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Abstract: This paper describes a computationally efficient parallel-computing framework for mesoscopic 

transportation simulation on large-scale networks. By introducing an overall data structure for mesoscopic 

dynamic transportation simulation, we discuss a set of implementation issues for enabling flexible parallel 

computing on a multi-core shared memory architecture. First, we embed an event-based simulation logic 

to implement a simplified kinematic wave model and reduce simulation overhead. Second, we present a 

space-time-event computing framework to decompose simulation steps to reduce communication 

overhead in parallel execution and an OpenMP-based space-time-processor implementation method that 

is used to automate task partition tasks. According to the spatial and temporal attributes, various types of 

simulation events are mapped to independent logical processes that can concurrently execute their 

procedures while maintaining good load balance. We propose a synchronous space-parallel simulation 

strategy to dynamically assign the logical processes to different threads. The proposed method is then 

applied to simulate large-scale, real-world networks to examine the computational efficiency under 

different numbers of CPU threads. Numerical experiments demonstrate that the implemented parallel 

computing algorithm can significantly improve the computational efficiency and it can reach up to a 

speedup of 10 on a workstation with 32 computing threads.  
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1. Introduction 

Compared to the sequential computing mode utilized in most existing traffic simulation and planning 

models, parallel computing not only efficiently utilizes widely available distributed computing powers 

and communication networks, but also redefines what is tractable for time-critical transportation 

simulation and management strategy optimization. Emerging multi-core computer processor techniques 

are offering unprecedented available parallel computing resources, through a wide range of high-

performance laptops and desktops currently available in the market. This paper aims to develop a parallel 

algorithm design for transportation simulation to exploit this paradigm change in computing and to 

facilitate the most efficient use of emergent parallel hardware. 

1.1. Literature review 

At the core of transportation simulation, traffic flow models are interested in the quantitative 

relationship between flow, density and speed, and modeling the interactions between different agents. In a 

transportation network, there may be many routes between each origin and destination and agents choose 

better routes to reduce travel time. Motivated by network-wide traffic management application needs, 

such as regional traffic mobility analysis and real-time route guidance, dynamic traffic assignment (DTA) 

models has been increasingly recognized as an important approach for assessing performance of different 

traffic system management and information provision strategies. There are macroscopic, mesoscopic or 

microscopic simulation-based methods for generating time-dependent travel time measures in general 

traffic simulators and DTA models (Mahmassani et al., 1994; Mahmassani, 2001; Ben Akiva 2002; Peeta 

and Ziliaskopoulos, 2001; Adler and Blue, 2002; Celikoglu and Dell’Orco, 2007; Chen et al., 2009; Di 

Gangi and Cantarella, 2016; Dell’Orco et al., 2016). In an effort to reach the right balance between 

representation detail and computational efficiency, this study focuses on how to implement a mesoscopic-

based dynamic network loading model, within a parallel computing framework, on medium and large-

scale real-world networks.  

One key method to achieve computational efficiency while simulating medium and large-scale 

networks is parallel computing. A parallel simulation implementation is valuable for researchers to 

quickly examine the interactions of vehicular flow and analyze the complex traffic phenomena on a larger 

scale. It also helps to improve the computational efficiency of traffic model validation and calibration, as 

well as on-line traffic state estimation and prediction, e.g., through a simulation-based optimization 

framework. In early studies, parallel computing techniques have been applied in several transportation 

simulation systems (Junchaya and Chang, 1993; Wong, 1997; Ziliaskopoulos et al, 1997). PARAMICS 

(Cameron and Duncan, 1996) was implemented on a Connection Machine CM-2, and its graph partition 

algorithm divided the set of links into different sequences of queues and each queue contained a certain 
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number of moving vehicles. Based on a shared memory platform, Nagel and Schmidt (2000) and Cetin et 

al. (2003) studied the parallelization of microscopic transportation simulation based on TRANSIMS 

(Transportation Analysis and Simulation System) using another sophisticated graph partition algorithm. 

Potuzak (2012) reported a distributed microscopic discrete time-stepped simulator DUTS (Distributed 

Urban Traffic Simulator) and performed road traffic simulation on a cluster of computers with multi-core 

processors. Kallioras (2015) applied a GPU-based accelerated metaheuristics approach to solve the transit 

stop inspection and maintenance scheduling problem. In the field of traffic assignment, Florian and 

Gendreau (2001) offered a good review on parallel computing approaches for performing the shortest 

path algorithms, e.g., through network decomposition and network replication strategies. Liu and Meng 

(2013) demonstrated a solid effort for accelerating the Monte Carlo simulation method for solving probit based 

stochastic user equilibrium problems using a distributed computing system. Ng and Nguyen (2015) proposed a 

spatial partitioning method to implement parallel computing. Morosan and Florian (2015) applied a 

shared-memory strategy focused on parallel shortest path computation and reported that the speedup 

could reach up to 20 when solving the traffic assignment problem. Auld et al. (2016) developed an agent-

based modeling software development kit POLARIS that contains a parallel discrete event simulation 

engine.  

