims to perform a dynamic network loading (DNL) process.

Given a set of time-dependent OD or path flow on a congested network, the DNL problem determines the

time-dependent link/path travel times, and other traffic states such as link flow and density over a fixed

time period. Consider a transportation network with a set of nodes and a set of links , and

the simulation time horizon is discretized to . In traditional methods, the given data are the

demand and supply data, which include (1) the initial time-dependent OD demand matrices between

activity locations or traffic analysis zones, (2) the network supply in terms of time-dependent link

capacity , and lane miles on each link , as well as certain capacity distribution

rules around intersections and freeway bottlenecks. Given a set of path inflow patterns, the dynamic

traffic network simulation problem aims to find the cumulative arrival and departure curves on each link,

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

9

which also leads to the simulated time-dependent link density and travel time along each used path. The

output data include (1) individual time-space trajectory in the network, and (2) aggregated time-dependent

link/path travel times. These data enable transportation researchers and software developers to expand its

range of capabilities to various traffic management application, e.g., traffic prediction and analysis,

emission estimation, traffic demand calibration.

Specifically, the input of our core simulation model is a set of agents with given paths, which can be

regarded as discretized path flows. For one OD pair, we first distribute the OD demand to path flows, then

discretize the path flows to integer values, and finally generate a number of agents with these paths.

Because we have assigned a certain path for each agent, the first -in first-out (FIFO) principle is adopted

to describe the queue behavior and resolve capacity request conflicts at merge nodes. If there are several

vehicles with the same entering time, the road capacity distributes to different paths or movements

according to the path or movement flow proportion.

[insert Fig. 1 here]

Fig. 1a illustrates a simple freeway corridor, which consists of the link set and the node

set . To clearly describe the event-based traffic simulation, a link is divided into two parts, namely

entrance buffer (ENB) and exit buffer (EXB), to record agents’ arriving and departing events. As shown

in Fig. 1b, ENB (represented by a square) is located at the upstream of a link and EXB (represented by a

triangle) is located at the downstream end. It should be noted that the exit buffer can be further

decomposed to several exit buffers according to different link movements (directed to different

downstream links) (Nie et al., 2008). Without a loss of generality, we only consider the single exit buffer

situation in our paper.

In a parallel simulation system, each logical process (LP) possesses its own local simulation clock

and local memory for private data. According to the spatial structure of a transportation network, the

events of all agents can be spatially assigned into node-based LPs and link-based LPs. A node-based

contains the EXBs of its upstream links and ENBs of its downstream links, while a link-based

contains the ENB and EXB of the current link. For example, in Fig. 1c, there are two node-based LPs,

that are and . The node-based consists of two exit buffers and and one entrance

buffer for vehicles to be loaded into the physical network. In Fig. 1d, there are five link-based LPs

and each contains the and of link l.

2.2. Framework of transportation simulation

Fig. 2 illustrates the procedures of an overall parallel transportation assignment and simulation system.

This process begins by reading the input supply and demand data from external files, and assigning a

route for each agent. This routing task can be concurrently executed for each zone. After setting

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10

parameters, the simulation proceeds in a time-stepped strategy and at each time stamp there are five

elementary sequential tasks. A node-based LP executes the node-based actions to perform the waiting

action in an exit buffer or update spatial attributes of agents, while a link-based LP executes the link-

based actions to perform the waiting action in an entrance buffer or update the timestamp attributes of

agents.

Task 1: All vehicles with departure time are loaded to the entrance buffers of their first links and some

vehicles move forward to the entrance buffer if there is available space.

Task 2: The inflow capacity of each link can be calculated simultaneously using a traffic flow model, such

as the simplified Kinematic Wave Model presented in the Appendix.

Task 3: Synchronize capacity distribution at each node (i.e., a bottleneck or queue server). Final outgoing

capacity values for each incoming link are assigned, according to the inflow capacities of a

bottleneck, using node models (e.g., Daganzo's (1995b) priority-based merge model).

Task 4: Node transfer from exit buffer to entrance buffer of connected links. Given assigned capacity, this

procedure moves vehicles from the exit buffers of inbound links to the entrance buffers of

outbound links or vehicles complete their trips at the destination nodes.

Task 5: Link transfer from the entrance buffer to exit buffer of the same link. Agents transverse from the

link entrance buffers to link exit buffers by updating the travel times at the corresponding events.

The arrival event at time is deleted from the entrance buffer and replaced by a ready-to-depart

event at time at the exit buffer of the link. Here, the travel time depends on the traffic flow

models and Newell’s simplified kinematic wave model that uses free-flow-travel-time (FFTT) to

move agents from the cumulative arrival curve A(t) to the virtual cumulative departure curve V(t).

The cumulative departure curve D(t) is finally updated when the agent moves out of this link with

capacity quotas assigned from Task 3.

[insert Fig. 2 here]

The core of the traffic flow model used in this study is a discretized (vehicular) kinetic wave (KW)

model. In the standard macroscopic KW traffic flow model and the node capacity distribution model, the

values (i.e., traffic volume) are non-integers. In our simulation, an improved long-period pseudo-random

number generator (Panneton et al., 2006) is used to generate uniform random numbers and then round

floating-point capacity values to the nearest integers in terms of the number of vehicles.

After the simulation process, path-specific travel times are needed for the traffic assignment module.

