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LARGE-SCALE DYNAMO PRODUCED 
BY NEGATIVE MAGNETIC EDDY 

DIFFUSIVITIES 

A. LANOTTEa, *, A. NOULLEza, M. VERGASSOLA a 
and A. WIRTHb

a C.N.R.S., Observatoire de la Cote d'Azur, B.P. 4229, 06304 Nice Cedex 4, 
France; 

b 
Institut far Meereskunde, Kiel, Germany 

The existence of incompressible fiow producing negative magnetic eddy diffusivities is 
demonstrated. This provides for a dynamo mechanism, alternative to a-type effects, 
requiring neither the presence of mean helicity nor the breaking of parity invariance. In 
the kinematic dynamo phase, the magnetic field grows exponentially with a growth rate 
proportional to the square of the wavenumber. The concrete example, analyzed by means 
ofmultiscale techniques, is a parity-invariant fiow of the Taylor-Green type, 

Keywords: Dynamo processes; stability; turbulent diffusion 

1. INTRODUCTION

The generation of large-scale magnetic fields is one of the key issues 
in magnetohydrodynamics (e.g., Moffatt, 1978). The nature and the 
properties of self-inductive mechanisms capable of maintaining a per­
sistent magnetization are of particular importance for cosmical ob­
jects, such as stars or galaxies (Parker, 1979; Zeldovich et al., 1983). For 
the investigation of magnetic fields growth, the Lorentz reaction of 
the magnetic field B on the velocity v can be neglected (at least
initially) and the resulting dynamics is commonly known as the 
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kinematic dynamo problem. The velocity field v is indeed prescribed a 
priori as a function (deterministic or random) of the space-time vari­
ables x and t. The issue is to determine the characteristics of the pos­
sible growth of the large-scale components of B(x, t) (large-scale
dynamo) in terms ofv properties. The major effect of the incompressible 
flow v on the mean magnetic field B is to generate a mean electro­
motive force (e.m.f.) £, influencing the evolution of B according to
the induction equation 

8,B = (Vx£) + 17V'2B. ( 1) 

In a mean-field framework (Moffatt, 1978), the e.m.f. is expanded in 
a gradient series as 

(2) 

where the coefficients aij and f3ijt are functionals of the velocity field v. 
Higher-order terms involve more than one spatial gradient of B. The 
gradient expansion has a fully systematic status in scale-separated 
situations, i.e., when the velocity v has finite typical space-time scales 
and the scales of interest for B are much larger than all of them. The first 
term in the expansion (2) is responsible for the well-known a-effect 
(Steenbeck et al., 1966). If the a tensor does not identically vanish, the 
term associated to it in (1) (first-order in space variables) will indeed 
become dominant with respect to the second-order molecular diffusivity 
term at sufficiently large scales. In three dimensions, this leads to an ex­
ponential growth of B with a growth rate proportional to the wave­
number k. Lack of parity-invariance is the central ingredient for a-type
instabilities. By parity-invariant flow we mean those fields v admit­
ting a center of symmetry relative to which the simultaneous reversal 
xi--+ - x and vi--+ -v leaves the flow invariant (deterministically or statis­
tically, depending on the case considered). When no such center can 
be found, parity invariance is broken. Since the e.m.f. £ is a vector
and B is a pseudo-vector, such breaking is a necessary condition for 
aij not to vanish identically. By the same argument, the average value of 
the magnetic helicity A(x, t) • B(x, t) is guaranteed to vanish in parity­
invariant situations. 1 When the fl.ow does not admit any center of 

1In the relation above, A is the vector potential satisfying 8 = V x A. 
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symmetry, the mean value of (kinetic) helicity can vanish or not. The 
latter case generally leads to stronger dynamos at large scales, with 
growth rates proportional to the wavenumber k (and not k? as in the
former case). It is therefore commonly accepted that helicity plays an 
important role for o:-type instabilities (Gilbert et al., 1988). Note also
that o: instabilities have a vanishing threshold in the magnetic Rey­
nolds number, as the molecular diffusivity is subdominant at sufficiently 
large scales. 