Other early implementation of parallel transportation simulations are also introduced by Barceló et 

al., (1996) and Lee & Chandrasekar (2002) and a parallel implementation of AIMSUN reported a speed-

up of 3.5 on 8 CPUs using multiple threads. As a macro-particle model, a parallel version of DYNEMO 

has been implemented since 2001 (Nagel and Rickert, 2001). DYNASMART’s research team reported 

their experiment in implementing functional decomposition (Mahmassani et al., 1994). DynaMIT 

introduced a parallelization concept of functional decomposition (i.e., task parallelization) (Sundaram et 

al., 2011). Based on GPU techniques, Zhen et al. (2011) recently proposed a parallel computing 

framework to speed up the traffic simulation and optimize the traffic signal timing.   

A significant amount of attention has been devoted to advancing parallel implementation for traffic 

simulation models for specific hardware/software architecture. The major efforts are summarized as 

follows: (1) in a static fashion, partitioning different geographical areas of the studied region to different 

CPU cores, and (2) for distributed computing, designing sophisticated message passing and efficient 

synchronization methods to reduce communication overhead among different computing cores. In our 

research, from a broader perspective of parallel discrete event simulation, we aim to offer a more feasible 

task decomposition methodology to synchronize inter-correlated space-time simulation events. This 

space-time-event oriented approach could take advantages of automated coordination programming 

interfaces (e.g. through OpenMP) between threads, processors, distributed computers, and Graphical 

Processing Unit (GPU). 
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An important study by Nie et al. (2008) offered a comprehensive discussion on a unified dynamic 

network loading/simulation framework in capturing congestion propagation effects. They also clearly 

indicated that their double-buffer-based network loading framework could be used for further parallel 

simulation prototype development and system implementation. However, to ensure the actual speedup 

under specific parallel computing architecture, in-depth research is still critically needed to examine a 

number of important system implementation issues and address how to select an appropriate space-time 

resolution and simulation execution sequences for mesoscopic or microscopic simulation.  

1.2. Space-time-event view for parallel computation 

Many further developments (Fujimoto, 1990, 1993; Ferscha and Tripathi, 1998; Liu, 2009; Fujimoto, 

2015) summarize a number of parallel processing algorithms in terms of time-parallel and space-parallel 

categories. In a space-time view presented by Chandy and Sherman (1989), a space-time discrete event 

simulation can be divided into regions of arbitrary shape and assigned to separate logical processors (LP) 

according to the spatial and temporal decomposable features (Liu, 2009). In a parallel computing method, 

a global simulation task is discretized into a set of communicating logical processes (LP), each LP has its 

own memory space and maintains its own simulation clock and event-list, which can be concurrently 

executed. One LP is only capable of processing events occurring in its sub-system and communications 

between different LPs takes place exclusively by exchanging events. 

In the general field of parallel discrete event simulation, early research proposed some fundamentally 

important synchronization strategies, e.g., the CMB protocol (Chandy and Misra, 1979; Bryant, 1977) and 

the time-warping method (Jefferson, 1985). In the CMB Chandy–Misra–Bryant (CMB) algorithm, LPs 

are assumed to be connected statically via directional links. LPs communicate through timestamped 

messages, also called event messages, which are transmitted from one LP to another in a non-decreasing 

timestamp order (Jafer et al., 2013). The CMB mechanism avoids deadlocks by introducing null messages. 

A null message essentially indicates the future arrival of the next message.  

Within this modeling framework, time-parallel simulation methods divide the space-time graph 

along the time axis into non-overlapping time intervals and assign them to different processors for parallel 

processing, while space-parallel simulation aims to partition the graph into a collection of space-

independent subsystems. The space-parallel methods include two types of LP simulation frameworks: 

synchronous vs. asynchronous (Ferscha and Tripathi, 1998). In synchronous LP simulation, all LPs have 

the same global simulation clock and they are executed by a unique time-stepped procedure. In contrast, 

the asynchronous technique allows each LP to have its own local virtual time with generally different 

clock timestamps at a given point. The asynchronous LP simulation may cause causality errors, as some 

events (from the other LPs) could arrive later carrying a timestamp earlier than the target LP’s current 
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simulation clock. Accordingly, a number of event-wise synchronization methods, including conservative 

protocol and optimistic strategy, are used for efficiently avoiding potential causality problems.  

For a large-scale transportation simulator, in our view, the synchronous space-parallel LP simulation 

approach is a more desirable choice for several reasons. First, a transportation network is spatially 

consisting of sets of links and nodes and space-parallel simulation offers a more robust solution to 

decompose events. Second, in most mesoscopic transportation simulators, the length of simulation time 

intervals should be no shorter than the free-flow travel time of the shortest links in the network (e.g., 6 

seconds used in DYNASMART). As opposed to the possibility of extremely short event execution time 

intervals such as 0.0001 s between two events in a generic discrete event simulator, the discretized time 

interval with reasonably fine resolution (e.g. 6 s) in a mesoscopic simulator enables an efficient use of 

barrier synchronization available in parallel processing environment. 