A standard way for approximating the link and path travel time is through tracking the link cumulative

flow count curves, but it may involve interpolation and back-tracking and constitute a significant portion

of the computational overhead. Snelder (2009) has proposed a method to reduce the error caused by the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

11

discretization rounding off errors. Different from the above flow-based method, we use vehicle

trajectories from all agents to compute the time-dependent (experienced) path travel time and waiting

time, based on the time stamps along individual paths. Define
 as the travel time of agent travels

along path with departure time ,
 as the time interval of agent a arrives the exit buffer

(EXB) of the last link of path
 . During the simulation, the individual entering time and leaving time

of each buffer of each link are dynamically recorded, so the individual time-dependent path travel time

 and the aggregated average path travel time can be easily calculated by Eq. (1).

 (1)

By following the time discretization approach presented by Lu et al. (2009), we generate time-dependent

aggregated link travel cost using the shortest path algorithm and dynamic equilibrium gaps.

2.3. Space-time-event view for parallel computing

In this paper, we use a four-indexed notation to record the space-time event (or state) of

each agent, where represents the index of an agent, represents the index of a link, represents the

simulation time interval, and represents the buffer type of the current link . The space-time trajectory

of one agent is recorded as an event list. For example, in Fig. 3, the space-time trajectory of one agent

in the corridor can be represented by the event list

 . Accordingly, the input buffers store the events that represent agents

entering the upstream node of link while the output buffers store the events that represent

agents entering and leaving the downstream node of link . For a single agent/vehicle, the execution

sequence of its events is dynamically driven by three categories of actions

1) Link transfer: , with a travel time of .

2) Node transfer: .The downstream link is predefined ahead of the

agent’s trip or determined by real-time routing behavior. In our study, we assume that the

operation time of node transfer movement is zero to establish a clear activity-on-the-link network

structure.

3) Node waiting: . Agent is waiting at the exit buffer of link

from time interval and is ready to be considered for a move to the next link at time interval .

The waiting time depends on the inflow capacities of the adjacent downstream links and

outflow capacity of the current link .

[insert Fig. 3 here]

In a multi-agent simulation, tasks 2 and 3 proposed in Section 2.2 calculate capacity requests and

allocation prior to moving agents, and during this process the agents’ spatial and temporal attributes are

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12

not updated. After these two tasks, agents with permission perform node-transfer movements and link-

transfer movements while other agents execute node-waiting actions/commands.

3. Scheduling logical processors for parallel computing implementation

Given a space-time-event representation presented above for an overall transportation simulation, we

then need to execute all LPs and events synchronously or asynchronously in parallel. An important local

causality constraint (Fujimoto, 1990) principle requires that every LP should process the events in a non-

decreasing timestamp order. This section systematically describes an overall control/coordination

mechanism to schedule the parallel processors to attain maximum speed-up.

3.1. Synchronous LP simulation

In most mesoscopic transportation simulators, the length of simulation time intervals are not shorter

than the free-flow travel time of the shortest links in the network, e.g., 6 seconds used in DYNASMART.

This discretized time horizon is very useful for conducting synchronous space-parallel LP simulation.

Problems of deadlock and memory request are avoided with the help of the barrier synchronization

mechanisms available in most every parallel processing environments (Ferscha and Tripathi, 1998). On

the other hand, LPs with shorter execution times should wait for all other LPs to complete their

executions and thus, this synchronous strategy could lead to idle time. If events are spatially and

temporally distributed to all LPs in an even manner, the CPU time differences could be reduced, leading

to less system-wide idle time.

While there are many advantages of adopting the synchronous LP strategy, we also need to

recognize the following limitations. First, the time discretization might result in temporal precision errors

as the occurrence time of every event should be integral multiples of the simulation time interval. Higher

time precision requires finer simulation time resolution. Second, events are spatially decomposed into

different LPs and each logical process can simultaneously manage non-overlapping sets of buffers. This is

shown in Fig. 1-(c) for a node-based partition and Fig. 1-(d) for a link-based partition. It should be noted

that under the space-parallel strategy, each LP can only communicate with their neighbors, which requires

the distance traveled by an agent in one time step not to exceed (condition (2)).

 (2)

The LP parallel computing strategy can be further considered to a possible application in the

microscopic traffic or pedestrian flow models that satisfy condition (1). Examples along line could

include the floor field cellular automata model (e.g., Kirchner and Schadschneider, 2002) and force-based

model (e.g., Qu et al., 2014; Qu et al., 2015) for pedestrian simulation, as well as the cellular

transmission model for traffic simulation (Daganzo, 1994). In these models, an individual can only move

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

13

to one of its neighbor cells/links in a single time stamp. However, in some other microscopic models,

such as the cellular automata model for traffic simulation by Nagel and Schreckenberg (1992), a vehicle

can move more than one cell/link at a time interval. In such a situation, condition (1) is not satisfied and

the parallel strategy could be invalidated because it cannot exactly predict the potential conflict area and

accordingly resolve the conflicts. To deal with such situations, some special microscopic models, such as

simple linear car-following model (CF (L)), two cellular automata models (CA (L, M)), proposed by

Daganzo (2006), can be converted to the kinematic wave model (KW) with a triangular fundamental

diagram in order to enable the use of our proposed parallel computing strategy with simplified traffic flow

models. For more complicated models considering lane changing and overtaking behaviors, it is still a

very challenging task to design an effective parallel computing method.

