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LARGE SCALE DYNAMICS OF PRECIPITATION FRONTS IN THE

TROPICAL ATMOSPHERE: A NOVEL RELAXATION LIMIT ∗
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Abstract. A simplified set of equations is derived systematically below for the interaction of
large scale flow fields and precipitation in the tropical atmosphere. These equations, the Tropical
Climate Model, have the form of a shallow water equation and an equation for moisture coupled
through a strongly nonlinear source term. This source term, the precipitation, is of relaxation type
in one region of state space for the temperature and moisture, and vanishes identically elsewhere in
the state space of these variables. In addition, the equations are coupled nonlinearly to the equations
for barotropic incompressible flow. Several mathematical features of this system are developed below
including energy principles for solutions and their first derivatives independent of relaxation time.
With these estimates, the formal infinitely fast relaxation limit converges to a novel hyperbolic free
boundary problem for the motion of precipitation fronts from a large scale dynamical perspective.
Elementary exact solutions of the limiting dynamics involving precipitation fronts are developed
below and include three families of waves: fast drying fronts as well as slow and fast moistening fronts.
The last two families of waves violate Lax’s Shock Inequalities; nevertheless, numerical experiments
presented below confirm their robust realizability with realistic finite relaxation times. From the
viewpoint of tropical atmospheric dynamics, the theory developed here provides a new perspective on
the fashion in which the prominent large scale regions of moisture in the tropics associated with deep
convection can move and interact with large scale dynamics in the quasi-equilibrium approximation.
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1. Introduction

One of the striking observational discoveries over the last few decades is the
profound impact of the interaction of water vapor and planetary scale dynamics in
the tropics on monthly, seasonal, and even decadal prediction of weather and climate
in the midlatitudes [21]. Contemporary comprehensive computer models (known as
general circulation models or GCM’s) are currently incapable of adequately resolving
or parameterizing these interactions on time scales appropriate for seasonal prediction
as well as climate change projections [38]. Given the complexity of contemporary
GCM’s, one important theoretical thrust in the atmospheric science community is
the development of simplified models for the parameterization of the interaction of
moisture and large scale dynamics which retain fidelity with crucial features of the
observational record ([9], [32], [33], [42], [11], [43], [28], [27], [26]). Observations show
that moisture-coupled large scale waves in the atmosphere often move at speeds that
are much slower than the dry gravity wave speed ([21], [40]); the theoretical prediction
of these slower wave speeds through the reduction of stability of the atmosphere from
deep moist convection is one important result of the previously mentioned theoretical
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work. [34] have developed a simplified Quasi-Equilibrium Tropical Circulation Model
(QTCM) based on this principle of reduced stability in moist regions.

The main thrust of this paper is to develop a new mathematical theory for the
propagation and interaction of precipitation fronts from a large scale dynamical per-
spective motivated by the work mentioned above. In section 2, we present a detailed
derivation, starting from the Boussinesq equations and the equations for bulk cloud
microphysics, of a family of simplified prototype tropical climate models for the in-
teraction of moisture with large scale dynamics. In spirit these models have similar
features to the QTCM of [34] but a detailed systematic self-contained derivation is
merited as an introduction to these topics for the applied mathematics community.
These simplified equations, the Tropical Climate Model, have the form of a shal-
low water equation and a scalar equation for moisture coupled through a strongly
nonlinear source term. This term, the precipitation, is of relaxation type in one re-
gion of state space for the temperature and moisture while the nonlinearities vanish
identically elsewhere in the state space. In addition, these equations are coupled non-
linearly to the equations for barotropic incompressible flow in two horizontal space
dimensions. The reader mostly interested in PDE aspects can skip directly to section
3 without reading section 2. In section 3, several mathematical features of this system
are developed including energy principles for solutions and their first derivatives inde-
pendent of relaxation time. The estimates established in section 3 allow us to discuss
the formal infinitely fast relaxation limit in section 4, which is a novel hyperbolic free
boundary problem for the motion of precipitation fronts from a large scale dynamical
perspective. Such precipitation fronts are in the Sobolev space H1, but have jumps in
their first derivatives. Elementary exact solutions of the limiting dynamics involving
precipitation fronts are developed in detail in section 4 and include three families of
waves with discontinuities in the first derivatives: fast drying fronts as well as slow and
fast moistening fronts. The last two families of moistening waves violate Lax’s shock
inequalities for moving discontinuities in hyperbolic systems [23]. Nevertheless, sec-
tion 5 contains detailed numerical experiments which confirm the robust realizability
of all three families of precipitation fronts with realistic finite relaxation times.

From the viewpoint of applied mathematics, this paper studies a new class of
strongly nonlinear relaxation systems which has completely novel phenomena as well
as features in common with the established applied mathematical theories of relax-
ation limits for conservation laws ([7], [17], [18]) and waves in reacting gas flows ([22];
[8], [4]). Some of the similarities and differences with the phenomena for reacting gas
flow are discussed briefly at the end of section 5 while the general energy decay prin-
ciple established in section 3 is a common feature with relaxation limits [7]. Section
6 of the paper establishes briefly that similar effects also occur in elementary steady
state models of the tropical circulation with both forcing and damping. The paper
concludes with a list of accessible open problems in applied analysis motivated by
the present work. The reader interested in further disciplinary application in atmo-
spheric science of the theory developed here can consult the forthcoming paper of the
authors [35]. A high resolution balanced numerical scheme for the idealized Tropical
Climate Model in section 2 has been developed very recently [19]; that paper contains
a systematic study of the multi-dimensional geophysical effects of the complete cou-
pled Tropical Climate Model on the elementary exact solutions from section 4 of this
paper.
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2. Simplified Model Dynamics

2.1. The Hydrostatic Boussinesq Equations on the Equatorial β-plane.

We begin with the constant buoyancy frequency version of the hydrostatic Boussi-
nesq equations on the equatorial β-plane as the dynamical core, since we are interested
in lower and middle troposphere dynamics. The Boussinesq equations are obtained
by expanding the Navier-Stokes equations in a power series about a background state
which is a function of height. This filters the fast and meteorologically insignificant
sound waves from the system. The hydrostatic approximation of the vertical momen-
tum equation, which is justified by the small aspect ratio of the flow, is additionally
employed. The equatorial β-plane approximation is a linearization of the Coriolis
parameter about the equator (where it is zero). See texts such as [13], [36], and [24]
for derivations and further discussion of these models.

The hydrostatic Boussinesq equations on a β-plane are as follows:

DU

Dt
=−βyU⊥−∇p+SU (2.1)

∇·U+
∂w

∂z
=0 (2.2)

DT

Dt
=−T0N

2

g
w+ST (2.3)

∂p

∂z
=

gT

T0
(2.4)

where

D

Dt
=

∂

∂t
+U ·∇+w

∂

∂z
(2.5)

is the advective derivative, and (x,y,z) are the eastward, northward, and upward
(above sea level) distances, t is time, U =(u,v) is the zonal (eastward) and merid-
ional (northward) velocities, w is the vertical velocity, and T is the perturbation
temperature. The full temperature in this system (including the background state)

is T0 + ∂T̄
∂z

z+T . The vertical gradient of the temperature determines its dry stability
to vertical perturbations, and its buoyancy frequency. The buoyancy frequency of

the background state is N =
(

g
T0

(∂T̄
∂z

+ g
cp

)
)

1
2

, assumed here to be constant, as is the

mean basic state temperature, T0.

The pressure, p, is always a reduced pressure divided by a constant density factor
which is omitted; thus the units for this reduced pressure are given by

[p]=
L2

T 2
(2.6)

where [f ]= units of f . We utilize the following standard values for parameters:
T0 =300 K, the mean atmospheric temperature in Kelvin; N =10−2 s−1, the buoyancy
frequency; g =9.8 m/s2, gravitational acceleration; c=50 m/s, the wave speed; HT =
15.75 km, the tropopause height, obtained from the relation HT = cπ

N
; and β =2.28×

10−11 m−1s−1.

We now nondimensionalize these equations, using the following units: LE =
√

c
β
≈1500 km, the typical equatorial length scale; TE = LE

c
≈8.3 hrs, the equatorial
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timescale; ᾱ= HT N2T0

πg
≈15 K, the typical temperature scale; and P = c2, the pressure

scale. Further derived units include the vertical velocity scale W = HT

πTE
≈ .18 m/s.

Using the above units and parameters, we have the nondimensional hydrostatic
Boussinesq equations on a β-plane:

DÛ

Dt̂
=−ŷÛ⊥−∇̂p̂+ ŜU (2.7)

∇̂·Û+
∂ŵ

∂ẑ
=0 (2.8)

DT̂

Dt̂
=−ŵ+ ŜT (2.9)

∂p̂

∂ẑ
= T̂ (2.10)

where the hats represent nondimensional variables scaled by the units described above.
From this point on, we drop the hats and consider all variables to be nondimensional
quantities. The boundary conditions assumed here are no normal flow at the top and
bottom of the troposphere, i.e., w=0 at z =0,π.