1.3. Approach 

A spatial graph partition approach has been implemented in several traffic simulation systems. In 

these systems, the events are not completely or logically separated which leads to reduced computational 

efficiency. To improve the computational efficiency, asynchronous LP simulation strategies, including a 

conservative strategy and optimistic strategy, have been applied in distributed computing traffic 

simulation. As an optimistic synchronization protocol, Hunter et al. (2009) proposed an innovative ad hoc 

distributed traffic simulation framework with the key elements of space-time memory, state aggregation, 

and rollback based synchronization.  

In this paper, we introduce a space-time-event view to understand a parallel computation mechanism 

for large-scale mesoscopic traffic network simulation. Inspired by the classical conservative CMB 

protocol (Chandy and Misra, 1979; Bryant, 1977) and a few of early implementations by Mahmassani et 

al. (1994) and Nie et al. (2008), we model a direct traffic link as two event buffers. This double-buffer 

representation further classifies individual agent’s movements as two types of events: arrival events (AE) 

and departure events (DE) at entrance buffers and exit buffers. This approach is consistent with the 

cumulative flow count-based traffic kinematic wave model proposed by Newell (1993) described in the 

Appendix.  A unique space-time-event network-based parallel computing method is developed to 

schedule the AEs and DEs of all agents at different shared-memory or distributed processors. This study 

uses an Open Multi-Processing (OpenMP) Application Programming Interface (API) (Dagum and Enon, 

1998) to facilitate our program to distribute computational tasks to different processors in a shared-

memory multiprocessing environment. Without directly dealing with Message Passing Interfaces (MPI), 

the OpenMP API also provides a simple and flexible interface for developing parallel computing 

programs for Graphical Computing Units (e.g., Nvidia Tesla) developed by Intel Inc. 
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The rest of the paper is organized as follows. The next section presents the problem statement, 

network representation and a space-time-event view to decompose the event-based simulation to 

independent logical processes. Section 3 discusses the synchronous parallel computing implementation in 

a processor-space-time scheduling network. Finally, the proposed method is applied to four medium-scale 

and large-scale real-world networks with an examination of different speedup ratios under different CPU 

number configurations in Section 4.  

2. Problem statement and framework of parallel computing  

The parallel discrete event simulation system consists of events, actions (including movement 

actions and waiting actions), buffers, logical processes, and processors. Notations and definitions are 

listed below. 

  Index of a physical node. 

  Index of a physical link. 

  Event: agent’s entering or leaving event with spatial and temporal attributes. 

  Buffer: upstream (entrance buffer) and downstream (exit buffer) segments of a link. A buffer 

stores a group of events occurring in this buffer. 

  Action: connecting two adjacent agent events. There are two types of actions: movement action 

and waiting action.  

  Movement action: A movement action connects two events in different buffers and it represents 

that an agent moves from a buffer to its spatially adjacent buffer. There are two categories of 

movement actions: link transfer and node transfer. 

  Waiting action: A waiting action connects two events in the same buffer and it represents that an 

agent is waiting in a buffer for a certain period of time. There are two categories of waiting 

actions: link waiting and node waiting. 

   Logical Process: A LP contains events, buffers and actions. It independently executes a series of 

movements.  

  Processor: the logic circuitry that responds to and processes the basic instructions, e.g., CPU and 

GPU. One processor may contain one or more LPs. If there are many LPs, the processor could 

execute the LPs sequentially, e.g., LP1->LP2->LP3. 

2.1. Problem statement  

The proposed parallel computing method aims to perform a dynamic network loading (DNL) process. 

Given a set of time-dependent OD or path flow on a congested network, the DNL problem determines the 

time-dependent link/path travel times, and other traffic states such as link flow and density over a fixed 

time period. Consider a transportation network with a set of nodes       and a set of links      , and 

the simulation time horizon is discretized to          .  In traditional methods, the given data are the 

demand and supply data, which include (1) the initial time-dependent OD demand matrices between 

activity locations or traffic analysis zones, (2) the network supply in terms of time-dependent link 

capacity            ,      and lane miles       on each link  , as well as certain capacity distribution 

rules around intersections and freeway bottlenecks. Given a set of path inflow patterns, the dynamic 

traffic network simulation problem aims to find the cumulative arrival and departure curves on each link, 
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which also leads to the simulated time-dependent link density and travel time along each used path.  The 

output data include (1) individual time-space trajectory in the network, and (2) aggregated time-dependent 

link/path travel times. These data enable transportation researchers and software developers to expand its 

range of capabilities to various traffic management application, e.g., traffic prediction and analysis, 

emission estimation, traffic demand calibration.  

Specifically, the input of our core simulation model is a set of agents with given paths, which can be 

regarded as discretized path flows. For one OD pair, we first distribute the OD demand to path flows, then 

discretize the path flows to integer values, and finally generate a number of agents with these paths. 