 The pseudo-code of the parallel simulation process is described as follows:

For time t = 0 to T (e.g., 24 hours)

Step 1: Load newly generated agents to the loading buffer of their first links. If there is sufficient space

available for each agent entering the entrance buffer, move it from the entrance buffer to the exit

buffer.

Step 2: Capacity request estimation for each link

#pragma omp parallel for

For link l =1 to L

Based on the external user input and traffic flow model, calculate inflow capacity for link l

Use a link model and outflow capacities, adjust inflow capacity for link l

End for // link

Step 3: Synchronize capacity distribution at each bottleneck (merge and diverge)

#pragma omp parallel for

For each node i = 1 to N

 Total Incoming Demand = 0;

For each link l in incoming link set

Total Incoming Demand += outflow demand from link l

End for each incoming link

 If (Total Incoming Demand > Inflow Link Capacity) //bottleneck

For each incoming link

Distribute inflow capacity to outflow capacity for each incoming link at bottleneck

End for each incoming link

EndIf

End for each node

Step 4: Node transfer from exit buffer to entrance buffer of connected links

#pragma omp parallel for

For each node i = 1 to N

For each link l in the incoming link set

While (fetch the front vehicle from the exit buffer)

If current simulation time t equals to or is greater than , and both inflow and

outflow capacity are available (for kinematic wave based queuing models) //

Check exit buffer

 Move the vehicle from the exit buffer of link l to the entrance buffer of link l'

Update cumulative arrival agent list on outgoing link l'

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14

Reduce the inflow capacity on l' at time t by 1

Reduce the outflow capacity on l at time t by 1

Else

Break

 End while

End for each incoming link

End for each node

Step 5: Link traversal from the entrance buffer to exit buffer of the same link

#pragma omp parallel for

For each link l =1 to L

Arrival events at time , departure events at time , create the event into exit

buffer,

Update link cumulative arrival curve
End for

End for //time

Fig. 4 briefly explains the fork-joint parallelism mechanism in OpenMP. A parallel region is a block

of one or more statements with one point of entry at the top (fork point) and one point of exit at the

bottom (joint point). Beginning from the code structure with hashtag “#pragma omp parallel for”, a

number of threads are created at the fork point to concurrently execute the decomposed tasks and then

threads wait here for all threads to end at the joint point. Typically, a processor can only work on one

thread per core. A CPU can have multiple cores and the hyper threading technology can allow one CPU

to create and work on up to two threads per core.

[insert Fig. 4 here]

All CPU threads share the memory during the execution procedure in the structured parallel block,

and OpenMP is able to dynamically create a private memory block for each task in a thread. Define as

the time stamp at the fork point, as the time stamp at the joint point, as the time stamp of thread

being created, and as the time stamp of thread completing its executing. Here, is the total number

of parallel executed threads. It should be noted that the time stamps are real computation time stamps,

which are not simulation time stamps. The relationships between the time stamps can be expressed as Eq.

(3).

 (3)

It should be noted that OpenMP automates the distribution of the LPs (e.g. for different nodes, links

or zones) to different processors during the simulation, and thus, the LP distributions may not be the same

at different computing instances. Consider Fig. 5 as an example where there are three LPs (LP1, LP2, LP3)

and four LPs (LP1, LP4, LP6, LP7) allocated in CPU thread 1 at two time instances, respectively.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

15

[insert Fig. 5 here]

An important property for parallel computing is that different numbers of CPU threads and different

LP distributions should not influence the simulation results. Thanks to the flexible coding structure in

OpenMP, our program attaches its own random number seed for each node, link, or zone shown in Fig. 2.

Thus, the computing process and results for each object (to be parallelized) remain the same, regardless of

which CPU thread it is assigned to or how many CPU threads created by the system. We have proved this

concept according to our simulation results.

3.2. Understanding the execution of simulation activities at multiple processors

The atomic traffic flow simulation logic at each time stamp consists of five sequential tasks, each of

which is executed by a link-based LP or a node-based LP, as shown in Fig. 2. Focusing on the link-

transfer and node-transfer tasks, Fig. 6 illustrates the space-time view of the dynamic LP decomposition

procedure for a simple road segment example, which is a traffic corridor with two merge and diverge

ramps. To simply describe the execution procedure, we only focus on nodes 1 and 2 with a little

complicated topological structure. The simulation procedure has five link-based LPs and two node-based

LPs, e.g., node-based LP1 (node 1) contains the exit buffer of links and and the entrance buffer of link

 .

[insert Fig. 6 here]

Constructing a space-time-processor graph (Chandy and Sherman, 1989) is useful for us to

understand how independent link-based and node-based LPs are assigned to different processors. This

graph consists of a set of activity and barrier vertexes and a set of schedule arcs. Specifically, an activity

vertex represents a LP being executed at space (a link or a node) at time on processor .

A barrier vertex represents a forking or joint activity at a virtual space at time on

processor , and it represents the intersection of results before re-distribution back to the CPUs. A

schedule arc connects an activity vertex and a barrier vertex. The schedule network is sequentially

executed along the time dimension (in terms of simulation steps) and parallel computing activities are

concurrently executed in the space dimension inside each link-based LP or node-based LP stage.