2.2. Vertical Decomposition and Galerkin Expansion. The flow in the
tropics is primarily in the first baroclinic mode, that is, with winds in the lower tro-
posphere of opposite sign and equal magnitude to those in the upper troposphere.
First baroclinic mode models have been used in many studies of tropical atmospheric
dynamics dating back to [31] and [12]. In these models, there is one temperature,
representing a typical midtropospheric temperature, and the first baroclinic mode
velocity. We derive this model more rigorously from the hydrostatic Boussinesq equa-
tions by performing a Galerkin truncation, keeping two velocity modes. We retain the
barotropic mode as well as the baroclinic mode, unlike the above studies. Keeping
the barotropic mode is necessary for the study of tropical-extratropical interactions,
where transport of momentum from the barotropic and baroclinic mode is an impor-
tant effect [25].

We begin by performing a vertical decomposition of the variables as such:

U= Ū+U′ (2.11)

p= p̄+p′ (2.12)

and so on, where Ū= 〈U,1〉, p̄= 〈p,1〉 are the depth-independent barotropic modes
(i.e., the orthogonal projection on 1), and 〈f,g〉= 1

π

∫ π

0
fgdz. The quantities U′,p′ are

baroclinic modes, with 〈U′,1〉= 〈p′,1〉=0.

The complete Galerkin expansion of baroclinic modes in nondimensional form is

p′ =Σ∞
j=1pjej(z) (2.13)

U′ =Σ∞
j=1Ujej(z) (2.14)

ej(z)=
√

2cos(zj),0<z <π,j =1,2,... (2.15)

(see Chapter 9 of [24]).

The projected free tropospheric nonlinear dynamics, obtained by substituting
(2.11) and (2.12) into equations (2.7)-(2.10), are as follows: first, the barotropic mode
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dynamics,

D̄Ū

Dt
+〈U′ ·∇U′,1〉+〈w′ ∂U′

∂z
,1〉+yŪ⊥ =−∇p̄+ S̄U (2.16)

∇·Ū=0 (2.17)

where

D̄

Dt
=

∂

∂t
+Ū ·∇. (2.18)

The vertical mean vertical velocity satisfies w̄=0. The baroclinic dynamics satisfy

D̄U′

Dt
+U′ ·∇Ū+U′ ·∇U′−〈U′ ·∇U′,1〉

+w′ ∂U′

∂z
−〈w′ ∂U′

∂z
,1〉+yU′⊥ =−∇p′+S′

U
(2.19)

D̄

Dt

(

∂p′

∂z

)

+U′ ·∇
(

∂p′

∂z

)

+w′ ∂

∂z

(

∂p′

∂z

)

=−w′+ST . (2.20)

In equation (2.20), we have used the relation T = ∂p′

∂z
obtained from the hydrostatic

equation; therefore equation (2.20) is the full buoyancy equation, not the barotropic
or baroclinic parts as the velocity equations (2.16) and (2.19).

We create a simplified model for the dynamics of the free troposphere via Galerkin
truncation of the baroclinic mode equations to the first baroclinic mode, as motivated
above. It is important to point out that the first baroclinic approximation is strongly
justified in areas of deep convection, where latent heating in the midtroposphere
creates the baroclinic structure. However, in dry regions, this approximation begins
to break down, due to vertical propagation of gravity waves which upset the vertical
structure. Therefore some degree of care must be taken when interpreting results
which rely strongly on behavior in dry regions.

Our assumptions about the baroclinic modes are as follows (all valid for 0≤z≤π):

p′ =p1

√
2cos(z) (2.21)

U′ =U1

√
2cos(z) (2.22)

T =p′z =−p1

√
2sin(z) (2.23)

w′ =−∇·U1

√
2sin(z). (2.24)

First, this implies that the baroclinic interaction terms in the barotropic velocity
equation (2.16) project directly; i.e., this equation becomes

D̄Ū

Dt
+U1 ·∇U1 +(∇·U1)U1 +yŪ⊥ =−∇p̄+ S̄U. (2.25)

To derive the reduced dynamics for the baroclinic velocity field U1, we take the
inner product of equation (2.19) above with

√
2cos(z) under the ansatz above, giving

the Galerkin projected baroclinic momentum equation

D̄U1

Dt
+U1 ·∇Ū+yU1

⊥ =−∇p1 +S′
U

. (2.26)
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To derive the projected baroclinic buoyancy equation, we take the inner product of
equation (2.20) above with

√
2sin(z) and this yields the Galerkin truncated buoyancy

equation,

D̄p1

Dt
+∇·U1 =−ST . (2.27)

Through a mild abuse of notation, we still denote ST = 〈ST ,sin(z)〉. This equation is
often written in terms of T , with the identification from (2.23),

T =−p1. (2.28)

(Since this is the only temperature in the system, we denote the above by T rather
than T1 to be consistent with standard notation.) Maxima of T imply minima in
pressure in the lower troposphere and maxima in the upper troposphere.

2.3. Physical Parameterizations. We now must consider the source terms
SU and ST . The effects we want to capture are momentum damping by frictional
drag, and three temperature source terms: the radiative cooling ST,R, the sensible
heat flux ST,SH , and the precipitation ST,P .

2.3.1. Momentum Damping, Radiative Cooling, and Sensible Heat

Flux. We parameterize frictional dissipation in the atmosphere by relaxation
of velocities to zero:

SU =−d̄U. (2.29)

For surface velocities, one would expect relatively strong damping (for instance on
the order of 5 day damping time), but for the upper troposphere, there is very little
momentum drag. The momentum drag parameter d̄ is therefore somewhat arbitrary
for first baroclinic mode models. Studies such as [12] and [16] have been successful
using values around d̄=(3.8−10 days)−1. Here we utilize values similar to these, or
consider the inviscid problem with d̄=0.

The standard parameterization for radiation in models of our complexity is New-
tonian cooling, i.e., relaxation to a specified radiative equilibrium profile over a certain
damping time. That is,

ST,R =−dT (T −Teq) (2.30)

where dT ≈ (20 days)−1. Since radiation acts as a net cooling within the atmosphere,
we specify Teq <0.

We parameterize the sensible heat flux in a manner similar to the momentum
damping, using a drag law formulation that relaxes temperatures to the surface value:

ST,SH =dSH(Ts−T ) (2.31)

where Ts is the sea surface temperature. The drag coefficient is typically selected to
be dSH ≈ (10 days)−1.

Sensible heat fluxes in the tropical atmosphere are small compared to evapora-
tive fluxes, radiative cooling, and precipitation. The ratio of evaporation to sensible
heating is given by the Bowen ratio, which is typically on the order of .2 in the tropics
[15]. We therefore often neglect sensible heating for simplicity in this model.



DARGAN M. W. FRIERSON, ANDREW J. MAJDA AND OLIVIER M. PAULUIS 597

2.3.2. Precipitation. The final diabatic term needed in the buoyancy equa-
tion is the precipitation, ST,P . The parameterization of precipitation has been some-
what difficult historically in models of this complexity. Many studies (e.g., [13], [37])
have simply specified precipitation distributions, or constructed simple parameteri-
zations based on sea surface temperature distributions, and then calculated the at-
mospheric response to this heating. However moisture not only drives the large scale
flow, it is advected by the large scale flow as well. Therefore, for our parameterization
of precipitation, we employ an active moisture equation so we can allow the flow to
affect the precipitation distribution, and vice-versa. Other studies which use active
moisture budgets to determine the precipitation within first baroclinic mode models
include [32], [33], [34], and [6].

In the tropics, most of the moisture is concentrated in the lower troposphere. For
our simplified dynamics, we will derive an equation for qv, the mixing ratio of water
vapor in the atmosphere, which is vertically averaged as in [34]. The motivation for
the closure approach is best understood by looking at the equations for bulk cloud
microphysics which illustrate the full moisture dynamics. Ultimately we will get a
simplified equation for q(x,y,t)= 〈qv,1〉.
Bulk Cloud Microphysics

To examine the conservation laws present in the microphysical system, we con-
sider the set of equations without radiative effects or sensible heat fluxes. We derive
conservation laws for the moist static energy, an energy which accounts for the mois-
ture content of the air (which releases latent heat when it condenses), and the total
moisture content of the air. The fully dimensional bulk microphysical equations are
the following:

cp

DT

Dt
=−cpT0N

2

g
w+L(Cd−Er) (2.32)

Dqv

Dt
=−Cd +Er (2.33)

Dqc

Dt
=Cd−Ar−Cr (2.34)

Dqr

Dt
=

∂(vtqr)

∂z
+Ar +Cr−Er (2.35)

where qv is the mixing ratio (mass of constituent divided by mass of dry air) of
water vapor, qc is the mixing ratio of cloud water, and qr is the mixing ratio of rain.
Of the various conversion terms, Cd is the condensation of water vapor, Er is the
reevaporation of rain into unsaturated air, Ar is the autoconversion of cloud water
into rain, and Cr is the rain collection (falling rain gathering cloud water into rain). vt

is the terminal (downward) velocity of rain droplets. Cloud resolving numerical models
and some general circulation models have parameterizations of each of these processes,
and often utilize distributions of droplet size, of which the conversion processes and
fall speed are a function. See [10] for further discussion of these parameterizations.