Because we have assigned a certain path for each agent, the first -in first-out (FIFO) principle is adopted 

to describe the queue behavior and resolve capacity request conflicts at merge nodes. If there are several 

vehicles with the same entering time, the road capacity distributes to different paths or movements 

according to the path or movement flow proportion. 

[insert Fig. 1 here] 

Fig. 1a illustrates a simple freeway corridor, which consists of the link set             and the node 

set      . To clearly describe the event-based traffic simulation, a link is divided into two parts, namely 

entrance buffer (ENB) and exit buffer (EXB), to record agents’ arriving and departing events. As shown 

in Fig. 1b, ENB (represented by a square) is located at the upstream of a link and EXB (represented by a 

triangle) is located at the downstream end. It should be noted that the exit buffer can be further 

decomposed to several exit buffers according to different link movements (directed to different 

downstream links) (Nie et al., 2008). Without a loss of generality, we only consider the single exit buffer 

situation in our paper.  

In a parallel simulation system, each logical process (LP) possesses its own local simulation clock 

and local memory for private data. According to the spatial structure of a transportation network, the 

events of all agents can be spatially assigned into node-based LPs and link-based LPs. A node-based     

contains the EXBs of its upstream links and ENBs of its downstream links, while a link-based     

contains the ENB and EXB of the current link. For example, in Fig. 1c, there are two node-based LPs, 

that are     and    . The node-based     consists of two exit buffers      and      and one entrance 

buffer      for vehicles to be loaded into the physical network. In Fig. 1d, there are five link-based LPs 

and each     contains the      and      of link l.   

2.2. Framework of transportation simulation 

Fig. 2 illustrates the procedures of an overall parallel transportation assignment and simulation system. 

This process begins by reading the input supply and demand data from external files, and assigning a 

route for each agent. This routing task can be concurrently executed for each zone. After setting 
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parameters, the simulation proceeds in a time-stepped strategy and at each time stamp there are five 

elementary sequential tasks. A node-based LP executes the node-based actions to perform the waiting 

action in an exit buffer or update spatial attributes of agents, while a link-based LP executes the link-

based actions to perform the waiting action in an entrance buffer or update the timestamp attributes of 

agents.  

Task 1: All vehicles with departure time   are loaded to the entrance buffers of their first links and some 

vehicles move forward to the entrance buffer if there is available space.  

Task 2: The inflow capacity of each link can be calculated simultaneously using a traffic flow model, such 

as the simplified Kinematic Wave Model presented in the Appendix.    

Task 3: Synchronize capacity distribution at each node (i.e., a bottleneck or queue server). Final outgoing 

capacity values for each incoming link are assigned, according to the inflow capacities of a 

bottleneck, using node models (e.g., Daganzo's (1995b) priority-based merge model).  

Task 4: Node transfer from exit buffer to entrance buffer of connected links. Given assigned capacity, this 

procedure moves vehicles from the exit buffers of inbound links to the entrance buffers of 

outbound links or vehicles complete their trips at the destination nodes.  

Task 5: Link transfer from the entrance buffer to exit buffer of the same link. Agents transverse from the 

link entrance buffers to link exit buffers by updating the travel times at the corresponding events. 

The arrival event at time   is deleted from the entrance buffer and replaced by a ready-to-depart 

event at time   at the exit buffer of the link. Here, the travel time     depends on the traffic flow 

models and Newell’s simplified kinematic wave model that uses free-flow-travel-time (FFTT) to 

move agents from the cumulative arrival curve A(t) to the virtual cumulative departure curve V(t). 

The cumulative departure curve D(t) is finally updated when the agent moves out of this link with 

capacity quotas assigned from Task 3.  

[insert Fig. 2 here] 

 

The core of the traffic flow model used in this study is a discretized (vehicular) kinetic wave (KW) 

model. In the standard macroscopic KW traffic flow model and the node capacity distribution model, the 

values (i.e., traffic volume) are non-integers. In our simulation, an improved long-period pseudo-random 

number generator (Panneton et al., 2006) is used to generate uniform random numbers and then round 

floating-point capacity values to the nearest integers in terms of the number of vehicles.   

After the simulation process, path-specific travel times are needed for the traffic assignment module. 

A standard way for approximating the link and path travel time is through tracking the link cumulative 

flow count curves, but it may involve interpolation and back-tracking and constitute a significant portion 

of the computational overhead. Snelder (2009) has proposed a method to reduce the error caused by the 
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discretization rounding off errors. Different from the above flow-based method, we use vehicle 

trajectories from all agents to compute the time-dependent (experienced) path travel time and waiting 

time, based on the time stamps along individual paths. Define   
     as the travel time of agent   travels 

along path   with departure time  ,       
          as the time interval of agent a arrives the exit buffer 

(EXB) of the last link of path   
    . During the simulation, the individual entering time and leaving time 

of each buffer of each link are dynamically recorded, so the individual time-dependent path travel time 

  
     and the aggregated average path travel time        can be easily calculated by Eq. (1).  

