
Large-Scale Eigenvalue Calculations for

Stability Analysis of Steady Flows on

Massively Parallel Computers*

Richard B. Lehoucq and Andrew G. Salinger~

June 8, 1999

Abstract

We present an approach for determining the linear stability of

steady states of PDEs on massively parallel computers. Linearizing

the transient behavior around a steady state leads to a generalized

eigenvalue problem. The eigenvalues with largest real part are cal-

culated using Arnoldi’s iteration driven by a novel implementation of

the Cayley transformation to recast the problem as an ordinary eigen-

value problem. The Cayley transformation requires the solution of a RECEDED
linear system at each Arnoldi iteration, which must be done iteratively

for the algorithm to scale with problem size. A representative model JuL131999

problem of 3D incompressible flow and heat transfer in a rotating disk

reactor is used to analyze the effect of algorithmic parameters on the CMTI
performance of the eigenvalue algorithm. Successful calculations of

leading eigenvalues for matrix systems of order up to 4 million were

performed, identifying the critical Grashof number for a Hopf bifur-

cation.
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1 Introduction

Computing a numerical solution to the discretized Navier-Stokes equations

for system sizes of 0( 104– 105) is commonplace. Massively parallel computers

are demonstrating the ability to simulate fluid flow where the systems size is

0(106 – 107). However, the linear hydrodynamic stability of flows for these

latter systems sizes is typically not computed.

A standard approach used to determine the stability of the solution is via

a numerical time evolution of the discretized equations starting from a steady

state. Another approach is to linearize the equations about the steady state

and then compute several eigenvalues of a large-scale generalized eigenvalue

problem. This latter approach is the subject of the study.

Our interest is in characterizing the stability of complex three dimensional

systems with coupled fluid flow, heat transfer, and mass transfer. Hence we

are interested in the numerical solution of large scale generalized eigenvalue

problems for system sizes of n = 0(106). Because the solution of generalized

eigenvalue problem necessarily involves solving linear systems, sparse direct

methods are not a viable alternative. They possibly require O(n2) operations

plus a prohibitive amount of memory. Instead, this paper considers the use of

iterative methods for the linear solves on massively parallel machines. Along

with a scalable eigensolver; such an approach allows stability analysis to be

performed on large systems arising from 3D models.

We present a large scale eigenvalue algorithm that allows us to determine

the linear stability of a representative problem of 3D incompressible flow

of heat transfer in a rotating disk reactor. While the steady flow for this

application is axisymmetric and can be computed with a 2D model, the sta-

bility of the flow to 3D disturbances is needed to confidently use the results

to design reactors. We carefully discuss the influence of the various algo-

rithmic parameters on the performance of the stability analysis. Successful

calculations were performed on this problem where the order of the matrix

eigenvalue problem was 4 million. Our algorithm identified a critical Grashof

number for a Hopf bifurcation, above which the reactor exhibits undesirable

flow behavior.

Our paper is organized as follows. Section 2 discusses the flow of heat

transfer in a rotating disk reactor and the computation of the steady state

solution. Section 3 formulates the eigenvalue problem used to compute the

stability of the steady state and describes. in detail our numerical scheme
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for solving the large scale generalized eigenvalue problem using the Cayley

transformation. Section 4 discusses in detail some of the issues related to

using an iterative linear solver on parallel computers as part of the eigen-

value calculation. Section 5 applies the linear stability analysis capability to

determine the critical Grashof number for a Hopf bifurcation. We summarize

our findins along with concluding remarks in section 6.

2 Steady Flow Problem

Much of the behavior in a nonlinear system can be uncovered by tracking

steady state solutions as they evolve with changes in system parameters.

In this section, we will describe our representative flow problem and our

calculation of the steady state solution. That we have computed a solution

to the steady state equations does not indicate whether the solution is stable

or unstable motivates the development of a linear stability analysis capability

for large-scale flow problems.

The rotating disk reactor (RDR) is a common system for growing high

quality thin films via chemical vapor deposition. A top view and cross sec-

tional view of the reactor configuration are shown in Figure 1. The reactor

consists of an outer cylindrical can and a smaller cylinder can inside, which

is rotating and heated on top. On this heated disk, the deposition occurs

via surface reactions. Plug flow enters the top circular area, passes over

the heated, rotating disk, and through then through annular region before

leaving the computational domain. Under certain conditions, the flow in the

reactor is well represented by the von Karman similarity solution for flow

over an infinite rotating disk [1], leading to very desirable growth conditions.