For parity-invariant flow, a possible large-scale dynamo cannot take 
place via the a-effect and second-order terms in (2) become relevant. 
Inserting them into (1), a formally diffusive equation is obtained, where 
"formally" is meant to stress that the second-order operator on the 
right-hand side is not guaranteed to be (semi) negative-definite. It is 
certainly negative definite when the molecular diffusivity is large 
enough to dominate turbulent effects. But when the magnetic Reynolds 
number is increased, it is conceivable that the turbulent term associ­
ated to the f3 tensor could destabilize the large scales and quanti­
tatively overwhelm the stabilizing molecular contribution, thus leading 
to dynamo, i.e., the growth of B. This circumstance would corre­
spond to a negative magnetic eddy diffusivity and would provide for 
a dynamo mechanism not requiring any breaking of parity invariance 
and/or mean helicity. The purpose of the present paper is to address 
the question formulated in Section 7.4 of (Moffatt, 1978) whether 
this dynamo mechanism is physically realizable. 

The answer to the equivalent question for other physical situations 
is known. For the transport of passive scalars, the effect of an incom­
pressible velocity v is always stabilizing, i.e., the eddy diffusivity is 
larger than the molecular diffusivity (Mc Laughlin et al., 1985). For
time-independent potential flow, the eddy diffusivity is smaller than 
the molecular diffusivity, but it cannot become negative (Vergassola 
and Avellaneda, 1997). Another relevant situation is momentum trans­
port in the Navier-Stokes equations. The effect analogous to the a 
effect is the so-called AKA effect (Frisch et al., 1987), which also
disappears in the presence of parity-invariance. The existence of 
negative eddy viscosities is now well established, in two and in three 
dimensions, both for isotropic and anisotropic flow (Meshalkin and 
Sinai, 1961; Nepomnyashchy, 1976; Sivashinsky, 1985; Gama et al., 
1994; Wirth et al., 1995). The existence of negative eddy viscosities
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points in favor of negative magnetic eddy diffusivities, but this 
indication should be taken with caution. Indeed, for simple parallel 
flows (depending on a single coordinate), the eddy viscosity is for 
example known to be negative, but the origin of the instability (at least 
in this case) comes entirely from the non-local pressure term (e.g., 
Meshalkin and Sinai, 1961; Dubrulle and Frisch, 1991 ), which is 
absent in the kinematic dynamo problem. This important difference is 
confirmed in the Appendix, where the same problem of parallel flow 
is solved for magnetic fields and no dynamo is indeed present. 

Arguments in favor of negative magnetic eddy diffusivities were 
previously given in Roberts (1972) and Kraichnan (1976). The atten­
tion in Roberts (1972) was mainly concentrated on a-type dynamo, 
but some evidence was also given that magnetic fields could grow 
when orders higher than the first in (2) are relevant. A three-scale argu­
ment was considered in Kraichnan (1976) to show that fluctuations 
of the a-coefficient at intermediate scales could give a negative contri­
bution to the eddy diffusivity on large scales, but no definite con­
clusion could be drawn. Here, we shall analyze the problem using 
multiscale techniques, presented in Section 2. The advantage is that the 
nature and the order of the large-scale dynamics can be systematically 
identified and the calculation of the eddy-diffusivity tensor is reduced 
to the solution of auxiliary equations on the elementary periodicity 
cell. In Section 3, numerical simulations of the auxiliary equations are
used to investigate a steady variant of the Taylor-Green vortex, which 
is found to produce a negative magnetic eddy diffusivity above a 
critical Reynolds number. 