  
           

                         
   

     

 
                                      (1) 

By following the time discretization approach presented by Lu et al. (2009), we generate time-dependent 

aggregated link travel cost using the shortest path algorithm and dynamic equilibrium gaps. 

2.3. Space-time-event view for parallel computing 

In this paper, we use a four-indexed notation           to record the space-time event (or state) of 

each agent, where   represents the index of an agent,   represents the index of a link,   represents the 

simulation time interval, and   represents the buffer type of the current link  . The space-time trajectory 

of one agent is recorded as an event list. For example, in Fig. 3, the space-time trajectory of one agent   

in the corridor          can be represented by the event list                             

               . Accordingly, the input buffers store the events             that represent agents 

entering the upstream node of link   while the output buffers store the events             that represent 

agents entering and leaving the downstream node of link  . For a single agent/vehicle, the execution 

sequence of its events is dynamically driven by three categories of actions 

1) Link transfer:                        , with a travel time of          . 

2) Node transfer:                        .The downstream link   is predefined ahead of the 

agent’s trip or determined by real-time routing behavior. In our study, we assume that the 

operation time of node transfer movement is zero to establish a clear activity-on-the-link network 

structure. 

3) Node waiting:                        . Agent   is waiting at the exit buffer     of link   

from time interval   and is ready to be considered for a move to the next link at time interval  . 

The waiting time     depends on the inflow capacities of the adjacent downstream links and 

outflow capacity of the current link  . 

[insert Fig. 3 here] 

In a multi-agent simulation, tasks 2 and 3 proposed in Section 2.2 calculate capacity requests and 

allocation prior to moving agents, and during this process the agents’ spatial and temporal attributes are 
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not updated. After these two tasks, agents with permission perform node-transfer movements and link-

transfer movements while other agents execute node-waiting actions/commands.  

 

3. Scheduling logical processors for parallel computing implementation  

Given a space-time-event representation presented above for an overall transportation simulation, we 

then need to execute all LPs and events synchronously or asynchronously in parallel. An important local 

causality constraint (Fujimoto, 1990) principle requires that every LP should process the events in a non-

decreasing timestamp order. This section systematically describes an overall control/coordination 

mechanism to schedule the parallel processors to attain maximum speed-up.  

3.1. Synchronous LP simulation  

In most mesoscopic transportation simulators, the length of simulation time intervals are not shorter 

than the free-flow travel time of the shortest links in the network, e.g., 6 seconds used in DYNASMART. 

This discretized time horizon is very useful for conducting synchronous space-parallel LP simulation. 

Problems of deadlock and memory request are avoided with the help of the barrier synchronization 

mechanisms available in most every parallel processing environments (Ferscha and Tripathi, 1998). On 

the other hand, LPs with shorter execution times should wait for all other LPs to complete their 

executions and thus, this synchronous strategy could lead to idle time. If events are spatially and 

temporally distributed to all LPs in an even manner, the CPU time differences could be reduced, leading 

to less system-wide idle time.  

While there are many advantages of adopting the synchronous LP strategy, we also need to 

recognize the following limitations. First, the time discretization might result in temporal precision errors 

as the occurrence time of every event should be integral multiples of the simulation time interval. Higher 

time precision requires finer simulation time resolution. Second, events are spatially decomposed into 

different LPs and each logical process can simultaneously manage non-overlapping sets of buffers. This is 

shown in Fig. 1-(c) for a node-based partition and Fig. 1-(d) for a link-based partition. It should be noted 

that under the space-parallel strategy, each LP can only communicate with their neighbors, which requires 

the distance   traveled by an agent in one time step    not to exceed    (condition (2)).  

                                                                                (2) 

The LP parallel computing strategy can be further considered to a possible application in the 

microscopic traffic or pedestrian flow models that satisfy condition (1). Examples along line could 

include the floor field cellular automata model (e.g., Kirchner and Schadschneider, 2002) and force-based 

model (e.g., Qu et al., 2014;  Qu et al., 2015) for pedestrian simulation, as well as the cellular 

transmission model for traffic simulation (Daganzo, 1994). In these models, an individual can only move 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

  

13 
 

to one of its neighbor cells/links in a single time stamp. However, in some other microscopic models, 

such as the cellular automata model for traffic simulation by Nagel and Schreckenberg (1992), a vehicle 

can move more than one cell/link at a time interval. In such a situation, condition (1) is not satisfied and 

the parallel strategy could be invalidated because it cannot exactly predict the potential conflict area and 

accordingly resolve the conflicts. To deal with such situations, some special microscopic models, such as 

simple linear car-following model (CF (L)), two cellular automata models (CA (L, M)), proposed by 

Daganzo (2006), can be converted to the kinematic wave model (KW) with a triangular fundamental 

diagram in order to enable the use of our proposed parallel computing strategy with simplified traffic flow 

models. For more complicated models considering lane changing and overtaking behaviors, it is still a 

very challenging task to design an effective parallel computing method. 