The rotating disk reactor is known from experiments and calculations to

exhibit flow instabilities. This includes the formation of stable yet undesir-

able recirculation cells [1, 2, 3] as well as unsteady flows [4]. The steady state

behavior of this system can be uncovered by bifurcation analysis of steady

state flows [2, 5]. While these solutions are axisymmetric and require just

2D calculations, the stability analysis must be able to detect instabilities to

non-axisymmetric states and so we have calculated the steady flow using a

full 3D model.

To provide the most general results, we study just the fluid flow and heat

transfer model (no mass transfer or reactions) and look at dimensionless
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(a)
CMet

(b)
Outlet

Figure 1: Top view and cross section of rotating disk reactor for chemical

vapor deposition reactions. The surface elements shown correspond to a

94656 element mesh of hexahedrons and 500215 unknowns.
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Table 1: The governing PDE’s for incompressible flow with heat transfer are

shown in dimensionless form, including the Navier-Stokes equations with the

Boussinesq approximation, the continuity equation, and a heat balance.

Momentum ~+v. Vv=–VP+V2v+GrTeZ

\ Total Mass I Y’*V=O I

Thermal Energy ~+v+W’=&V22°

numbers, which are based on the assumptions of constant properties and the

Boussinesq approximation for buoyancy. For the calculations in this paper,

we have fixed the design parameters as shown in the figure, with L/l? = 1.0,

W/R = 1.2, and H/Z? = 1.0. The operating parameters in the model that

are also fixed for these calculations include the Rotational Reynolds number,

f?e,O~ = (0 R2)/u = 83.77 and the Prandlt number Pr = v/a = 1.0 where Q

is the rotation rate, v is the kinematic viscosity, and CYis the thermal diffu-

sivity. The Reynolds number at the inlet is fixed at the matching condition,

which is the flow rate that would be drawn by an infinite disk rotating at

he,. ~.The asymptotic value for the inlet velocity [4] of V = 0.884@ leads

to a inlet Reynolds number of Re = (2 RV)/v = 16.1S. The final parameter

is the Grashof number, measuring the relative strength of buoyancy forces

to viscous forces. This parameter is varied at the end of the paper, but for

most calculations is held constant at Gr = (g~7’R3)/v2 = 15000, where g

is the magnitude of gravity, ~ is the thermal expansion coefficient, and ?’ is

the temperature difference between the heated disk and the inlet (with the

outer walls also being held at the inlet temperature).

The steady state Navier-Stokes equations with the Boussinesq approxima-

tion are solved along with the continuity equation for incompressible flows.

In addition, a heat equation with convective and conduction terms is solved.

The equations are shown in Table 1 and include the time dependent terms,

which are important for the formulation of the stability (eigenvaIue) calcu-

lation.

The computational domain is discretized using a mesh of 94656 hexehe-

dral elements, which corresponds to 100043 nodes. The circular area is paved

with an unstructured mesh, as can be seen from a top view in Figure 1(a),
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while the axial direction is structured, as seen in the cross-sectional view

in Figure l(b). The mesh is partitioned with the Chaco graph partitioning

package [6], using a multi-level method and Kernihan-Lin refinement. The

mesh was partitioned into the same number of sub-domains as the number

of processors for the run, which was 250 for most of the calculations de-

scribed below. The calculations were performed on the Sandia-Intel Tflops

Computer [7].

The MPSalsa, massively parallel, unstructured grid, reacting flow code is

used. to solve for the steady state solution [8, 9]. This code has been success-

fully used to analyze flows and deposition profiles in chemical vapor deposi-

tion reactors [10, 11]. MPSalsa uses a Galerkin/Least-Squares method [12]

(GLS) to discretize the time-dependent Navier-Stokes equations of incom-

pressible fluid flow. This formulation includes a pressure stabilization term

so that the velocity components, temperature, and pressure fields can all be

represented with the same trilinear basis functions.