2. MULTISCALE FORMALISM

The aim of this section is to present the multiscale formalism that will 
be later exploited for the calculation of magnetic eddy diffusivities. 
The incompressible velocity field v(x, t) in the kinematic dynamo
equation 

(3) 
is supposed to have a finite typical length scale £0, e.g., to be £0-
periodic, and we shall be interested in the dynamics of the magnetic 
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field B at scales L » l0. The ratio l0/ L = c «: I provides a small
parameter that can be exploited for a perturbative solution. The per­
turbation being singular (e.g., Bender and Orszag, 1978), it is neces­
sary to treat the problem by singular perturbation methods (see 
Nayfeh, 1973; Van Dyke, 1975). The most convenient method for the
case at stake is the multiscale technique, also known as homogeniza­
tion (Bensoussan et al., 1978). In addition to the original variables
(x, t) ("fast" variables) characterizing the basic flow v, a new set of
space-time variables X, T ("slow" variables) is introduced. The ration­
ale in their choice is that the large-scale dynamics should be 0(1) 
in the new variables, e.g., X = ex. The prescription that resolves the
singularity is to treat the two sets of variables, fast and slow, as inde­
pendent throughout the perturbative expansion. The enlargement of 
degrees of freedom is compensated by the presence of non-trivial 
solvability conditions in the resulting equations, giving the large-scale 
evolution equations. 

Let us implement the previous procedure for the kinematic dynamo 
equation (3). Since we are interested in eddy diffusivities we shall
impose the velocity field v to be parity-invariant. This ensures the ab­
sence of the o: effect and makes the dynamics at large scales expected to 
be second-order in the space variables. The appropriate rescalings for 
the slow variables2 are then

(4) 

Treating fast and slow variables as independent implies the following 
chain rule for the derivatives 

(5) 

Here, we denote by the symbol {) the derivatives with respect to fast
variables and by (V, or) those with respect to slow variables. The
solution is then sought in the form of a perturbative series in c: 

(6) 

2In the presence of the a effect, two slow times should be introduced: T1 = ct, to 
capture the a dynamics and T2 = e2t for the eddy diffusivity contributions. 
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where the B (n) functions depend on both fast and slow variables. 
Inserting the expansion (6) and the rule for derivatives (5) into the
original equation (3), we derive the following hierarchy of equations: 

I (!) (0) - (0) - (0) O(c) AB = -v·VB + 2178·VB + (V·B )v (8) 

O(c2) AB<2l = -v·VB<'l + 2178·VB<ll + (V·B(ll)v
- O,.B(O) + 17V'2B(O). (9) 

The operator A is simply the induction operator acting on fast 
variables: 

A• =a,• -ax (vx •) -11&•, (10) 

and B(O) = (B<0l) + B(O) has been decomposed in its mean and
fluctuating parts. 

For the divergence-free conditions, we obtain at the various orders 
of c 

O(c1) o·B{l) + V·B(o) = 0,

(11) 

(12) 

(13) 

Note that these conditions mix different orders of B (n), implying, for 
example, that o x  (v x u<l));.b v · au<I) _ B0)·8v. 

The operator A having derivatives at the left of all terms, the 
average (A f) vanishes for any f having the same periodicities as v. 
A necessary solvability condition for the auxiliary equations of the 
hierarchy is thus 

A f = gsol�lity(g) 
= O, (14) 
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where(•) denotes the average over the periodicities of the basic flow v. 
In more general terms, by the Fredholm alternative theorem, the right­
hand side g should be orthogonal to constant functions, that constitute 
the null-space of the operator At, adjoint of A. 

The first solvability condition at O(c0) is automatically satisfied
since (8v) = 0. Using the linearity of the equation, its solution can
be generally written in the form 

-(0) - (0) B; - Sij(x, t)(B1 ), 

with the field Sij having zero mean and satisfying the equation

At the next order O(c1), the solvability condition 

or equivalently using ( 15) 

(v;(x)S11(x)) - (vJ(x)Su(x)) = 0, 

(15) 

( 16) 

(17) 

( 18) 

would in general be non trivial, corresponding to the a effect. 
However, if the velocity is parity invariant v(-x) = -v(x), from ( 16)
it follows that Sij(-x) = Sij(x) and the average in (18) therefore
vanishes. Using again the linearity of the equation, we can write its 
solution in the form 

( 19) 

where the field rij1(x) is the zero-mean solution of 

Arij1(x, t) = -8av1 - v1Sa + viSJt + 2ry81Sa. (20) 