 

 The pseudo-code of the parallel simulation process is described as follows: 

For time t = 0 to T (e.g., 24 hours) 

Step 1: Load newly generated agents to the loading buffer of their first links. If there is sufficient space 

available for each agent entering the entrance buffer, move it from the entrance buffer to the exit 

buffer. 

Step 2: Capacity request estimation for each link  

#pragma omp parallel for  

For link l =1 to L 

Based on the external user input and traffic flow model, calculate inflow capacity for link l 

Use a link model and outflow capacities, adjust inflow capacity for link l 

End for // link   

Step 3: Synchronize capacity distribution at each bottleneck (merge and diverge) 

#pragma omp parallel for 

For each node i = 1 to N 

  Total Incoming Demand = 0; 

For each link l in incoming link set       

Total Incoming Demand += outflow demand from link l  

End for each incoming link   

  If (Total Incoming Demand > Inflow Link Capacity           ) //bottleneck 

For each incoming link       

Distribute inflow capacity to outflow capacity for each incoming link at bottleneck  

End for each incoming link   

EndIf  

End for each node  

Step 4: Node transfer from exit buffer to entrance buffer of connected links  

#pragma omp parallel for 

For each node i = 1 to N 

For each link l in the incoming link set       

While (fetch the front vehicle from the exit buffer) 

If current simulation time t equals to or is greater than   , and both inflow and 

outflow capacity are available (for kinematic wave based queuing models) // 

Check exit buffer 

  Move the vehicle from the exit buffer of link l to the entrance buffer of link l' 

Update cumulative arrival agent list on outgoing link l' 
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Reduce the inflow capacity on l' at time t by 1 

Reduce the outflow capacity on l at time t by 1 

Else  

Break 

   End while 

End for each incoming link   

End for each node 

Step 5: Link traversal from the entrance buffer to exit buffer of the same link  

#pragma omp parallel for 

For each link l =1 to L  

Arrival events at time   , departure events at time                , create the event into exit 

buffer,  

Update link cumulative arrival curve        
End for 

End for //time 

 

Fig. 4 briefly explains the fork-joint parallelism mechanism in OpenMP. A parallel region is a block 

of one or more statements with one point of entry at the top (fork point) and one point of exit at the 

bottom (joint point). Beginning from the code structure with hashtag “#pragma omp parallel for”, a 

number of threads are created at the fork point to concurrently execute the decomposed tasks and then 

threads wait here for all threads to end at the joint point. Typically, a processor can only work on one 

thread per core. A CPU can have multiple cores and the hyper threading technology can allow one CPU 

to create and work on up to two threads per core.  

[insert Fig. 4 here] 

 

All CPU threads share the memory during the execution procedure in the structured parallel block, 

and OpenMP is able to dynamically create a private memory block for each task in a thread. Define    as 

the time stamp at the fork point,     as the time stamp at the joint point,      as the time stamp of thread   

being created, and      as the time stamp of thread   completing its executing. Here,   is the total number 

of parallel executed threads. It should be noted that the time stamps are real computation time stamps, 

which are not simulation time stamps. The relationships between the time stamps can be expressed as Eq. 

(3).  

                                                                             (3) 

 

 

 

It should be noted that OpenMP automates the distribution of the LPs (e.g. for different nodes, links 

or zones) to different processors during the simulation, and thus, the LP distributions may not be the same 

at different computing instances. Consider Fig. 5 as an example where there are three LPs (LP1, LP2, LP3) 

and four LPs (LP1, LP4, LP6, LP7) allocated in CPU thread 1 at two time instances, respectively.   
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[insert Fig. 5 here] 

An important property for parallel computing is that different numbers of CPU threads and different 

LP distributions should not influence the simulation results. Thanks to the flexible coding structure in 

OpenMP, our program attaches its own random number seed for each node, link, or zone shown in Fig. 2. 

Thus, the computing process and results for each object (to be parallelized) remain the same, regardless of 

which CPU thread it is assigned to or how many CPU threads created by the system. We have proved this 

concept according to our simulation results.  

3.2. Understanding the execution of simulation activities at multiple processors 

The atomic traffic flow simulation logic at each time stamp consists of five sequential tasks, each of 

which  is executed by a link-based LP or a node-based LP, as shown in Fig. 2.  Focusing on the link-

transfer and node-transfer tasks, Fig. 6 illustrates the space-time view of the dynamic LP decomposition 

procedure for a simple road segment example, which is a traffic corridor with two merge and diverge 

ramps. To simply describe the execution procedure, we only focus on nodes 1 and 2 with a little 

complicated topological structure. The simulation procedure has five link-based LPs and two node-based 

LPs, e.g., node-based LP1 (node 1) contains the exit buffer of links   and   and the entrance buffer of link 

 .  