An important relation for the parameterization of the condensation and evapo-
ration is the Clausius-Clapeyron equation, a first order differential equation for the
saturation vapor pressure es as a function of temperature. The Clausius-Clapeyron
equation is:

des

dT
=

Les

RvT 2
(2.36)



598 LARGE SCALE DYNAMICS OF PRECIPITATION FRONTS

and the saturation specific humidity satisfies qv,s = Rdes

Rvp
, where Rd and Rv are the

gas constants for dry air and water vapor, respectively, and p is the pressure. Con-
densation occurs when the specific humidity exceeds its saturation value, i.e., when
qv >qv,s. Specifically,

qv <qv,s,qc =0,Cd =0 (2.37)

qv >qv,s,qc ≥0,Cd =∞. (2.38)

The latter implies that qc ≥0⇔ qv = qv,s. [29] discuss various subtle issues for these
parameterizations in the context of turbulent mixing problems.
Conservation Principles for Bulk Cloud Microphysics

There are two key quantities in this microphysics model with conservation laws.

Firstly, the moist static energy, m= cpT +
cpT0N2

g
z+Lqv is conserved, as can be seen

from adding (2.32) and (2.33) and using w= Dz
Dt

:

Dm

Dt
=0. (2.39)

The moist static energy, which can be rewritten in the familiar form m= cp(T +
∂T̄
∂z

z)+gz+Lqv, includes the thermal energy, the gravitational energy, and a moisture
component reflecting the thermal energy increase that would occur if condensation
occurs.

Further, by adding equations (2.33), (2.34), (2.35), we see that the total moisture
Q= qv +qc +qr is conserved except for precipitation:

DQ

Dt
=

∂(vtqr)

∂z
(2.40)

where the right hand side is the divergence of the rain water flux, falling at its terminal
velocity. The precipitation is defined as the flux of this term evaluated at the ground,
i.e., P =vtqr|z=0. Clearly P satisfies the constraint P ≥0. The equations in (2.34)
and (2.35) imply that the total liquid water ql = qc +qr satisfies

Dql

Dt
=Cd−ER +

∂vtqr

∂z
. (2.41)

Keeping these conservation laws for the full system in mind, we now proceed with
vertical averaging of the equations, and make several approximations appropriate to
the level of complexity of the model. Our goal will be one equation for the vertically
integrated water vapor, and parameterizations for the latent heating and evaporation.

2.3.3. Vertical Averaging of the Moisture Equation. After vertical
averaging of the equations in (2.39) and (2.40) (i.e., taking the inner product of these
quantities with 1), we have the following conservation equations, for liquid water

〈Dql

Dt
,1〉= 〈Cd−Er,1〉−P (2.42)

and moist static energy

〈Dm

Dt
,1〉=0 (2.43)
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while the conservation of vertically integrated water vapor (equation (2.33)) becomes

〈Dqv

Dt
,1〉=−〈Cd−Er,1〉. (2.44)

We now discuss additional approximations to these vertically averaged moisture equa-
tions.
Moisture Equation Approximation 1

We first assume a quasi-steady state from faster dynamics for vertically integrated
liquid water ql, i.e.,

〈Dql

Dt
,1〉=0. (2.45)

This is justified by the faster microphysical timescales which determine the rate of
change of liquid water.

Therefore, from equation (2.42), we have

P = 〈Cd−Er,1〉. (2.46)

Substituting the above into equation (2.44) then implies that

〈Dqv

Dt
,1〉=−P. (2.47)

This approximation has allowed us to eliminate the liquid water variables as prognostic
variables, and consider the water vapor variable alone.

Next, we make approximations regarding the vertical structure of water vapor to
simplify our budgets further. We first separate the water vapor into vertical average
and mean zero components as above:

qv = q̄v +q′v. (2.48)

Rearranging the terms in the advective derivative, the equation for the mean tendency
of water vapor is therefore

〈Dqv

Dt
,1〉= D̄q̄v

Dt
+〈U′ ·∇q′v,1〉

+〈w′ ∂q′v
∂z

,1〉−(w′q′v)|z=0 =−P. (2.49)

The surface turbulent flux term (w′q′v)|z=0 is the evaporation flux E, i.e.,

(w′q′v)|z=0 =E. (2.50)

Moisture Equation Approximation 2

We assume that there is a background mean moisture gradient (as for the tem-
perature in the Boussinesq equations) that is obtained from a mean sounding. We
assume that this background moisture gradient is the dominant contribution to the
vertical motion, that is,

〈w′ ∂q′v
∂z

,1〉= Q̄∇·U1. (2.51)
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The key approximation is that the “gross moisture stratification” Q̄ is independent
of the integrated moisture content.

Note that Q̄ satisfies Q̄>0 since typical moisture soundings fall off approximately
exponentially with scale heights of a few kilometers. The parameter Q̄ is quite im-
portant for the dynamics; it reduces the stability in moist regions, as described in the
introduction. We will return to this parameter later.
Moisture Equation Approximation 3

For simplicity, we ignore turbulent fluctuations and assume

〈U′ ·∇q′v,1〉=0, (2.52)

that is, perturbation moisture is only advected by the mean flow. This approximation
could be refined if needed for other modeling studies.
Simplified Dynamics for Moisture Equation

Using equations (2.50), (2.51), and (2.52) in equation (2.49), we have, with q≡
〈qv,1〉, the simplified dynamics for moisture:

D̄q

Dt
+Q̄∇·U1 =E−P (2.53)

where Q̄ is the prescribed gross moisture stratification. We now discuss the evapora-
tion and precipitation parameterizations.
Evaporation Parameterization

The evaporation is parameterized by a drag law formulation, that is,

E =dq(qs(Ts)−q). (2.54)

A typical value of the inverse evaporative timescale is dq ≈ (10days)−1. The tempera-
ture Ts used to calculate the saturation mixing ratio at the surface is the sea surface
temperature, which we specify as a function of x and y in this model.

2.3.4. Precipitation Parameterization. Our spatial units for the dynam-
ics is 1500 km, so the tacit assumption operating is that we are considering effects
of moisture on large spatial scales. On such large scales, it is natural to model the
precipitation based on the formulation of Betts and Miller ([2]; [3]) who relax tem-
perature and humidity back to a reference profile when some convective criterion is
met. Within our model, when there is enough moisture for convection, we relax the
humidity back to a significant fraction of the saturation value, q̃. More precisely,

P =
1

τc

(q− q̃(T ))+ (2.55)

where q̃ is a prescribed function of the atmospheric temperature (possibly a nonlinear
function), and τc is a convective adjustment time. [34] and [3] use relaxation times of
the order τc ≈2hrs, whereas [5] estimate τc ≈12hrs from current observations.

Two types of functions are typically used for the moisture saturation parameter-
ization. The first of these is a precipitation threshold, independent of T , i.e.,

q̃(T )= q̂. (2.56)

This parameterization is the simplest mathematically, and is physically justified since
atmospheric temperatures are approximately uniform across the tropics. There is also
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observational data which correlates the precipitation in the tropics with the humidity
content [39].

A second parameterization, utilized by [34], is proportional to temperature:

q̃(T )=T. (2.57)

This is known as the CAPE parameterization, since it is based on the quasi-
equilibrium of convectively available potential energy (CAPE), which is the integrated
buoyancy a surface parcel of air can obtain [10]. CAPE increases with the surface
humidity since more latent heat is released for parcels that are more humid, which
are therefore more buoyant relative to the environment. CAPE also decreases with
the temperature of the environment, since it is easier to be buoyant in colder air. The
proper expression for CAPE in the nondimensional units explained above for our sys-
tem is q−T , so CAPE is kept in quasi-equilibrium by using the saturation criterion
(2.57). Full general circulation model convection schemes such as Arakawa-Schubert
[1] and [3] would reduce to this in the first baroclinic mode system. Thus, the param-
eterizations in (2.56) or (2.57) together with (2.55) are simple prototype models for
the behavior of GCM’s.

In this paper, we build a class of convective parameterizations which contain both
of these options by performing our analysis on the parameterization

q̃(T )= q̂+αT (2.58)

with 0≤α≤1 and q̂ >0. Actually, all the analysis developed below only requires
−Q̄<α<+∞. The use of various parameterizations for precipitation permits us
to study the variability of dynamics with different convective parameterizations, an
important practical topic.