This discretization leads to a system of 500215 unknowns. The equations

are solved using a fully coupled Newton’s method [13] with an analytically

calculated Jacobian matrix. Within each iteration of Newton’s method, the

finite element residuals and Jacobian matrix are assembled in 2.0 seconds

when run on 250 processors. The linear solve is performed with the Aztec

package [14] using a GMRES iteration without restarts, row-sum matrix

scaling, and an ILU preconditioned with up to 7 levels of fill in. An average

GMRES solve required 80 iterations and 30 seconds (including the time to

construct the preconditioned) to reach a drop in the scaled residual of 0.007.

The steady state solution at Gr = 15000 was reached from a trivial initial

guess in 7 minutes using 2 consecutive steady state solves for increasing Gr.

A visualization of the steady state flow is shown in Figure 2. Several

streamlines are shown entering the top of the reactor, spiraling over the

disk, and exiting through the annular region. This calculation does not

give any information on the stability of the steady state solution to small

perturbations.

For the remainder the article, unless otherwise stated, all numerical ex-

periments on linear stability analysis algorithms are undertaken about the

above steady state calculation.



. .

Figure 2: Visualization of the three-dimensional steady state flow solution.

Streamlines enter the top, pass over the heated disk, and leave through the

annular region.

3 Stability Analysis Calculation

Suppose that f(y, y, p) = O represents the discretized non-linear system of

time-dependent Navier–Stokes equations modeling incompressible fluid flow

coupled with heat transport. If we linearize the equation

f(Y>i>P) = o

about the steady state (ye, po) to small perturbations e~~z, we obtain the

generalized eigenvalue problem Jz = ABz where the Jacobian and mass

matrices are J = fY(yo, 0, po) and B = —fy(yo, O, po) respectively. We

denote the order of the matrices J and B by n. Because we use a GLS

discretization scheme, the generalized eigenvalue problem can be written as

( L -C)[:l=(w[m–CT+G K
(1)

where u is the vector of fluid velocity components and temperature un-

knowns, p is the pressure, M is the symmetric positive definite matrix of
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the overlaps of the finite element basis functions, N is an up-winded mass

matrix, L is the sum of the discretized diffusion, nonlinear convection and

any possible reaction operators, C is the discrete gradient, CT is the discrete

divergence operator, and G and K (pressure Laplacian) are stabilization

terms arising from the GLS.

The steady state is stable if Real(A) <0 for all the eigenvalues of (l).

Hence, computing approximations to the right-most eigenvalues determines

the stability of the steady state.

3.1 Formulation of the Eigenvalue Problem

To compute the right-most eigenvalues, a shift-invert spectral transforma-

tion [15] is typically used to transform (1) into the standard eigenvalue prob-

lem

T~z = (J – OB)-lBZ = ~Z, T = +. (2)

The above formulation maps the infinite eigenvalues of (1) (arising from

singular B) to zero. By selecting the pole a near the imaginary axis, the

right-most eigenvalues are mapped by T~ into those of largest magnitude.

However, because J and B are real matrices, we only allow a real crto keep the

computation in real arithmetic. Although a natural choice is to select a zero

pole, the resulting transformation might miss a Hopf bifurcation (complex

conjugate pair of eigenvalues that cross into the right half of the complex

plane). This occurs, for instance, when the distance to the Hopf bifurcation

is greater than the distance to other (perhaps stable) eigenvalues of (1). The

paper [16] discusses these issues in some detail.

The computational burden is in solving the linear set of equations with

coefficient matrix (J – CT B)-l B.The standard approach is to use a sparse

direct solver to factor J–aB and then solve linear sets of equations. Although

this transformation maps the eigenvalues near the pole to those of largest

magnitude, the transformation also maps the eigenvalues far from the pole

to zero. Hence, the spectral condition number (the ratio of the largest to

smallest, in magnitude, eigenvalues) of T~ can be quite large. The resulting

linear systems will be difficult to solve because the rate of convergence with

an iterative method [17, 18] depends strongly upon the spectral condition

number.
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A better conditioned linear set of equations is achieved when using a

generalized Cayley [15] transformation

A–p
Tcz = (J – CB)-l(J – /JB)z = ‘yZ, y = ~. (3)

—

We call p the zero of the Cayley transform. In contrast to shift-invert trans-

form, the Cayley transform maps any eigenvalues of (1) far from the pole

close to one. If we are able to select a pole o that is to the right of all the

eigenvalues (1) and choose p > a, then the smallest eigenvalue of T= is no

smaller than one (in magnitude). Moreover, by judiciously choosing the pole,

we can approximately bound the largest eigenvalue of T= (in magnitude) re-

sulting in a small (say order ten) spectral condition number.