[insert Fig. 6 here] 

Constructing a space-time-processor graph (Chandy and Sherman, 1989) is useful for us to 

understand how independent link-based and node-based LPs are assigned to different processors. This 

graph consists of a set of activity and barrier vertexes and a set of schedule arcs. Specifically, an activity 

vertex          represents a LP being executed at space   (a link   or a node  ) at time   on processor  . 

A barrier vertex             represents a forking or joint activity at a virtual space    at time   on 

processor   , and it represents the intersection of results before re-distribution back to the CPUs. A 

schedule arc        connects an activity vertex and a barrier vertex. The schedule network is sequentially 

executed along the time dimension (in terms of simulation steps) and parallel computing activities are 

concurrently executed in the space dimension inside each link-based LP or node-based LP stage.  

[insert Fig. 7 here] 

As illustrated in Fig. 7, we consider an example in a corridor (1->2->3) including 3 nodes (node #1, 

2, 3) and 2 links (link #a, b), on a system with 2 CPUs. During the link-transfer step, link-based LPa and 

LPb are concurrently executed on CPU#1 and CPU#2, respectively; while inside the node-transfer step, 

the node-based LP1 and LP2 are performed on CPU#1, while LP3 is performed on CPU#2. Between every 

two steps, there is a barrier vertex connecting the activity vertexes to synchronize all LPs.  Fig. 8 

illustrates the execution time flow chart of an instance of Fig. 7. Because fewer LPs are assigned to CPU2 
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compared to CPU1, the execution time of CPU2 is shorter than CPU1 and the overall speedup depends on 

the percentage of the idle time during each full execution step.  

[insert Fig. 8 here] 

 

4. Numerical experiments 

The proposed parallel computing method is implemented on a workstation with an Intel Xeon E5-

2680 2.80GHz multi-core CPU and 192 GB memory. This workstation has a total of 40 threads. To 

ensure the normal running of the workstation, we only use up to 32 threads for the simulation program in 

the experiments and reserve the remaining 8 threads for critical operating systems and other system-level 

threads. The source codes were implemented using Visual Studio C++ 2013 and its built-in OpenMP API 

library. Based on the proposed synchronous LP spatial-parallel computing method, our research group 

developed an open-source traffic simulation software DTALite (Zhou and Taylor, 2014; Zhou et al., 2015; 

Ruan et al., 2016) that was used to measure the total execution time and speedup under different numbers 

of threads.   

4.1. Network and experiment design 

A set of experiments were performed on four different scales of networks. These include West 

Jordan network, Clackamas, Salt Lake City, and Maryland statewide network, with increasing scale 

respectively. Table 1 lists the supply and demand summaries of all the four networks. In scenario (a), the 

West Jordan area extracted from Salt Lake City (UDOT Report No. UT-15.09 by Zhou et al., 2015) is a 

small-scale network with 0.1K nodes and 0.4K links and the traffic demand loading period is 2 hours 

(15:30-17:30). In scenario (b), the Clackamas subarea network extracted from the Portland metropolitan 

network (Nevers et al., 2013) is a medium-scale network with 1.5K nodes and 4.1K links and the traffic 

demand loading period is 5 hours (14:00-19:00). In scenario (c), the Salt Lake City network is a large-

scale regional network with 13.9K nodes and 26.8K links and the demand loading period is 5 hours. In 

scenario (d), the Maryland statewide network (Erdoğan et al., 2015) is a large-scale metropolitan/mega 

region network, which includes all of Maryland, Delaware and the District of Columbia, along with 

adjacent portions of Virginia, Pennsylvania and West Virginia. This network has a total of 26.6 M 

travelers during a 24-hour simulation horizon. Fig. 9 plots the corresponding networks and approximate 

peak hour demand values. 

[insert Table 1 here] 

 

[insert Fig. 6 here] 
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4.2. Simulation results 

The dynamic traffic assignment program includes both an assignment/routing stage and simulation 

stage. The dynamic network loading stage is able to produce time dependent link volume, speed, density, 

queue length, and has the ability to track trajectories of individual vehicles on each link. Focusing on the 

execution time of the simulation stage, each scenario is executed 10 iterations to reduce sampling errors 

for getting a tally of average execution time of dynamic network loading at each iteration. Taking 

scenario b) for example, the cumulative execution time of each iteration is listed in Table 2. The 

execution time of single-thread computing is 291.825 s. As the number of threads increases, the CPU 

usage is improved with shorter execution time, for example, with a speedup of about 9.30 in a 32-thread 

computing environment. 

 

[insert Table 2 here] 

Recall that, a speedup is measured by comparing the execution time of a simulation using multiple 

threads and one obtained using one thread. The speedups of the aforementioned four test cases are plotted 

in Fig. 10, which indicate a possible nonlinear speedup as a function of the number of threads used in 

computing. Overall, both the scale of network (in terms of number of links and nodes) and travel demand 

(in terms of number of agents) could affect the overall parallel computing efficiency.  