For the arguments in section 3 where we differentiate the equations, it is conve-
nient to keep in mind a smooth regularized version of (2.55), where

P =
1

τc

φ(q− q̃(T )) (2.59)

with φ(s) a monotone smooth approximation to (s)+ and satisfying

φ(s)≥0

φ(s)≡1 for s>0

φ(s)≡0 for s<0

φ′(s)≥0. (2.60)

Since q̂≥0, with (2.60) we also automatically have

(s+ q̂)φ(s)≥0. (2.61)

which is obviously satisfied for (2.55). In the zero relaxation limit, one can recover
(2.55) through letting φ(s) depend on τc and converge to (s)+ as τc →0 in standard
fashion. Without further comment, we assume that P is smooth with the above
structure when we differentiate the equations in section 3 below.
Nondimensional Moisture Equation

We nondimensionalize moisture by the scale of temperature variations divided by

the latent heat coefficient L: Q= ᾱ
L

, where ᾱ= HT N2T0

πg
is the temperature scale from

section 2.1.
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Our final nondimensional moisture equation is then the following:

D̄q

Dt
+Q̄∇·U1 =dq(qs(Ts)−q)−P. (2.62)

All of the parameters, Q̄, q̂, etc. have now taken nondimensional values.
This equation and the precipitation parameterization are used in the temperature

equation with the following approximation.

2.3.5. Vertical Heating: Approximation 4. Consistent with the above
approximations we assume that all vertical heating (convective, radiative, and sen-
sible) goes into the first baroclinic mode, so that the fully dimensional temperature
equation becomes:

DT

Dt
+w=LP

√
2sin(

z

H
)−dT (T −Teq)

√
2sin(

z

H
)

+dSH(Ts−T )
√

2sin(
z

H
). (2.63)

Note that equations (2.23), (2.24), (2.27), and (2.28) together with (2.63) yields the
equation for the temperature T listed in (3.4) below with (2.62) yielding the moisture
equation. The momentum equations for Ū and U1 have been derived in (2.25) and
(2.26) with the parameterizations discussed above. This completes the dynamics in
the simplified model.

3. Conservation Laws and Dry and Moist Phase Speeds

We begin by summarizing the final simplified equations that we have derived in
the last section, the Tropical Climate Model:

D̄Ū

Dt
+∇·(U1⊗U1)+yŪ⊥ =−∇p̄− d̄Ū (3.1)

∇·Ū=0 (3.2)

D̄U1

Dt
+U1 ·∇Ū+yU1

⊥ =∇T − d̄U1 (3.3)

D̄T

Dt
−∇·U1 =−dT (T −Teq)+dSH(Ts−T )+P (3.4)

D̄q

Dt
+Q̄∇·U1 =dq(qs(Ts)−q)−P. (3.5)

The form of the precipitation parameterization, P , is discussed in (2.55)-(2.61) above.
We now present several basic conservation principles for the simplified dynamics

equations. For simplicity, set d̄=dT =dq =dSH =0. Generalizing to the cases with
the source terms is trivial, and simply adds source terms to the conservation laws.
First, there is a principle of conservation of moist static energy m= q+T . This is
given by

D̄m

Dt
−(1−Q̄)∇·U1 =0. (3.6)

There is a physical justification for this equation which involves the assumed vertical
gradients of humidity and buoyancy. In the nondimensional Boussinesq equations,
we have assumed a mean vertical gradient for T of slope 1. Further, there is a mean
gradient of q of slope −Q̄, as explained in section 2.3.4 above. The vertical motion is
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w=−∇·U1 in our single mode approximation. The second term in (3.6) can therefore
be understood as the vertical advection of the mean moist static energy gradient.

Another conservation principle can be obtained by eliminating the divergence
terms between (3.4) and (3.5). This can be obtained by considering the quantity
q+Q̄T which satisfies

D̄(q+Q̄T )

Dt
=−(1−Q̄)P. (3.7)

Since the precipitation P is non-negative, we have

D̄(q+Q̄T )

Dt
≤0 (3.8)

provided 0<Q̄<1. We will confirm later that Q̄ must indeed be within these bounds
for well-posedness.

3.1. Dissipation of Total Energy. We now form an energy principle using
this system of equations and show that this quadratic quantity is dissipated.

The total dry energy density is given by the following:

ǫd =
1

2
(|Ū|2 + |U1|2 +T 2) (3.9)

with the energy principle

D̄ǫd

Dt
=−∇·(Ū ·(U1⊗U1))−∇·Ūp̄+∇·U1T+TP. (3.10)

In this form, precipitation does work on or against the fluid depending on the sign of
the temperature. We anticipate that precipitation will be a dissipative mechanism on
the overall energy budget including moisture. We observe from equation (3.7) above
that

D̄

Dt

(

1

2

(q+Q̄T )2

(1−Q̄)(α+Q̄)

)

=−(
Q̄T +q

α+Q̄
)P. (3.11)

Thus, we introduce a moist energy density contribution:

ǫm =
1

2

(q+Q̄T )2

(1−Q̄)(α+Q̄)
. (3.12)

Note that ǫm ≥0 provided 0<Q̄<1. Further, the addition of equation (3.10) to (3.11)
will cancel the indefinite flux term and replace it by the term − q−αT

α+Q̄
P . According to

the structure of the precipitation assumed in (2.55)-(2.61), (q−αT )P ≥0 so that this
additional source term is always negative.

Thus consider the total energy density ǫ= ǫd +ǫm. We have the local energy
principle

D̄ǫ

Dt
=−∇·(Ū ·(U1⊗U1))−∇·(Ūp̄)+∇·(U1T )− q−αT

α+Q̄
P (3.13)

and by integrating, we obtain the Energy Dissipation Identity

∫

ǫ(t)dxdy =

∫

ǫ(0)dxdy−
∫ t

0

∫

q−αT

α+Q̄
Pdxdydt. (3.14)
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In particular, there is decay of the total energy in the absence of forcing due to the
weak dissipative effects of moisture at large scales independent of the relaxation time
τc:

∫

ǫ(t)dxdy≤
∫

ǫ(0)dxdy. (3.15)

3.2. Derivative Formulation. We can derive additional important results
by considering the system formed by taking the gradient of the equations (3.1)-(3.5)
above, without the barotropic mode. As mentioned earlier in 2.3.2, the approximation
without the barotropic mode is often used in the simplest tropical climate model
and is trivially always satisfied in one horizontal space dimension. We call this the
derivative formulation, and we will derive a conservation law for this, and use it to
demonstrate mean square boundedness of the first derivative within this system. One
must neglect the barotropic mode (Ū) in order to derive this since the barotropic-
baroclinic nonlinear transfer term makes the derivation below invalid.

Setting the barotropic velocity equal to zero in equations (3.1)-(3.5) without the
forcing gives

∂u1

∂t
=yv1 +

∂T

∂x
(3.16)

∂v1

∂t
=−yu1 +

∂T

∂y
(3.17)

∂T

∂t
=(∇·U1)+P (3.18)

∂q

∂t
=−Q̄(∇·U1)−P. (3.19)

The gradient system is then the following:

∂∇u1

∂t
=y∇v1 +v1ê2 +

∂∇T

∂x
(3.20)

∂∇v1

∂t
=−y∇u1−u1ê2 +

∂∇T

∂y
(3.21)

∂∇T

∂t
=∇(∇·U1)+∇P (3.22)

∂∇q

∂t
=−Q̄∇(∇·U1)−∇P. (3.23)

The dry energy flux equation for this system, analogous to equation (3.10), is
given by

∂ǫx,d

∂t
=

∂

∂x
(∇u1 ·∇T )+

∂

∂y
(∇v1 ·∇T )+v1

∂u1

∂y
−u1

∂v1

∂y
+∇P ·∇T (3.24)

where

ǫgrad,d =
1

2
(|∇U1|2 + |∇T |2). (3.25)

We have a similar moist energy contribution as in the previous system (see equation
(3.12)):

ǫgrad,m =
1

2

(∇q+Q̄∇T )2

(1−Q̄)(α+Q̄)
(3.26)
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such that setting the total energy to

ǫgrad = ǫgrad,d +ǫgrad,m =
1

2

(

|∇U1|2 + |∇T |2 +
(∇q+Q̄∇T )2

(1−Q̄)(α+Q̄)

)

(3.27)

gives the energy principle:

∂ǫgrad

∂t
=

∂

∂x
(∇u1 ·∇T )+

∂

∂y
(∇v1 ·∇T )

+v1
∂u1

∂y
−u1

∂v1

∂y
−∇P ·(∇(q−αT )). (3.28)

Using the chain rule, the last term can be rewritten as

−∇P ·(∇(q−αT ))=−P ′|∇(q−αT )|2. (3.29)

Now, it follows from (2.55) in the weak sense, or equivalently, (2.59), that P ′ satisfies
P ′≥0 so this term is negative semi-definite pointwise.

We can integrate this equation in (3.29) to obtain the energy principle

∫

ǫgrad(t)dxdy =

∫

ǫgrad(0)dxdy+

∫ t

0

∫

(v1
∂u1

∂y
−u1

∂v1

∂y
)dxdydt

−
∫ t

0

∫ |∇(q−αT )|2
α+Q̄

P ′dxdydt

≤
∫

ǫgrad(0)dxdy+

∫ t

0

∫

(v1
∂u1

∂y
−u1

∂v1

∂y
)dxdydt. (3.30)

The so-called “β-effect” terms v1
∂u1

∂y
−u1

∂v1

∂y
can cause exponential growth. How-

ever, there is always dissipation of energy in this derivative system by precipitation,
independent of the convective relaxation time τc, and independent of convective pa-
rameterization.