[insert Fig. 7 here]

As illustrated in Fig. 7, we consider an example in a corridor (1->2->3) including 3 nodes (node #1,

2, 3) and 2 links (link #a, b), on a system with 2 CPUs. During the link-transfer step, link-based LPa and

LPb are concurrently executed on CPU#1 and CPU#2, respectively; while inside the node-transfer step,

the node-based LP1 and LP2 are performed on CPU#1, while LP3 is performed on CPU#2. Between every

two steps, there is a barrier vertex connecting the activity vertexes to synchronize all LPs. Fig. 8

illustrates the execution time flow chart of an instance of Fig. 7. Because fewer LPs are assigned to CPU2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16

compared to CPU1, the execution time of CPU2 is shorter than CPU1 and the overall speedup depends on

the percentage of the idle time during each full execution step.

[insert Fig. 8 here]

4. Numerical experiments

The proposed parallel computing method is implemented on a workstation with an Intel Xeon E5-

2680 2.80GHz multi-core CPU and 192 GB memory. This workstation has a total of 40 threads. To

ensure the normal running of the workstation, we only use up to 32 threads for the simulation program in

the experiments and reserve the remaining 8 threads for critical operating systems and other system-level

threads. The source codes were implemented using Visual Studio C++ 2013 and its built-in OpenMP API

library. Based on the proposed synchronous LP spatial-parallel computing method, our research group

developed an open-source traffic simulation software DTALite (Zhou and Taylor, 2014; Zhou et al., 2015;

Ruan et al., 2016) that was used to measure the total execution time and speedup under different numbers

of threads.

4.1. Network and experiment design

A set of experiments were performed on four different scales of networks. These include West

Jordan network, Clackamas, Salt Lake City, and Maryland statewide network, with increasing scale

respectively. Table 1 lists the supply and demand summaries of all the four networks. In scenario (a), the

West Jordan area extracted from Salt Lake City (UDOT Report No. UT-15.09 by Zhou et al., 2015) is a

small-scale network with 0.1K nodes and 0.4K links and the traffic demand loading period is 2 hours

(15:30-17:30). In scenario (b), the Clackamas subarea network extracted from the Portland metropolitan

network (Nevers et al., 2013) is a medium-scale network with 1.5K nodes and 4.1K links and the traffic

demand loading period is 5 hours (14:00-19:00). In scenario (c), the Salt Lake City network is a large-

scale regional network with 13.9K nodes and 26.8K links and the demand loading period is 5 hours. In

scenario (d), the Maryland statewide network (Erdoğan et al., 2015) is a large-scale metropolitan/mega

region network, which includes all of Maryland, Delaware and the District of Columbia, along with

adjacent portions of Virginia, Pennsylvania and West Virginia. This network has a total of 26.6 M

travelers during a 24-hour simulation horizon. Fig. 9 plots the corresponding networks and approximate

peak hour demand values.

[insert Table 1 here]

[insert Fig. 6 here]

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

17

4.2. Simulation results

The dynamic traffic assignment program includes both an assignment/routing stage and simulation

stage. The dynamic network loading stage is able to produce time dependent link volume, speed, density,

queue length, and has the ability to track trajectories of individual vehicles on each link. Focusing on the

execution time of the simulation stage, each scenario is executed 10 iterations to reduce sampling errors

for getting a tally of average execution time of dynamic network loading at each iteration. Taking

scenario b) for example, the cumulative execution time of each iteration is listed in Table 2. The

execution time of single-thread computing is 291.825 s. As the number of threads increases, the CPU

usage is improved with shorter execution time, for example, with a speedup of about 9.30 in a 32-thread

computing environment.

[insert Table 2 here]

Recall that, a speedup is measured by comparing the execution time of a simulation using multiple

threads and one obtained using one thread. The speedups of the aforementioned four test cases are plotted

in Fig. 10, which indicate a possible nonlinear speedup as a function of the number of threads used in

computing. Overall, both the scale of network (in terms of number of links and nodes) and travel demand

(in terms of number of agents) could affect the overall parallel computing efficiency.

[insert Fig. 10 here]

The parallel computing speedup values vary from 4.1 to 10.7 in simulating the four real-world

networks. The speedup is higher for larger road traffic networks, because a large number of links and

nodes allows a more balanced computing resource allocation to each processor, or more precisely, link-

based or node-based LPs. In contrast, for smaller networks, the events have to be distributed to only a few

of the processors, and therefore, the idle time of unused processors could be significant. The higher

demand or a large number network could introduce a more balanced computing task assignment across

nodes and links (at different CPU cores), which leads to a potentially higher speed up rate. The average

execution time of scheduling events could dramatically increase with more frequent interactions and data

exchanges between LPs. As a result, the overall communication overhead consumes more computation

resources, leading to a slower increasing trend of the speedup curve. Overall, we have demonstrated that

the speed-up in the parallel computing environment is significant regardless of the number of CPUs

available in our example.

5. Conclusions

This paper has presented a parallel computing implementation approach for vehicular traffic

simulation in real-world networks. According to the properties of individual events, a space-time-event

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

18

view is proposed to allocate agent’s entering and leaving events to different link buffers. Based on the

double-buffer representation, we decompose the general mesoscopic transportation simulation into five

sequential tasks that can be concurrently executed on link-based and node-based logical processes. The

logical processes are then dynamically distributed to different processors by the proposed synchronous

space-parallel LP strategy. As a unique contribution, this paper establishes a space-time-processor

network to illustrate the spatial and temporal LP scheduling and synchronization mechanism for

microscopic transportation system simulation. The proposed parallel computing method is then

implemented and applied to simulate four real-world transportation networks. The simulation results

show significant speedup using our method and that that speedup magnitude is dependent on the scale of

the network and the travel demand. In the examples provided, our method attained a speedup of up to

10.7 on a workstation with 32 computing CPU threads.