Finally, from the solvability condition at O(t:2) we obtain the evolution 
equation for the large-scale magnetic field (B (O))(X, T): 
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Substituting in (2 1) the expression ( 19), we obtain 

(22) 

with the eddy diffusivity expressed in terms of averages of the r field:

(23) 

The large-scale dynamics is formally diffusive, as expected. Note that, 
according to the definition (23), the eddy diffusivity T/E is the sum of
the molecular contribution T/ and those due to the presence of the 
small-scale velocity field v. Since the transported quantity is a vector, 
the eddy diffusivity is a fourth-order tensor, whose entries are averages 
of functions depending only on fast variables. For a generic velocity 
field, the tensor rfutm will not be isotropic, i.e., the eddy diffusivity will
depend on the direction. To single out this dependence, it is useful to 
decompose a generic field Bon the Fourier basis and note that we can 
look for eigenfunctions of (22) in the form of plane waves: 

(24) 

Plugging (24) into (22), for each unit vector k we obtain the following
eigenvalue problem: 

Mim(k)bm = ef (k)bi, (25) 

(26) 

The non-trivial part of this (d x d) matrix lives in fact on the (d-1)­
dimensional sub-space perpendicular to the vector k, the latter having
zero eigenvalue. In three dimensions, once the entries of the T/E tensor
are known, the calculation of the eddy diffusivity in a given direction 
reduces therefore to the simple diagonalization of a 2 x 2 matrix. 

3. TAYLOR-GREEN FLOWS

In this section we shall discuss the behavior of magnetic eddy 
diffusivities for the Taylor-Green flow, and a slight variant of it that 
will be shown to produce a negative magnetic eddy diffusivity. 
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The Taylor-Green flow vT0:

v;-0 = sinxcosycosz, v;0 = -cosxsinycosz, v;0 = 0, (27)

was thoroughly investigated in the study of vorticity enhancement by 
vortex-line stretching and the consequent production of small-scale 
eddies (Brachet et al., 1983). The planes x, y or z = mr (with n integer)
are of mirror symmetry and they constitute the faces of the so-called 
impermeable box since no fluid crosses these boundaries. The overall 
geometry of the flow resembles that of a now classical experimental con­
figuration consisting of a shear layer between two counter-rotating 
disks. The many symmetries of the Taylor-Green flow (see Brachet et al., 
1983) ensure that when vT0 is used as initial condition in a Na vier-Stokes
simulation, the resulting flow admits the following Fourier expansion 
(when bifurcations breaking these symmetries are neglected): 

00 00 00 
Vx =LL L ux(m, n,p) sin mxcosnycospz,

m=O n=O p=O 
00 00 00 

Vy = LLLuy(m,n,p) cosmxsinnycospz, 
m=O n=O p=O 

00 00 00 
Vz = LLLuz(m,n,p) cosmxcosnysinpz, (28) 

m=O n=O p=O 

where the vector u vanishes unless the integers (m, n,p) are all even or 
all odd. The full MHD nonlinear problem with a Taylor-Green forcing 
on the velocity was recently numerically investigated in for example 
Nore et al. ( 1997). For very high viscosities only the basic mode of the
forcing is active, while more and more modes other than the basic 
one are excited in the expansion (28) when the Reynolds number is 
increased (the non-basic modes will be referred to, in the sequel, as 
recirculation modes). The important observation made in Nore et al. 
( 1997) is that the magnetic field grows for sufficiently large Reynolds 
numbers when the forcing is not on the smallest wavenumber of the 
box. Furthermore, the fastest growing mode of the magnetic field has 
a component on the smallest wavenumber, suggesting a sort of scale 
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separation. These were our motivations in considering the following 
generalization (with the two most energetic recirculation modes) of the 
Taylor-Green flow 

Vx = sinxcosycosz+Asin2xcos2z 

+ B(sinxcos 3ycos z + (5/13 )  sin 3xcosycosz] 

vy = - cos x sin y cos z +A sin 2y cos 2z 

- B[cos 3x sinycosz + (5/13)  cosxsin 3ycos z] 
Vz = -Asin2z(cos2x+cos2y) 