The estimate in (3.30) guarantees that for any finite time interval, the quantities
∇U1, ∇T , and ∇q are bounded in L2 for bounded initial conditions independent
of relaxation time. By Sobolev’s Lemma, this means that smooth initial conditions
cannot develop discontinuities in U1,T,q in a single space dimension.

Remark 3.1. Since the second derivative of precipitation with respect to the satura-
tion deficit P ′′ is no longer sign definite, there are no higher order energy principles.
Therefore, it is natural to expect that discontinuities in the gradients of velocity, tem-
perature, and humidity, and discontinuities in precipitation, can develop in time from
appropriate smooth initial conditions in the limit of τc →0.

4. The Free Boundary Problem in the Formal Limit of Vanishing Re-

laxation Time

We now consider the formal limit τc →0, that is, instantaneous convective adjust-
ment. This is known as the “strict quasi-equilibrium limit” [11] since convection is
assumed to keep the moisture or CAPE in a state of quasi-equilibrium (depending on
our convective parameterization). Since the estimates that we derived in sections 3.1
and 3.2 above are independent of τc, we are assured that, at least formally, even in
this limit the equations will be well-posed.
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Let τc = δ. The moisture equation then becomes

D̄q

Dt
+Q̄∇·U1 =dq(qs−q)−δ−1(q− q̃(T ))+. (4.1)

The term of order δ−1 tells us that to leading order,

(q− q̃(T ))+ =0. (4.2)

Therefore the dry region Ωd, defined as the region where there is no precipitation so
P =0, is given by either

q < q̃(T ) (4.3)

or

q = q̃(T ),
∂q

∂t
≤0. (4.4)

The formal limit of (4.1) in the moist region, Ωm, where precipitation occurs and
P >0, is given by the constraint

q = q̃(T ),
∂q

∂t
>0. (4.5)

With (4.2), the latter constraint, which assures that the precipitation is positive, is
equivalent to

∂q

∂t
=−Ū ·∇q−Q̄∇·U1 +dq(qs−q)>0. (4.6)

Clearly the boundaries between Ωd and Ωm can change in time; they are free
boundaries. Some physical mechanisms to change these boundaries include the fol-
lowing:

• A moist region develops places with ∇·U1 >0, i.e., strong enough low-level
divergence to overcome evaporation and become unsaturated.

• A dry region develops a region of strong convergence with ∇·U1 <0, creating
moisture there.

• Barotropic advection of drier air, i.e., Ū ·∇q, with q < q̃(T ).
• Rossby waves or Kelvin waves entrain or detrain a moist region and influence

it (see [24]).
Some elementary numerical solutions demonstrating all of these physical effects are
reported in [19].

4.1. Dry and Moist Waves and Free Boundaries. The behavior of
linear disturbances in our system is vastly different for saturated and unsaturated
perturbations. To illustrate this in a simple context, we examine the unforced equa-
tions without the barotropic mode, equations (3.16) to (3.19). For dry (subsaturated)
waves, P =0 so we obtain, from equations (3.16) to (3.18)

∂U1

∂t
+yU1

⊥−∇T =0 (4.7)

∂T

∂t
−(∇·U1)=0. (4.8)
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These are the well-studied linear two-layer equatorial β-plane equations (see [13] or
[24] for complete description of this set of equations and the waves therein). These
equations support many interesting types of waves including equatorial Kelvin waves,
Rossby waves, and mixed Rossby-gravity waves. The Kelvin wave, for instance, is
symmetric about the equator, has T =−u1, and propagates with speed cd =1 (in our
nondimensional units).

However, for moist (saturated) disturbances, the precipitation is an important
term, and we need to form the moist static energy equation to evaluate the role of
disturbances. This is obtained by adding equations (3.18) and (3.19) to obtain

∂(q+T )

∂t
−(1−Q̄)∇·U1 =0. (4.9)

Since q = q̂+αT for saturated disturbances, this can be written as

∂T

∂t
− (1−Q̄)

(1+α)
∇·U1 =0. (4.10)

When this equation is combined with the baroclinic momentum equation (4.7) it is
clear that the result is a wave equation with reduced propagation speeds. For instance,

the Kelvin wave now propagates with speed cm =
√

1−Q̄
1+α

.

Theoretical studies that have used similar models (e.g., [32]) typically take val-
ues of Q̄≈ .8− .9, meaning cm ≈ (.2− .4)cd. This fits with observations as well; the
data presented in the observational study of [30] shows clear spectral peak of dry dis-
turbances at ≈50m/s, and a moist disturbance spectral peak at ≈15m/s (see their
Figure 15).

It is important to point out that the moist wave speeds are different for different
convective parameterization criteria. Moist wave speeds are significantly faster for
the fixed saturation (α=0) case than for the CAPE (α=1) case. Since Q̄ is often
chosen to produce moist wave speeds in accordance with observations, care must be
taken when choosing this constant for different convective criteria.

We have shown that there is a significant gap between the propagation speeds of
dry and moist disturbances. It is this fact that motivates our work below, where we
study the implication of the two different wave speeds. The problem is made more
complex by the fact that the free boundary between dry and moist regions evolves in
time.

4.2. Precipitation Front Propagation. For conceptual simplicity, we now
consider the one-dimensional version of this system, which represents flow in the
zonal direction around the equator. This simplification is meaningful as a first ap-
proximation because much of the important dynamics in the tropics occurs in the
zonal direction, including the Walker circulation, propagation of superclusters, and
the Madden-Julian Oscillation. However, the dynamics we study here can easily be
extended to the 2-dimensional equatorial longwave approximation, or to the full 2-
dimensional system (see [24] Chap. 9).

With this approximation, we need not consider the Coriolis force, which is dom-
inant in midlatitudes but disappears on the equator. Further, the only appropriate
value for the barotropic velocity Ū is a constant over the domain, which we denote
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by ū. The nondimensional equations for this system are therefore

∂u

∂t
+ ū

∂u

∂x
=

∂T

∂x
− d̄u (4.11)

∂T

∂t
+ ū

∂T

∂x
=

∂u

∂x
−dT (T −Teq)+dSH(Ts−T )+

(q− q̃(T ))+

τc

(4.12)

∂q

∂t
+ ū

∂q

∂x
=−Q̄

∂u

∂x
+dq(qs−q)− (q− q̃(T ))+

τc

(4.13)

where u is now the zonal (eastward in the lower layer) first baroclinic mode velocity
(we have dropped the subscript “1” now since this is the only dynamic velocity now)
and all other variables are the same. Another important relation is the vertical velocity
equation from (2.24) above which becomes

w=−ux. (4.14)

We have shown in section 3.2 that while discontinuities in q, T , and u cannot form
from smooth initial conditions, it is possible that discontinuities in the derivatives
of these quantities (and hence vertical velocity and precipitation) can occur out of
smooth initial conditions. With this fact in mind, we now investigate the dynamics of
solutions with a discontinuity in these quantities under the formal limit of τc →0. We
call these “precipitation fronts” since there is a discontinuity in precipitation. The
fields u,T , and q only have a kink in them; there is a discontinuity in ux,Tx, and qx.

We consider the free wave problem with no barotropic wind, that is, ū= d̄=dq =
dT =dSH =0:

∂u

∂t
=

∂T

∂x
(4.15)

∂T

∂t
=

∂u

∂x
+P (4.16)

∂q

∂t
=−Q̄

∂u

∂x
−P. (4.17)

The derivative form of equations (4.15) to (4.17) in this limit, obtained by taking
the x-derivative and substituting the vertical velocity from equation (4.14) is:

∂w

∂t
=−∂Tx

∂x
(4.18)

∂Tx

∂t
=−∂w

∂x
+Px (4.19)

∂qx

∂t
=+Q̄

∂w

∂x
−Px. (4.20)

The jump conditions for equations (4.18) to (4.20) are as follows:

−s[w]=−[Tx] (4.21)

−s[Tx]=−[w]+[P ] (4.22)

−s[qx]=+Q̄[w]− [P ] (4.23)

where s is the front propagation speed and [f ]=f+−f−.
First, there exist solutions which occur entirely within the dry and moist region.

For solutions within the dry region, [P ]=0, and therefore we can solve equations
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(4.21) and (4.22) to obtain s=±1, the dry wave speed. For fronts entirely within the

moist region, we can add equations (4.22) and (4.23) and solve to obtain s=± (1−Q̄)
1+α

,
the moist wave speed. These solutions are not surprising, as the character of the
propagation is the same as for continuous disturbances. The more interesting fronts
occur at the interface between dry and moist regions, where the discontinuity in
precipitation causes different propagation speeds.