In our future work, we will perform further testing of the proposed parallel computing algorithm

using a more efficient communication protocol for inter-process communication. We will further evaluate

a wide range of other parallelization techniques, such as distributed shared memory-based methods and

GPU computing technology, to further improve the computational efficiency of large-scale mesoscopic

traffic simulations. The proposed space-time parallel framework is computationally efficient in traffic

simulation, and we will also plan to extend this parallel computing method to other large and complex

multi-agent simulation systems, e.g., pedestrian simulation (Qu et al., 2014; Qu et al, 2015) and urban rail

transit networks, by considering boundedly rational route choice behavior (Liu and Zhou, 2016).

Acknowledgement
This paper is mainly supported by National Science Foundation – United States under Grant No.

CMMI 1538105 “Collaborative Research: Improving Spatial Observability of Dynamic Traffic Systems

through Active Mobile Sensor Networks and Crowdsourced Data”, and U.S. Department of Energy’s

(DOE) Advanced Research Projects Agency – Energy (ARPA-E), “Traveler Response Architecture using

Advanced Novel Signaling for Network Efficiency in Transportation (TRANSNET)”. The second and

corresponding author especially thanks Mr. Brian J Gardner at Federal Highway Administration’s Office

of Planning, for his encouragement in our development process of the open-source traffic simulation

package DTALite. We also thank Jiangtao Liu and Dr. Taylor Li at Arizona State University, and Dr.

Jinjin Tang at Beijing Jiaotong University, Jeff Taylor at University of Utah and Dr. Jeffrey Stempihar at

Arizona State University for their useful comments and suggestions. The work presented in this paper

remains the sole responsibility of the authors.

References

Adler, J. L., & Blue, V. J. (2002). A cooperative multi-agent transportation management and route

guidance system. Transportation Research Part C: Emerging Technologies, 10(5), 433-454.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

19

Auld, J., Hope, M., Ley, H., Sokolov, V., Xu, B., & Zhang, K. (2016). POLARIS: Agent-based modeling

framework development and implementation for integrated travel demand and network and

operations simulations. Transportation Research Part C: Emerging Technologies, 64, 101-116.

Barceló, J, Ferrer, J.L, García D., Florian, M. and E. Le Saux, The Distributedization of AIMSUN2

Microscopic Simulator for ITS Applications, Proc. 3rd. World Congress on Intelligent Transport

Systems, Orlando, 1996.

Ben-Akiva, M. E., Bierlaire, M., Burton, D., Koutsopoulos, H. N., & Mishalani, R. (2002). Network state

estimation and prediction for real-time transportation management applications. Paper presented

at the Transportation Research Board 81st Annual Meeting.

Bliemer, M.C.J., H.H. Versteegt and R.J. Castenmiller (2004) INDY: A New Analytical Multiclass

Dynamic Traffic Assignment Model, Proceedings of the TRISTAN V conference, Guadeloupe.

Bryant, R. E.. Simulation of packet communication architecture computer systems. Technical Report

MIT-LCS-TR-188, MIT, 1977.

Cameron, G. D., & Duncan, G. I. (1996). PARAMICS—Parallel microscopic simulation of road traffic.

The Journal of Supercomputing, 10(1), 25-53. K. Nagel and M. Schmidt. Parallel DYNEMO:

Mesoscopic traffic flow simulation on large networks. preprint, 2000.

Celikoglu, H. B., & Dell’Orco, M. (2007). Mesoscopic simulation of a dynamic link loading process.

Transportation Research Part C: Emerging Technologies, 15(5), 329-344.

Cetin N., Burri A., and Nagel K. 2003. A large-scale agent-based traffic microsimulation based on queue

model. Swiss Transport Research Conference, Monte Verita, CH.

Chandy, K. M., & Misra, J. (1979). Distributed simulation: A case study in design and verification of

distributed programs. IEEE Transactions on software engineering, (5), 440-452.

Chandy, K. M., Sherman, R. Space-time and simulation. University of Southern California, Information

Sciences Institute, 1989.

Chen, B., Cheng, H. H., & Palen, J. (2009). Integrating mobile agent technology with multi-agent systems

for distributed traffic detection and management systems. Transportation Research Part C:

Emerging Technologies, 17(1), 1-10.

Comfort, J. C. The simulation of a master-slave event set processor. Simulation, 1984, 42(3): 117-124.

Daganzo, C. F. The cell transmission model: A dynamic representation of highway traffic consistent with

the hydrodynamic theory. Transportation Research Part B: Methodological, 1994, 28(4): 269-287.

Daganzo, C. F. (1995a). A finite difference approximation of the kinematic wave model of traffic flow.

Transportation Research Part B: Methodological, 29(4): 261-276.

Daganzo, C. F. (1995b). The cell transmission model, part II: network traffic. Transportation Research

Part B: Methodological, 29(2), 79-93.