+ B[(2/13) cosxcos 3ysin z - (2/13') cos 3xcosy sin z], (29) 

where A and B are free parameters. The other constants, multiples of 
1/13 , could also have in principle been left free. For simplicity, we 
decided to set them to the value they take when the solution of the 
Navier-Stokes equations with a Taylor-Green forcing is expanded in 
powers of the Reynolds number. Note that both the original Taylor­
Green flow (27) and its variant (29) are parity-invariant (with respect 
to the origin). The vanishing of the mean helicity (h(x)) = (v·w) and
the absence of a effect are therefore guaranteed. An important quali­
tative difference between the two flows is that, for (27), h(x) itself van­
ishes everywhere and not just its average value. This is not the case 
for the flow (29) where helicity fluctuations, although globally vanish­
ing, are locally quite strong. The magnetic eddy diffusivities for the 
flows (27) and (29) are calculated using the formalism of Section 2 
and numerically solving the resulting auxiliary equations (16) and 
(20). The numerical code is a standard pseudo-spectral one, with the 
classical 2/3 truncation procedure for dealiasing (Gottlieb and Orszag, 
1977). Since magnetic Reynolds numbers (defined here as Rm= 1/ry)
turn out to be of order ten, only moderate resolutions 323 and 643 are
needed. We checked by the energy spectra that truncation or finite size 
errors are negligible for the range of magnetic ?iffusivities considered; 
it was verified that the results for the two resolutions coincide within 
relative errors of few per cent. 

To solve the auxiliary equations, the most convenient way is to 
apply repeatedly the evolution operatorA with a sufficiently small 
timestep until the field settles down to a stationary state. Note that 
this requires all small-scale modes to be damped (which is certainly 
guaranteed if the Reynolds numbers is small enough). This very same 
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assumption is indeed also implicitly assumed in the multiscale pro­
cedure itself: for the dynamo instability to be at large scales, and for 
multiscale techniques to be applicable, it is necessary for small scales 
to be stable. The validity of such an assumption can be checked a 
posteriori. 

Let us now tum to the discussion of the results. In Figure 1, to
better highlight the effects of the small-scale velocity field on large­
scale transport, we have plotted the minimum, over the unit wave­
numbers k, of the difference between the eddy diffusivity 7f (k), defined 
in (23), and the molecular diffusivity T/· For both the Taylor-Green 
flow (27) and the flow (29) with only the first recirculating mode 
excited (A = 1, B = 0), such difference always remains positive, and a 
fortiori so does the whole eddy diffusivity TJE. In particular, in the
former case, the eddy diffusivity has a tendency to saturate to a finite 
value, while in the latter case, the tendency is to decrease. However, 
when the magnetic Reynolds number is increased above Rm � 11, the 

0.08 

0.06 

. 

-� 
"'s=- 0.04 

0.02 

10 20 30 

Magnetic Reynolds number 

FIGURE 1 The difference (7fmin -11) between the minimum (over the wavevector k 
directions) of the eddy diffusivity 7f (k) and the molecular diffusivity 11 vs. the magnetic
Reynolds number. According to the definition in (23), the difference (1-,£-11) gives the 
contribution to the eddy diffusivity arising from the presence of the small-scale velocity 
field v. Circles refer to the flow (27); squares to the flow (29) with (A = 1, B = 0). 
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kinematic dynamo equation becomes unstable at small scales, 
comparable to those of the velocity field, indicating that the primary 
dynamo mechanism is not acting at large scales. The evidence of 
negative magnetic eddy diffusivities is finally obtained for the flow (29) 
with A = B = l .  As shown in Figure 2, for Rm � K;,,rit � 7.9, there is at
least one mode k having a negative eddy diffusivity 7f (k). As follows
from (24), the corresponding eigencomponent of the magnetic field is 
exponentially amplified, with a growth-rate proportional to k2. The
modes lying in the xy plane are the most unstable for any Rm > �,:jt 
(and, of course, they are the first to become unstable), with the corre­
sponding eigencomponent of the magnetic field of the form B = 
(0, 0, Bz exp ik ·x). For Rm > �,:jt, there is in fact a whole basin of un­
stable directions k around the most unstable one. At Rm= 10.52, the 
angular amplitude of the basin is roughly rr/6::; ()::; 5rr/6 (Fig. 3), 
where ()is the polar angle in spherical coordinates (r, (), ¢). 