To allow further study of the case with fronts at the interface between dry and
moist regions, we assume, without loss of generality, that the moist region is on the
positive side of the x−axis, and the dry region is on the negative side. We can derive
conditions for the movement of the interface between dry and moist regions using
the moisture constraints imposed formally by (4.2)-(4.6) in a single space dimension.
First, since we are saturated in the moist region, we use the convective criterion
(equation (2.58)) and the continuity of q to obtain

q(0)= q̂+αT (0) (4.24)

at the interface. Further, to stay saturated in the moist region, we need to have

qx+ =αTx+. (4.25)

Then, to assure that there is no precipitation in the dry region, we require

qx−≥αTx−. (4.26)

Now, (4.25) and (4.26) imply

[qx]≤α[Tx]. (4.27)

Finally, we can calculate the precipitation in the moist region by adding equation
(4.17) to −α times equation (4.16) and solving to yield

P+ =
(α+Q̄)

(1+α)
w+. (4.28)

Since this quantity must be positive, we also have

w+ >0. (4.29)

Of course, this just means that we have rising air in the saturated region which is
physically consistent. Using these constraints, we can calculate the solutions for the
precipitation fronts.

Proposition 4.1. With the saturated region initially at x>0 in accordance with
equations (4.24)-(4.26), there are 3 branches of solutions of equations (4.21)-(4.23)
for precipitation fronts depending on the values of the jumps in the derivatives:

• A branch of drying fronts with wave speeds in between the dry and moist wave

speeds moving into the moist region (1>s> ( 1−Q̄
1+α

)
1
2 ).

• A branch of slow moistening fronts, with speeds in between the moist speed

and zero propagating into the dry region (0>s>−( 1−Q̄
1+α

)
1
2 ).

• A branch of fast moistening fronts moving into the dry region with speed above
the dry wave speed (s<−1).
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Proof. Solving the equations (4.21) to (4.23) with the constraints (4.25) to (4.28)
gives the following relations:

s=±(1−
(α+Q̄)
(1+α) w+

[w]
)

1
2 (4.30)

[Tx]=s[w] (4.31)

[qx]= (
1−Q̄

s
−s)[w]. (4.32)

This set of equations provides a method of constructing exact solutions from arbi-
trary initial jumps. For instance, given a vertical velocity [w], one can calculate the
necessary [Tx] and [qx] to produce a balanced propagating front.

We now investigate the allowed phase speeds for these waves. For real phase
speeds, we must have either

w−≤ (1− α+Q̄

1+α
)w+ (4.33)

or

w−≥w+. (4.34)

Using the contraint (4.27), the bounds on the speed of the front are then

1>s> (
1−Q̄

1+α
)

1
2 for w− <0 (4.35)

or

0>s>−(
1−Q̄

1+α
)

1
2 for 0<w− < (1− α+Q̄

1+α
)w+ (4.36)

or

s<−1 for w− >w+. (4.37)

The dry wave speed is cd =1, and the moist wave speed is cm =
√

1−Q̄
1+α

, so the

above constraints can be rewritten as:

cd >s>cm (4.38)

or

0>s>−cm (4.39)

or

s<−cd. (4.40)

The first branch of front speeds (equation (4.35)) we call the drying front, since
it propagates from the dry region into the moist region. Note that w− is negative
for these drying waves so the state adjacent to the moist region has downdrafts and



DARGAN M. W. FRIERSON, ANDREW J. MAJDA AND OLIVIER M. PAULUIS 611

divergence at the bottom of the troposphere consistent with drying. This family of
fronts exactly spans the region between dry and moist wave speeds, which is the exact
range given for stability of fronts by Lax’s Stability Criterion [23].

The second branch (equation (4.36)) we call the slow moistening fronts. This
branch is particularly interesting because it produces movement of the interface be-
tween dry and moist at a speed that is below the moist wave speed. Note that
according to (4.36), w− is positive with low level convergence in the flow field but
bounded from above by a multiple less than one of w+; furthermore, slower waves
have larger w− in the unsaturated state. Since most models overestimate the speed
of such tropical phenomena as the Madden-Julian Oscillation, this branch is perhaps
the most physically interesting.

The final branch (equation (4.37)) we call the fast moistening front. This consists
of moistening propagating at speeds faster than the dry wave speed. According to
(4.37) and (4.14), the fast moistening occurs from large convergence in the dry region,
which brings the dry region to saturation rapidly.

Note the important asymmetry between “drying waves” (with s>0, that is, the
precipitation front propagating into the moist region) and “moistening waves” (with
s<0). The moistening waves both violate Lax’s stability criterion so it becomes
interesting to understand their potential dynamical significance; this is a main topic
in section 5.

Since the front speeds are bounded by the dry and moist wave speeds, there is
no difference in allowed propagation speeds between systems with different convective
criteria (i.e., different α). However, systems with the same initial discontinuities
do not behave the same as α is varied, since α appears in equation (4.30). Next,
we investigate the effect of finite relaxation time, as well as the effective differences
among systems with different convective criteria in a numerical model.

5. Numerical Simulation of Fronts

We now present numerical results of simulations of these fronts over a range of
convective relaxation times, demonstrating that the theoretical predictions made in
section 4.2 in the limit of τc →0 are surprisingly accurate up to large values of the
relaxation time. Even the two moistening fronts which violate Lax’s Stability Criterion
are readily realizable in the numerics presented below. We additionally investigate
sensitivity to the convective criterion, and to the numerical mesh.

5.1. Description of Numerical Model. We numerically simulate the one-
dimensional forced-dissipative system with arbitrary relaxation time, i.e., equations
(4.11) to (4.13). Since we are considering a somewhat stiff problem (with small con-
vective relaxation times), care must be taken when designing the numerical method.
First of all, by considering the quantity Z0 = q+Q̄T , introduced earlier in (3.7), one of
the equations becomes an ODE in the absence of mean wind. Secondly, we can isolate
the westward and eastward moving waves by using the characteristics ZE =u−T and
ZW =u+T as variables (the subscripts represent eastward and westward propagation,
respectively).

Therefore the equations we integrate are:

∂ZE

∂t
+ ū

∂ZE

∂x
+

∂ZE

∂x
=−ST,R−ST,SH +Su−P (5.1)

∂ZW

∂t
+ ū

∂ZW

∂x
− ∂ZW

∂x
=ST,R +ST,SH +Su +P (5.2)

∂Z0

∂t
+ ū

∂Z0

∂x
= Q̄ST,R +E−(1−Q̄)P (5.3)
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Fig. 5.1. Space-time diagrams of precipitation for the drying front simulations.

where ST,R =−dT (ZE+ZW

2 −Teq), ST,SH =dSH(Ts− ZE+ZW

2 ), Su = d̄(ZE−ZW

2 ), E =

dq(qs−Z0 + Q̄
2 (ZE +ZW )), and P =

(Z0− Q̄

2
(ZE+ZW )−q̃(T ))+

τc
.

For numerical integration of the scalar wave equations, we use the 3rd order ENO
scheme [14] for spatial differencing. This provides a high order of accuracy, while
preserving very sharp resolution near fronts with minimal numerical dissipation.

An added difficulty is that the precipitation term is stiff for small values of τc;
essentially this term can cause unphysical oscillations, and even reduction of q below
its saturation value for τc ∼∆t. Therefore for time integration, we use Strang time
splitting on this term, which gives 2nd order in time accuracy, and facilitates simula-
tion of the precipitation term to small values of τc. The typical mesh spacing used is
.0267 (40 km), so we expect the shocks to be well resolved within 100 km. We use a
small time step of .0033 (100 seconds) to resolve the short-time relaxation effects.

5.2. Simulations. The basic parameters we use in the simulations below are
the following:

Q̄= .9,α=0, q̂ = .9. (5.4)
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Fig. 5.2. Precipitation for the drying fronts at t=1.2, t=2.4, and t=12 vs. distance recentered
by the theoretical prediction for shock position. t=36 is additionally plotted for the τc =1.5 case.
Note the different distance scales for each simulation.

The Drying Front

We first simulate a drying front. The initial conditions for this simulation are

w+ = .01 (5.5)

Tx+ =0 (5.6)

qx+ =0 (5.7)

w− =−.01 (5.8)

Tx− =−.02
√

.55=−.0148 (5.9)

qx− =
.009√

.55
= .0121 (5.10)

which yield a balanced front with speed s=
√

.55= .742 in the formal limit of van-
ishing relaxation time. We simulate using a range of convective relaxation times:
τc = .0625,.25, and 1.5 in nondimensional units (30 min, 2 hrs, and 12 hrs, respec-
tively). The 12 hour relaxation time is that found in [5], 2 hours is typically used
with the Betts-Miller convection scheme in general circulation models, and the 30
minute relaxation time simulations are performed to get an idea of how close we are
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to the τc →0 limit.
Figure 5.1 shows space-time plots of the precipitation for this drying front at the

three relaxation times, along with the predicted front speed (the black dotted line in
each plot). The time of simulation is t=13.33, or 4.44 days in dimensional units. All
simulations agree with the predicted front speed quite well, if one considers the center
of the front region. The τc = .0625 simulation is virtually identical to predictions for
all time, and the front remains very abrupt. Only small deviations from the prediction
can be seen for the .25 relaxation time simulation. In the simulation with τc =1.5,
however, the front has been smoothed out quite a bit. The center of the front region
still agrees with the predicted speed quite well though.
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Fig. 5.3. Space-time diagrams of vertical velocity for the drying front simulations.