Daganzo, C. F. In traffic flow, cellular automata= kinematic waves. Transportation Research Part B:

Methodological, 2006, 40(5): 396-403.

Dagum, L., Enon, R. (1998). OpenMP: an industry standard API for shared-memory programming.

Computational Science & Engineering, IEEE, 5(1), 46-55.

Dell’Orco, M., Marinelli, M., & Silgu, M. A. (2016). Bee Colony Optimization for innovative travel time

estimation, based on a mesoscopic traffic assignment model. Transportation Research Part C:

Emerging Technologies, 66, 48-60.

Di Gangi, M., Cantarella, G. E., Di Pace, R., & Memoli, S. (2016). Network traffic control based on a

mesoscopic dynamic flow model. Transportation Research Part C: Emerging Technologies, 66, 3-

26.

Erdoğan, S., Zhou, X., & Liu, J. (2015). A Simplified Dynamic Traffic Assignment Framework for

Statewide Traffic Modeling. In Transportation Research Board 94th Annual Meeting (No. 15-

6090).

Ferscha, A., Tripathi, S. K. Parallel and distributed simulation of discrete event systems. 1998.

Florian, M. and Gendreau, M., (2001). Applications of parallel computing in transportation. Parallel

Computing, 27(12), 1521-1522.

Fujimoto, R. M. Parallel discrete event simulation. Communications of the ACM, 1990, 33(10): 30-53.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

20

Fujimoto, R. M. Parallel discrete event simulation: Will the field survive?. ORSA Journal on Computing,

1993, 5(3): 213-230.

Fujimoto, R. (2015). Parallel and distributed simulation. In Proceedings of the 2015 Winter Simulation

Conference (pp. 45-59). IEEE Press.

Hunter, M., Kim, H. K., Suh, W., Fujimoto, R., Sirichoke, J., & Palekar, M. (2009). Ad hoc distributed

dynamic data-driven simulations of surface transportation systems. Simulation, 85(4), 243-255.

Jafer, S., Liu, Q., & Wainer, G. (2013). Synchronization methods in parallel and distributed discrete-event

simulation. Simulation Modelling Practice and Theory, 30, 54-73.

Jefferson, D. R.. Virtual time. ACM Transactions on Programming Languages and Systems, 7(3):404–

245, July 1985.

Junchaya, T., & Chang, G. L. (1993). Exploring real-time traffic simulation with massively parallel

computing architecture. Transportation Research Part C: Emerging Technologies, 1(1), 57-76.

Kallioras, N. A., Kepaptsoglou, K., & Lagaros, N. D. (2015). Transit stop inspection and maintenance

scheduling: A GPU accelerated metaheuristics approach. Transportation Research Part C:

Emerging Technologies, 55, 246-260.

Kirchner, A., & Schadschneider, A. (2002). Simulation of evacuation processes using a bionics-inspired

cellular automaton model for pedestrian dynamics. Physica A: Statistical Mechanics and its

Applications, 312(1), 260-276.

Lee, D. H., & Chandrasekar, P. (2002). A framework for parallel traffic simulation using multiple

instancing of a simulation program. ITS Journal, 7(3-4), 279-294.

Liu, J. Parallel Discrete‐Event Simulation[M]. John Wiley & Sons, Inc., 2009.

Liu, J. & Zhou, Z. (2016) Capacitated transit service network design with boundedly rational agents.

Transportation Research Part B: Methodological,93, 225-250

Liu, Z., Meng, Q. (2013). Distributed computing approaches for large‐scale probit‐based stochastic

user equilibrium problems. Journal of Advanced Transportation, 47(6), 553-571.

Lu, C.C., Mahmassani, H.S., Zhou, X., (2009). Equivalent gap function-based reformulation and solution

algorithm for the dynamic user equilibrium problem. Transportation Research Part B:

Methodological, 43(3), 345-364.

Lu, C. C., Zhou, X., & Zhang, K. (2013). Dynamic origin–destination demand flow estimation under

congested traffic conditions. Transportation Research Part C: Emerging Technologies, 34, 16-37.

Mahmassani, H. S., Hu, T-Y, Peeta, S., and Ziliaskopoulos, A. Development and testing of dynamic

traffic assignment and simulation procedures for ATIS/ATMS applications. Report DTFH61-90-

R-00074-FG, U.S. DOT, Federal Highway Administration, McLean, Virgina, 1994.

Mahmassani, H. S. Dynamic network traffic assignment and simulation methodology for advanced

system management application. Networks and Spatial Economics, 2001, Vol. 1, 267-292.

Morosan, C. D., Florian, M. (2015). The benefits of parallel computing for large-scale network

equilibrium models. Downloaded from https://www.inrosoftware.com/assets/pres-

pap/TRB2015/P15-6591.pdf.

Nagel, K., & Schreckenberg, M. (1992). A cellular automaton model for freeway traffic. Journal de

physique I, 2(12), 2221-2229.

Nagel, K., & Rickert, M. (2001). Parallel implementation of the TRANSIMS micro-simulation. Parallel

Computing, 27(12), 1611-1639.

Nevers, Brandon L., et al. The Effective Integration of Analysis, Modeling, and Simulation Tools. No.

FHWA-HRT-13-036. 2013.

Newell, G. F. (1993). A simplified theory of kinematic waves in highway traffic, part I: general theory.