[insert Fig. 10 here] 

The parallel computing speedup values vary from 4.1 to 10.7 in simulating the four real-world 

networks. The speedup is higher for larger road traffic networks, because a large number of links and 

nodes allows a more balanced computing resource allocation to each processor, or more precisely, link-

based or node-based LPs. In contrast, for smaller networks, the events have to be distributed to only a few 

of the processors, and therefore, the idle time of unused processors could be significant. The higher 

demand or a large number network could introduce a more balanced computing task assignment across 

nodes and links (at different CPU cores), which leads to a potentially higher speed up rate. The average 

execution time of scheduling events could dramatically increase with more frequent interactions and data 

exchanges between LPs. As a result, the overall communication overhead consumes more computation 

resources, leading to a slower increasing trend of the speedup curve. Overall, we have demonstrated that 

the speed-up in the parallel computing environment is significant regardless of the number of CPUs 

available in our example.  

5. Conclusions 

This paper has presented a parallel computing implementation approach for vehicular traffic 

simulation in real-world networks. According to the properties of individual events, a space-time-event 
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view is proposed to allocate agent’s entering and leaving events to different link buffers. Based on the 

double-buffer representation, we decompose the general mesoscopic transportation simulation into five 

sequential tasks that can be concurrently executed on link-based and node-based logical processes. The 

logical processes are then dynamically distributed to different processors by the proposed synchronous 

space-parallel LP strategy. As a unique contribution, this paper establishes a space-time-processor 

network to illustrate the spatial and temporal LP scheduling and synchronization mechanism for 

microscopic transportation system simulation. The proposed parallel computing method is then 

implemented and applied to simulate four real-world transportation networks. The simulation results 

show significant speedup using our method and that that speedup magnitude is dependent on the scale of 

the network and the travel demand. In the examples provided, our method attained a speedup of up to 

10.7 on a workstation with 32 computing CPU threads. 

In our future work, we will perform further testing of the proposed parallel computing algorithm 

using a more efficient communication protocol for inter-process communication. We will further evaluate 

a wide range of other parallelization techniques, such as distributed shared memory-based methods and 

GPU computing technology, to further improve the computational efficiency of large-scale mesoscopic 

traffic simulations. The proposed space-time parallel framework is computationally efficient in traffic 

simulation, and we will also plan to extend this parallel computing method to other large and complex 

multi-agent simulation systems, e.g., pedestrian simulation (Qu et al., 2014; Qu et al, 2015) and urban rail 

transit networks, by considering boundedly rational route choice behavior (Liu and Zhou, 2016). 
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Fig. 1  Network representation and logical process in parallel discrete event simulation   
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Fig. 2  Overall framework of mesoscopic transportation simulation 
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Fig. 3  Space-time trajectory and vehiclular event list 
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Fig. 4  Parallelism mechanism in OpenMP with multiple CPU threads 
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Fig. 6  Space-time-processor scheduling graph 
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Fig. 7  Processor-space-time network representation 
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Fig. 8  CPU usage time series/Gantt chart for time-dependent discretized event simulation using OpenMP 
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a) West Jordan area in Salt Lake City
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b) Clackamas subarea in Portland

(1.5k nodes, 4.1k links)

d) Maryland Statewide

(21.7k nodes, 54.5k links)  
Fig. 9 Overall maps of four real-world transportation networks 
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Fig. 10  Speedup of four networks 
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TABLES 

 
Tab. 1   Details of four real networks used for simulations 

Scenario Network Number of nodes 
Number of 

links 

Number of 

agents 

Demand loading 

period 
Scale 

a West Jordan subarea 0.1K 0.4K 25.3K 2h Small 

b Clackamas subarea 1.5K 4.1K 491.5K 5h Medium 

c 
Salt Lake City 

region 
13.9K 26.8K 1.3M 5h Large  

d Maryland statewide 21.7K 54.5K 26.6M 24h Large  
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Tab. 2 Cumulative execution time of each iteration (Scenario b) 

Iteration 
Number of CPU threads 

1  4 8 12 16 20 24 28 32 

1 28.02 10.529 5.668 4.965 4.668 3.999 3.622 3.217 3.259 

2 57.449 21.672 12.319 10.764 9.366 7.996 7.561 6.555 6.205 

3 86.273 32.8 18.382 16.571 13.962 12.159 11.06 10.221 9.267 

4 115.623 44.054 24.613 22.49 18.698 15.818 14.263 13.534 12.31 

5 144.742 55.25 31.438 27.702 23.17 19.811 17.608 16.673 15.499 

6 173.806 65.882 37.792 33.519 27.621 24.197 21.058 20.026 18.526 

7 203.044 77.119 43.533 38.985 31.93 28.137 24.527 23.69 21.677 

8 232.695 87.769 49.712 44.317 36.345 32.282 28.026 27.173 24.646 

9 262.601 98.692 56.005 49.489 40.827 36.571 31.577 30.583 27.68 

10 291.825 111.61 62.187 55.204 45.432 40.854 35.267 33.559 30.75 

 

  