The last two paragraphs describe a delicate balancing act. On the one

one hand, the ability to compute the rightmost eigenvalues (A’s) requires that

the Cayley transformation map these values to -y’s that are the largest (in

magnitude). Such a situation allows the eigensolver to perform well. On the

other hand, the iterative solver used to solve the linear systems arising from

the Cayley transformation is negatively impacted if the ratio of max(l-yl) to

min( 1~1) (the spectral condition number of T=) is large.

We remark that although the Cayley and shift-invert spectral transfor-

mation both involve (J — OB)-l, the system of linear equations solved by

each transformation is distinct. Given a vector x, the Cayley system requires

the solution of

(J - CB)V = (J - /JB)x (4)

so that v = Tcx. Instead, the shift-invert system solves (J — OB)V = Bx.

That the spectral condition number of the Cayley system can be tightly

bounded (via a careful choice of a and p) implies that the Cayley system

results in a better conditioned set of linear equations.

3.2 Solution of the Eigenvalue Problem

We employ an implicitly restarted Arnoldi method (IRAM) as implemented

in the parallel implementation [19] of the ARPACK [20] to compute eigenval-

ues and eigenvectors of the generalized eigenvalue problem. We have slightly

modified the PARPACK subroutines pdnaupd and pdneupd to implement

the Cayley transformation. We refer the reader to [20] for full details about

the software and underlying algorithm.
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Start PARPACK with the vector v = J‘lBx where x is random vector. Select a pole

and zero for T=.

1.

2.

3.

4.

5.

Compute m iterations of Arnoldi’s method with Tc using the starting vector

v. Compute m eigenvalues (the 13’s approximating the ~’s) of the order m

upper Hessenberg matrix constructed by PARPACK.

Map the 0’s to ~‘s (approximations to the A’s) via the inverse Cayley trans-

formation.

Exit if the k rightmost ~’s satisfy the user specified tolerance.

Implicitly restart Arnoldi’s method resulting in an updated starting vector v.

Update u and p using the current approximate eigenvalues.

Figure 3: Computing the leading eigenvalues of Jz = MzA using the Cayley

transformation and IRAM.

Figure 3 lists the scheme used for computing several (say k) right-most

eigenvalues of (1). A few remarks are in order. The starting vector is chosen

so that it does not contain any components [21] in the null-space of B. For

all the eigenvalue problems solved, the value of m = 24 was used. At step

2, the eigenvalues (6’s approximating 7’s) of the m by m Hessenberg matrix

are mapped back to the system defined by (1) via the inverse Cayley trans-

formation resulting in approximations ~’s. The eigensolver is terminated

when these k rightmost approximate eigenvalues satisfy the user specified

tolerance. The check that must be satisfied is I[J2 – ~B211/\lB211 where i is

the associated approximate eigenvector. By implicitly restarting the Arnoldi

iteration, we compute a new starting vector for the subsequent run (step 1).

Implicitly restarting is an efficient and stable manner to restart Arnoldi’s

method so that storage requirements remain fixed for the computation. Fi-

nally, at step 5, the new pole and zero for the next Cayley transformation

are updated so that the spectral condition number of T= is of order ten.

We remark that there are two iterations—an outer and an inner iteration.

The outer iteration is Step 1 of the algorithm listed in Figure 3. During each

of these outer iterations, there is an inner iteration used to solve the linear

set of equations (4) arising from applying T=. We use a GMRES iteration for

solving this linear set of equations. The next section discuss details associated

with the inner iteration.
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The two parameters o and p in the Cayley transformation give a con-

siderable amount of flexibility over what eigenvalues will be located by the

Arnoldi’s method, how accurately they will be calculated, and how expen-

sive the calculation will be. The major consideration is the size of Iyl for

the eigenvalues A of interest. Eigenvalues ~ that are mapped to large 1~1

will emerge and quickly be approximated by Arnoldi’s method. We present

results that quantify the various trade-offs in picking these parameters while

preserving the spectral condition number of TC.