Transportation Research Part B: Methodological, 27(4), 281-287

Ng, M. W., Duc. T. Nguyen. (2015). Domain Decomposition, Parallel Computing and Traffic

Assignment. Downloaded from http://amonline.trb.org/trb57535-2015-1.1793793/t006-

1.1818822/116-1.1809928/p15-6590-1.1820620/p15-6590-1.1955721?qr=1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

21

Nie, Y., Ma, J., & Zhang, H. M. (2008). A polymorphic dynamic network loading model. Computer‐
Aided Civil and Infrastructure Engineering, 23(2), 86-103.

Panneton, F., L'ecuyer, P., & Matsumoto, M. (2006). Improved long-period generators based on linear

recurrences modulo 2. ACM Transactions on Mathematical Software (TOMS), 32(1), 1-16.

Peacock, J. K., J. W. Wong, and E. G. Manning. Distributed Simulation using a Network of Processors.

Computer Networks, Vol. 3, No. 1, pp. 44, 1979.

Peeta, S., & Ziliaskopoulos, A. K. (2001). Foundations of dynamic traffic assignment: The past, the

present and the future. Networks and Spatial Economics, 1(3-4), 233-265.

Potuzak, T. Distributed-Parallel Road Traffic Simulator for Clusters of Multi-core Computers. in

Distributed Simulation and Real Time Applications (DS-RT), 2012 IEEE/ACM 16th

International Symposium on. 2012.

Qu, Y., Gao, Z., Xiao, Y., Li, X., (2014). Modeling the pedestrian’s movement and simulating evacuation

dynamics on stairs. Safety science, 70, 189-201.

Qu, Y., Gao, Z., Orenstein, P., Long, J. and Li, X., (2015). An effective algorithm to simulate pedestrian

flow using the heuristic force-based model. Transportmetrica B: transport dynamics, 3(1), 1-26.

Ruan, J. M., Liu, B., Wei, H., Qu, Y., Zhu, N., & Zhou, X. (2016). How Many and Where to Locate

Parking Lots? A Space–time Accessibility-Maximization Modeling Framework for Special Event

Traffic Management. Urban Rail Transit, 1-12.

Snelder, M. (2009). A comparison between dynameq and indy. CIRRELT.

Sundaram, S., Koutsopoulos, H.N., Ben-Akiva, M., Antoniou, C., Balakrishna, R., 2011. Simulation-

based dynamic traffic assignment for short-term planning applications. Simulation Modelling

Practice and Theory 19(1), 450-462.

Wong, S. C. (1997). Group-based optimisation of signal timings using parallel computing. Transportation

Research Part C: Emerging Technologies,5(2), 123-139.

Yperman, I. The link transmission model for dynamic network loading. 2007.

Ziliaskopoulos, A., Kotzinos, D., & Mahmassani, H. S. (1997). Design and implementation of parallel

time-dependent least time path algorithms for intelligent transportation systems applications.

Transportation Research Part C: Emerging Technologies, 5(2), 95-107.

Zhen, S., W. Kai, and Z. Fenghua. Agent-based traffic simulation and traffic signal timing optimization

with GPU. in Intelligent Transportation Systems (ITSC), 2011 14th International IEEE

Conference on. 2011.

Zhou, X., Taylor, J. (2014). DTALite: A queue-based mesoscopic traffic simulator for fast model

evaluation and calibration. Cogent Engineering, 1(1): 961345.

Zhou, X., Zlatkovic, M., Farhan, M. (2015). Simplified web-based decision support method for traffic

management and work zone analysis. Utah Department of Transportation, Report No. UT-15.09.

Zhou, X., Tanvir, S., Lei, H., Taylor, J., Liu, B., Rouphail, N. M., & Frey, H. C. (2015). Integrating a

simplified emission estimation model and mesoscopic dynamic traffic simulator to efficiently

evaluate emission impacts of traffic management strategies. Transportation Research Part D:

Transport and Environment, 37, 123-136.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

22

List of Figure

Fig. 1 Network representation and logical process in parallel discrete event simulation

Fig. 2 Overall framework of mesoscopic transportation simulation

Fig. 3 Space-time trajectory and vehiclular event list

Fig. 4 Parallelism mechanism in OpenMP with multiple CPU threads

Fig. 5 Different LP distributions at different parallel computing instances, a CPU label means a

CPU thread

Fig. 6 Space-time-processor scheduling graph

Fig. 7 Processor-space-time network representation

Fig. 8 CPU usage time series/Gantt chart for time-dependent discretized event simulation using

OpenMP

Fig. 9 Overall maps of four real-world transportation networks

Fig. 10 Speedup of four networks

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

23

List of Table

Tab. 1 Details of four real networks used for simulations

Tab. 2 Cumulative execution time of each iteration (Scenario b)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

24

FIGURES

1 2 LPa LPc LPd

LP2LP1

a) freeway corridor

d) link-based LP

1a c 2 d

c) node-based LP

b) double-buffer representation

Fig. 1 Network representation and logical process in parallel discrete event simulation

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

25

Task 1: Loading buffer

(link-transfer)