We next demonstrate that the smoothing of the front primarily occurs during
the “spin-up” of the fronts, i.e., the adjustment time it takes for the precipitation to
reach its proper value, and that the fronts propagate steadily after a certain time.
The steady state of the precipitation in the unperturbed moist region for these cases
is P+ = Q̄w+ = .009, implying a steady state humidity of q+ = q̃+τcP+ = .9+ .009τc.
Since the initial condition for the humidity begins exactly at the saturation value (.9),
it takes on the order of the convective relaxation time for adjustment to this steady
state to occur. As can be seen from Figure 5.1, this amount of time is approximately
2τc for each of the simulations. The steady shapes of the precipitation profiles can be
seen in Figure 5.2, which contains plots at different time slices for the three drying
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fronts, shifted by the predicted speed. That is, we plot P (x−st,t) for t=1.2,t=2.4,
and t=12 where s=

√
.55, the predicted speed. There is a significant difference in

distance scale for the three plots. The two smaller relaxation cases both converge
to the steady profile quickly. The spinup of precipitation can be seen more clearly
in the τc =1.5 simulation, as the t=1.2 and t=2.4 slices are both in the process of
adjusting. Even the t=12 slice is not completely at steady state for this case, so we
additionally plot a time slice at t=36 to indicate the steady state. The simulations do
not drift from these steady states once reached. Plotting the vertical velocity (Figure
5.3), one can see that there are dry waves propagating into the dry region created in
the adjustment process. The fetch of these waves is proportional to the adjustment
time, with the front expelling waves until approximately t=2τc.

From these simulations we can conclude that our theory regarding the limit as
τc →0 can be applied to the realistic adjustment cases. The structure of the fronts
are steady in the moving frame provided t≫ τc, where t is the time over which the
integration is performed.

The Slow Moistening Front We next simulate the slow moistening front, with
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Fig. 5.4. Space-time diagrams of precipitation for the slow moistening front simulations.
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initial conditions as follows:

w+ = .01 (5.11)

Tx+ =0 (5.12)

qx+ =0 (5.13)

w− =
1

1300
= .000769 (5.14)

Tx− =
3
√

.1

650
= .00146 (5.15)

qx− =
9
√

.1

650
= .00438 (5.16)

which creates a balanced front with speed s=−
√

.1
2 =−.158 in the formal limit of

vanishing relaxation time. The plots for this wave (Figure 5.4) are given for the
same time period, t=13.33, and are displayed on a slightly smaller spatial domain.
Again the speeds are well-predicted by our τc →0 theory, when the center of the
front region is considered. However more spreading of the fronts is observed here,
which again primarily occurs during the precipitation adjustment period. This is
clear in the τc = .25 simulation as well as the τc =1.5. For instance, the τc =1.5 front
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Fig. 5.5. Space-time diagrams of vertical velocity for the moistening front simulations.
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is approximately 75% wider than the corresponding drying front in the previous case.

Examining the vertical velocities (Figure 5.5), one can see that there are now both
dry waves (propagating into the dry region) and moist waves (propagating into the
moist region) being emitted from the front during the adjustment phase. The influence
of the moist waves can be seen in the precipitation fields in Figure 5.4. The character
of the dry waves is similar to the dry waves being emitted from the drying front,
i.e., propagation at the dry phase speed with width proportional to the adjustment
time. The behavior of the moist waves is more complex. After an adjustment period
(here approximately t=4τc), the moist wave simply propagates into the moist region
at the moist speed. However, prior to this, the wave expands, with the boundary
on the positive side moving at the dry wave speed. Propagation at speeds above
the moist wave speed in precipitating regions can occur in the system where τc >0,
since changes in divergence do not immediately affect the precipitation. Specifically,
the assumption that q = q̂+αT , which we used between equations (4.9) and (4.10) in
deriving the properties of moist disturbances in Section 4.1 breaks down. When the
precipitation is adjusting to its steady value given a certain velocity divergence, small
wave perturbations to this do not affect the evolution of the precipitation much, and
hence the waves propagate more like dry disturbances.
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Fig. 5.6. Vertical velocity for the slow moistening fronts at t=1.2, t=2.4, and t=12 vs. distance
recentered by the theoretical prediction for shock position. t=36 is additionally plotted for the τc =1.5
case.
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In Figure 5.6 we plot the vertical velocities at different times, recentered by the
predicted front speed. In these plots one can see the structure of the dry waves
propagating away from the interface, as well as some of the moist wave propagation.
Again all of these waves eventually propagate with a steady shape after a certain
length of time, approximately given by the t=36 plot for the τc =1.5 case, and the
t=12 plots in the shorter relaxation time cases. Keeping in mind the different spatial
scales in the plots, the emerging steady states clearly retain the same smoothed shape
for the two smaller relaxation times; also see figures 5.7 and 5.8 below which confirms
this.

Since we believe this wave is the most interesting to the atmospheric science com-
munity (due to its reduced phase speeds), we now examine the sensitivity of these
simulations to both resolution (by considering 2x and .5x resolutions) and convective
parameterization (by constructing a wave with a similar propagation speed in the
CAPE parameterization). First, plots similar to Figure 5.6 for double and half reso-
lution are given in Figure 5.7 and 5.8. These plots give time slices of vertical velocity
(which exhibits the largest change with resolution) for the τc = .25 case (Fig. 5.7) and
the τc = .0625 case (Fig. 5.8). The primary difference evident in these plots is not in
the fronts, which are all nearly identical, but rather with the dry waves propagating

−2 −1 0 1 2

2

4

6

8

10

x 10
−3

Distance from prediction (nondim)

V
e

rt
 v

e
l 
(n

o
n

d
im

)

w, τ
c
 = .25, standard res

−2 −1 0 1 2

2

4

6

8

10

x 10
−3

Distance from prediction (nondim)

V
e

rt
 v

e
l 
(n

o
n

d
im

)

w, τ
c
 = .25, twice res

−2 −1 0 1 2

2

4

6

8

10

x 10
−3

Distance from prediction (nondim)

V
e

rt
 v

e
l 
(n

o
n

d
im

)

w, τ
c
 = .25, half res

Blue:   t=1.2

Green: t=2.4

Red:    t=12 

Fig. 5.7. Testing resolution with the τc = .25 simulation: vertical velocity with rescaled distance
at t=1.2, t=2.4, and t=12.
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Fig. 5.8. Testing resolution with the τc = .0625 simulation: vertical velocity with rescaled dis-
tance at t=1.2, t=2.4, and t=12.

away, which are slightly better defined for the cases with higher resolution. This gives
us faith in the numerical simulation of the precipitation fronts however. We next con-
sider a slow moistening front with the same speed under the CAPE parameterization
(α=1) which is constructed by using the following values:

w+ = .01 (5.17)

Tx+ =0 (5.18)

qx+ =0 (5.19)

w− =
1

3900
= .000256 (5.20)

Tx− =
19

√
.1

3900
= .00154 (5.21)

qx− =
19

√
.1

1300
= .00462 (5.22)

which again gives a theoretical propagation speed of s=−
√

.1
2 . Again, the theoretical

prediction for the it is strikingly accurate (Figure 5.9). There is a small amount more
smoothing of the front here as compared with the fixed saturation case; these fronts
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Fig. 5.9. Precipitation for the slow moistening fronts with the CAPE parameterization at
t=1.2, t=2.4, and t=12 vs. distance recentered by the theoretical prediction for shock position. t=36
is additionally plotted for the τc =1.5 case.

also take slightly longer to reach steady state (despite the fact that the precipita-
tion adjusts faster in the τc =1.5 case). Other than these observations, the shape
of the fronts, the character of the propagation, and the agreement with theoretical
predictions are similar to the cases with α=0.
The Fast Moistening Front

Finally we simulate the fast moistening front, with the following initial conditions:

w+ = .01 (5.23)

Tx+ =0 (5.24)

qx+ =0 (5.25)

w− = .013 (5.26)

Tx− =−.006 (5.27)

qx− = .00585 (5.28)

which gives a speed of s=−2 in the formal limit of vanishing relaxation time. In
Figure 5.10, we plot time slices of the precipitation for the three values of τc for
this case. Despite its predicted propagation of twice the dry wave speed, this wave
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Fig. 5.10. Precipitation for the fast moistening fronts at t=1.2, t=2.4, and t=12 vs. distance
recentered by the theoretical prediction for shock position.

is still realizable numerically, and the theoretical predictions are still quite accurate
for all three cases. The primary difference from other simulations is that the waves
lag behind the theoretical predictions in all three cases due to a phase shift in the
adjustment process. This is not surprising since the front propagation speed is faster
than any allowed characteristic wave speed; while the precipitation is ramping up to
its steady value, the front falls behind the theoretical prediction. The waves still reach
a steady state in the moist reference state in this case, though, which is similar to the
other cases. The lags, measured by the location of half maximum, are approximately
.2, .5, and 2 for τc = .0625,.25, and 1.5, respectively. The waves actually reach their
steady shape more quickly in this case than for the drying and slow moistening fronts.