4.0 

.. � 2.0
!=" 

5 10 15 
Magnetic Reynolds number 

FIGURE 2 'fhe minimum rfnnn (over the wavevector k directions) of the magnetic eddy 
diffusivity rf (k) vs. the magnetic Reynolds number, for the flow (29) with A = B = I. As 
the magnetic eddy d iffusivity r/ defined in (23) already includes the molecular
contribution, the change of sign of the curve at Rm = R";1 � 7.874 corresponds to the 
threshold for the magnetic field growth. 
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0.2 .....--------------------.. 

0.0 ··················· ·············································································· ··················· 

-0.2 

-0.4 

-0.6 .....__ ___ ___._ ____ _._ ____ ..____ ___ __, 
0 x/4 x/2 

Polar angle 0 
37r/4 1t 

FIGURE 3 The variation of the eddy diffusivity !f (k) with respect to the angle (} 
between the wavevector k and the i axis, for Rm = 10.52. 

In conclusion, the possibility of a dynamo action by negative 
magnetic eddy diffusivities has been demonstrated. Helicity fluctua­
tions, although globally vanishing, appear to play an important role 
in producing the negative eddy diffusivity, confirming the intuition of 
Kraichnan ( 1976). The negative eddy diffusivity mechanism does not 
require any breaking of parity invariance and offers therefore an 
alternative to a-type effects. 
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APPENDIX A. SIMPLE ANALYTICALLY 

SOLVABLE CASES 

We shall briefly discuss here some simple cases where the calculation 
of the magnetic eddy diffusivity can be carried out analytically. For 
none of them does the eddy diffusivity turn out to be negative.

Let us start from the case when the magnetic Reynolds number 
Rm is small enough to permit a perturbative expansion of the mag­
netic eddy diffusivity. The operator A in (10) then reduces to the heat
operator 1{ = 81 - T/& whose inversion on periodic functions having
zero mean and a spectrum decaying sufficiently fast is well defined and 
easy to perform, e.g., in Fourier space. The solutions at the dominant 
order of the auxiliary equations (8) and (9) are thus: 

SiJ = 1i-1(8jvi); riJl = 1-C1[-8uvj + 2T/8j1i-1(81vi)]. (A.1) 
The expression of the eddy diffusivity tensor immediately follows from 
(23). For time-independent velocity fields, the turbulent contribu­
tion turns out to be positive definite. Indeed, the combination 
I= -r/J1mk/<.1b;bm [which is the one involved in (26)] reduces to

1·· [ 2 ] 12· 2· I= - -;/ jk1b;bm O;m(vi(r Vj) = --:;/ ((k·v)8- (k·v)), (A.2)

which is clearly positive. 
For a generic flow, the previous formulae are just the first term of 

the expansion in the magnetic Reynolds number. There is however the 
special class of parallel flow where they hold in general. These flows 
are defined as: 

v = [O, v2(x), v3(x)], (A.3) 

where the simplifying feature is that they depend on a single 
coordinate (here arbitrarily chosen to be x). It follows that, in solving
(8) and (9), the term iJ x (v x •) in A identically vanishes and the
solution of the equations reduces again to inverting the heat operator. 
The previous perturbative formulae can therefore be simply carried 
over and the eddy diffusivity tensor is guaranteed to be positive 
definite by the general result (A.2). 
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Let us finally recall that in the case when the velocity field is random 
and has a short-correlation time, an exact equation for the mean 
magnetic field exists (Katsantzev, 1968). The stretching term B·iJv 

does not give any contribution and the resulting magnetic eddy 
diffusivity tensor is simply %im = 'f/ O;mOj/ + O;m fo° (vj(x, t) v1(x, O) )dt, 
which is positive-definite (and position-independent for a homoge­
neous flow). 
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