Task 2: Inflow capacity

updating

Task 3: Capacity

request and allocate

Task 4: Node transfer

Task 5: Link transfer

Read Input Data

Agent Routing

From Zone 1

Agent Routing

From Zone 2

Agent Routing

From Zone n

Start Simulation

Link-based LP1 Link-based LP2 Link-based LPl

Node-based LP1 Node-based LP2 Node-based LPn

Update Time Interval

Simulation

Terminates

Link-based LP1 Link-based LP2 Link-based LPl

Node-based LP1 Node-based LP2 Node-based LPn

Link-based LP1 Link-based LP2 Link-based LPl

satisfying end

 of criterion?

true

false

Fig. 2 Overall framework of mesoscopic transportation simulation

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

26

Fig. 3 Space-time trajectory and vehiclular event list

time

space

(a,l1,t1,ENB)

(a,l1,t3,EXB)
(a,l1,t5,EXB)

(a,l2,t5,ENB)

(a,l2,t7,EXB)

(a,l3,t7,ENB)

(a,l3,t9,EXB)

 1 2 3 4 5 6 7 8 9

link transfer

node waiting

node transfer

link transfer

node transfer

link transfer

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

27

memory

tf

CPU1 CPU2 CPU3

t1,s t2,s t3,s

t1,c t2,c t3,c

tj

#pragma omp parallel for

{

}

…
…

allocated memory for

each CPU/thread

tf

tj

t1,s

t1,c

time stamp at the fork

time stamp at the joint
structured

parallel block time stamp of thread 1

being created

time stamp of thread 1

completing executing

Start

(e.g. for each node)

end

Fig. 4 Parallelism mechanism in OpenMP with multiple CPU threads

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

28

LP1

LP2

LP3

LP4

LP5

LP6

LP7

LP1

LP4

LP6

LP7

LP2 LP3

LP5

CPU1 CPU2 CPU3 CPU1 CPU2 CPU3

a) LP distribution at parallel

computing instances 1

b) LP distribution at

instance 2

Fig. 5 Different LP distributions at different parallel computing instances, a CPU label means a CPU thread

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

29

LP1

LP2

1

c
2

a
d

Time

Space (buffer)

link

transfer

node

transfer

link

transfer

node

transfer

link

transfer

ENBa

ENBb

ENBc

ENBd

ENBe

EXBa

EXBb

EXBc

EXBd

EXBe

Fig. 6 Space-time-processor scheduling graph

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

30

1

2

3

time

link-transfer

1 anode-based

activity vertex

link-based

activity vertex

1

2

3

a a

b b

LP1

LP2

LP3

LPb

LPa

1

2

3

node-transfer link-transfer node-transfer

barrier vertex schedule arc

space

processor

coordinate axis (space,

time, processor)

Fig. 7 Processor-space-time network representation

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

31

LPa

LPb

Time

CPU1

CPU2

Link

transfer

Node

transfer

Link

transfer

Node

transfer

LPa

LPb

LP1

LP2

LP3 LP3

LP1

LP2

Execution

time

Idle time

Fig. 8 CPU usage time series/Gantt chart for time-dependent discretized event simulation using OpenMP

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

32

a) West Jordan area in Salt Lake City

(0.1k nodes, 0.4k links)

c) Salt Lake City

(13.9k nodes, 26.8k links)

b) Clackamas subarea in Portland

(1.5k nodes, 4.1k links)

d) Maryland Statewide

(21.7k nodes, 54.5k links)
Fig. 9 Overall maps of four real-world transportation networks

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

33

Fig. 10 Speedup of four networks

1

3

5

7

9

11

13

1 6 11 16 21 26 31 36

sp
ee

d
u

p

number of threads

Speedup of four networks

a) West Jordan area in Salt

Lake City (0.1k nodes,

0.4k links)

b) Clackamas subarea in

Portland (1.5k nodes, 4.1k

links)

c) Salt Lake City (13.9k

nodes, 26.8k links)

d) Maryland Statewide

(21.7k nodes, 54.5k links)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

34

TABLES

Tab. 1 Details of four real networks used for simulations

Scenario Network Number of nodes
Number of

links

Number of

agents

Demand loading

period
Scale

a West Jordan subarea 0.1K 0.4K 25.3K 2h Small

b Clackamas subarea 1.5K 4.1K 491.5K 5h Medium

c
Salt Lake City

region
13.9K 26.8K 1.3M 5h Large

d Maryland statewide 21.7K 54.5K 26.6M 24h Large

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

35

Tab. 2 Cumulative execution time of each iteration (Scenario b)

Iteration
Number of CPU threads

1 4 8 12 16 20 24 28 32

1 28.02 10.529 5.668 4.965 4.668 3.999 3.622 3.217 3.259

2 57.449 21.672 12.319 10.764 9.366 7.996 7.561 6.555 6.205

3 86.273 32.8 18.382 16.571 13.962 12.159 11.06 10.221 9.267

4 115.623 44.054 24.613 22.49 18.698 15.818 14.263 13.534 12.31

5 144.742 55.25 31.438 27.702 23.17 19.811 17.608 16.673 15.499

6 173.806 65.882 37.792 33.519 27.621 24.197 21.058 20.026 18.526

7 203.044 77.119 43.533 38.985 31.93 28.137 24.527 23.69 21.677

8 232.695 87.769 49.712 44.317 36.345 32.282 28.026 27.173 24.646

9 262.601 98.692 56.005 49.489 40.827 36.571 31.577 30.583 27.68

10 291.825 111.61 62.187 55.204 45.432 40.854 35.267 33.559 30.75