Remark 5.1. The three branches of precipitation fronts, drying, slow and fast moist-
ening, are reminiscent of the three branches of wave fronts in reacting gas flow, strong
detonations, flame fronts, and weak detonations [41] which satisfy the analogous wave
speed bounds in (4.38), (4.39), (4.40), respectively. In combustion the strong detona-
tions, which satisfy Lax’s shock inequalities as in (4.38) are always realizable ([22];
[4]) while flame fronts satisfying (4.39) propagate at speeds that are determined as a
nonlinear eigenvalue problem through a subtle balance of reaction and diffusion [41];
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weak detonations satisfying (4.40) are even more elusive and hard to realize ([22]; [8])
with special values of diffusion rates needed. The numerical results just presented for
precipitation fronts show that for the atmospheric models considered here, all three
types of precipitation fronts are realizable as large time limits for any finite relaxation
time τc with only finite one-sided relaxation as a subtle damping mechanism and with
negligible dependence on (numerical) diffusion coefficients. One significant difference
in the behavior of the system studied in section 4 is that the basic jump discontinu-
ities occur in the first derivatives of the solution while the nonlinear source terms
involve the smoother integrals involving values of the functions themselves; thus, the
finite time relaxation effects create a relatively smoother and thus more realizable back-
ground environment for the propagation of discontinuities in first derivatives. This
is not the case in reacting gas flow where both the nonlinear source terms and the
discontinuities occur at the level of primitive variables such as temperature.

6. 1-Dimensional Walker Cell Solutions

The Walker Cell is the zonal circulation of the atmosphere at the equator. Over
the warmest sea surface temperatures in the western Pacific Ocean “warm pool,” air
rises, and subsides in areas of colder sea surface temperatures; this flow is the Walker
Circulation. We model this with the 1-D forced-dissipative system (equations (4.11)
to (4.13)) by setting up sample sea surface temperature distributions representing the
warm pool (the parameter qs in the evaporation parameterization), and simulating
the precipitation response, integrated to a steady state, over a periodic domain all
the way around the equator.

We show in this section that even over smooth sea surface temperature distri-
butions, discontinuities in precipitation can develop in this Walker cell model, which
provides further physical justification for our study of precipitation fronts in the pre-
vious sections. We begin by analyzing what is required to create a discontinuity in
precipitation in this model for steady states in the limit of τc →0.
Solutions in the Limit of τc →0

The equations we analyze formally below are the steady state of equations (4.11)
to (4.13):

ū
∂u

∂x
=

∂T

∂x
− d̄u (6.1)

ū
∂T

∂x
=

∂u

∂x
−dT (T −Teq)+dSH(Ts−T )+P (6.2)

ū
∂q

∂x
=−Q̄

∂u

∂x
+dq(qs−q)−P (6.3)

where P = (q−q̃(T ))+

τc
in the limit of τc →0. Our reasoning below is somewhat formal

but instructive. From the moisture equation (6.3), we obtain

P =dq(qs−q)−Q̄
∂u

∂x
− ū

∂q

∂x
. (6.4)

For there to be a discontinuity in P , there must be a corresponding discontinuity in at
least one of these three terms. As we showed in section 3.2, discontinuities in q,T, or u
cannot occur out of smooth initial conditions and we assume that the steady state in
(6.1)-(6.3) arises formally as the large time asymptotic limit from smooth initial data
for each τc. Therefore the discontinuity must be from either the second or third term
in the above, i.e., either ∂u

∂x
or ∂q

∂x
must be discontinuous for P to be discontinuous.
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This also implies that in the absence of mean wind (ū=0), P is discontinuous if and
only if ∂u

∂x
is also discontinuous.

Now consider the moist static energy equation derived from adding equations
(6.2) and (6.3) (this eliminates the precipitation term):

ū
∂(T +q)

∂x
=(1−Q̄)

∂u

∂x
+dq(qs−q)−dT (T −Teq)+dSH(Ts−T )+dq(qs−q) (6.5)

In the case where ū=0, one can solve for ∂u
∂x

as a function of continuous variables
only. Therefore with no mean wind, there can be no discontinuity in precipitation.
With mean wind, there is no such guarantee, and discontinuities are possible.

[6] discusses the variation of the Walker cell with sea surface temperature gradients
in a model similar to ours (essentially a 1-D version of the QTCM). They observe that
in their model, nonlinear advection of moisture is key for the presence of precipitation
discontinuities. Since they use no linear advection by mean wind, this is obviously
connected to the result above.

6.1. Numerical Results. We simulate steady Walker cell solutions using the
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Fig. 6.1. Steady Walker cell solutions, τc = .0625 and ū=0 (blue); τc = .0625 and ū=−.05
(green); τc = .0625 and ū=−.1 (red); τc = .25 and ū=−.1 (cyan).

following parameters:

Q̄= .9,α=0, q̂ = .9,dSH =0,dq =
1

24
,dT =

1

48
, d̄=0,Teq =−.6 (6.6)
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We vary the convective relaxation time τc and the mean wind ū in the following
simulations. The distribution of qs is the following:

qs =

{

1.1 for 0<x< 3
8RE and 5

8RE <x<RE ,

1.1+ .26sin
(

4π
RE

(x− 3
8RE)

)

for 3
8RE <x< 5

8RE ,

(6.7)

which represents a sea surface temperature perturbation of 3K over the warm pool
(one-fourth of the domain) with RE =26.67, the Earth’s circumference.

Figure 6.1 contains simulations with τc = .0625 (30 minutes) using this distribu-
tion of qs, varying mean wind from 0 to −.09. There is additionally one simulation
with τc = .25 and ū=−.09. The upper limit mean wind (4.5 m/s) is still within re-
alistic values of the mean easterly winds at the equator. Clearly, for each of the
simulations with small τc and mean winds, the precipitation distribution is approx-
imately discontinuous. The simulation with no mean wind is smooth as expected.
However, the simulation with larger τc is not nearly as abrupt in transition as the
simulations with smaller τc. These simple simulations demonstrate that the concept
of precipitation front developed in sections 4 and 5 is useful and realizable even for
steady state solutions with realistic damping.

7. Some Future Directions in Applied Analysis for Large Scale Precip-

itation Dynamics

From the viewpoint of tropical atmospheric dynamics, the theory developed here
provides a new perspective on the fashion in which the prominent large scale zones of
moisture in the tropics can move and interact with large scale dynamics in the quasi-
equilibrium approximation through novel hyperbolic free boundary problems. Some
of these applied aspects are developed elsewhere by the authors ([35], [19]). The style
of this paper involves concise formal analysis and new estimates rather than rigorous
proofs in the style of applied analysis. The work presented above suggests several
interesting problems for rigorous applied analysis in a remarkable new PDE system
with subtle damping effects, the Tropical Climate Model in (3.1)-(3.5) of section 3.
We list some of them briefly below.
Qualitative Behavior

• Classify all smooth initial data for the relaxation limit free boundary problem
discussed in section 4.2 which develop discontinuities in finite time in tem-
perature gradients, vertical motion, and precipitation. Include the effects of
damping and forcing described earlier.

• As discussed in section 6, classify all the steady states for the relaxation limit
free boundary problem which have discontinuous precipitation zones arising
from smooth imposed sea surface temperature distributions.

• The same problem as above for the Tropical Climate Model in (3.1)-(3.5)
without and with the barotropic flow.

• Study the existence and structure of traveling waves for the 1-D equations in
(4.15)-(4.17) for finite relaxation times τc and for the three types of precip-
itation fronts in section 4.2. How much does the structure of this smoothed
traveling wave reflect the nature of the precipitation front and the structure
of the convective parameterization as presented through the parameter α?
When is the adjustment problem for finite τc dynamically stable?
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Quantitative Behavior

• For the version of the Tropical Climate Model without barotropic flow, the
estimates for solutions and first derivatives allow one to pass to the limit
of vanishing relaxation times. With the above estimates, characterize the
weak solutions of the associated hyperbolic free boundary problem through
variational inequalities [20] and establish their uniqueness. When is there
additional partial regularity?

• Establish the same results as in the above for the complete Tropical Climate
Model including barotropic flow. Here a new estimate beyond those in sec-
tion 3 independent of τc is needed for the quadratically nonlinear barotropic-
baroclinic coupling.

• For a given steady state surface forcing distribution and damping as in section
6, develop a theory for the weak attractor at large times for finite τc. Can this
attractor include multiple steady states, periodic orbits, chaotic dynamics?

• The same issues as in the above, for the two-dimensional Tropical Climate
Model without (and with) barotropic flow coupling.

One of the authors (A.M.) plans to investigate some of these issues with collabo-
rators in the near future. The reader is invited to make progress on these interesting
issues for applied analysis.
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