A good choice for these parameters is for the right-most eigenvalues of

interest, Ai for i = 1: k, to have real parts that satisfy 2U – p < Real(&) <

0< p. This implies that these Ai are mapped so that [-y(,li)l z 2 as long as

lImag(Ai)l is not large compared to a - Real(Ai).

To illustrate how the Cayley transformation maps eigenvalues of the sys-

tem, we plot the magnitude of Cayley transformation in Figure 4. This figure

shows how A is mapped to l-y\for fixed values of u = 20 and p = 80 and

four imaginary portions of A. Note that as the real part of A decreases, 1~1

approaches one. The o and p values in this plot map the real eigenvalues in

the range of –40 < Real(A) <20 to magnitudes in the Cayley transformed

system of [-yl > 2> which is sufficiently well separated from the many eigen-

values near 1~1 = 1 for the eigensolver. For any real eigenvalues satisfying

Real(A) < –40, the Cayley transformation maps these eigenvalues so that

1 < 1~(~)1 < 2. Hence, Arnoldi’s method will provide the best approxima-

tions to the eigenvalues satisfying 20- – p < Real(&) < a.

Figure 4 also indicates that eigenvalues with large imaginary parts are

mapped to small 1~1. Therefore it is difficult to compute approximations to

eigenvalues with large imaginary parts. For instance an eigenvalue at O+ 502

might not be located if there are many eigenvalues with large I-yl, such a.s

near —5 + OZ. This problem is resolved by increasing the Arnoldi space m

needed by P.ARPACK.

An appropriate choice of o, p, and the size of the Arnoldi space m is

therefore a tradeoff between two factors: selecting m. large enough so that

the right-most eigenvalues A are reliably computed by the eigensolver and

avoiding large values of 1~[ so that the resulting linear systems can be effi-

ciently solved with preconditioned iterative methods.
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Figure 4: Plot of the transformation of the eigenvalues in the physical system

to those in the Cayley transformed system. The magnitude of the trans-

formed eigenvalue is plotted against the real part of A for three different

imaginary contributions to A.

4 Preconditioned Iterative Linear Solves

The computationally intensive part of the eigenvalue calculation is the lin-

ear solve with TC (inner iteration) that occurs during each outer iteration of

Arnoldi’s method. Since we are targeting very large problems and algorithms

that scale to thousands of processors, we are limited to preconditioned iter-

ative linear solves of distributed matrices. In this section we first discuss the

tolerances used for the linear solver and eigensolver, the details associated

with our use of Aztec [14] and the outcome of a mesh resolution study.

4.1 Error Tolerances

Figure 5 plots the residuals associated with three rightmost eigenvalues and

eigenvectors versus the convergence tolerance used for the linear solver. The

eigensolver residual error is defined as

(5)
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where A and ; are the computed eigenvalue and eigenvector approximations.

The residual contains the normalization with Bi2 because P.ARPACK nor-

malizes IIill = 1 and so (5) is independent of the scaling of the data. The

linear solver uses the criterion

(6)

where A = J—aB and b = (J —pB)v from (4), and q is a tolerance parameter

that must be chosen. Here, v is the distributed unit vector provided by

P-ARPACK that is to be transformed via T= during the i-th (1 < i ~ m)

outer iteration and Xj is the approximate solution after j GMRES iterations

(the inner iteration).

In the experiment shown in Figure 5 we show the influence of q on the

eigensolver residual error 5. The residual error of the rightmost eigenvalue

pair (denoted by the solid line) stops decreasing q N 10-3. The residual

error of the next two eigenvalues stop decreasing when q = 10–6. Driving

the residual errors lower would require a larger Arnoldi space m or a different

choices of a and p. For the rest of the calculations in this section the linear

solver tolerance was fixed at q = 10–3.

A series of calculations are presented in Figure 6 to illustrate the trade-

offs in choosing u. The right-most eigenvalue of the steady state calculation

has real part equal to 0.3 and we set p = 80. As a is increased from 1 to

70, the maximum I-y[ decreases (recall that max(]yl) is approximately equal

to the spectral condition number of T=). This decrease is seen to corre-

spond directly to the decrease in the CPU time and memory requirements

for the linear solve, as measured by solution time and the average number

of GMRES iterations needed for a solve. However, as a is increased so do

the residuals (5). For this problem, a choice of a = 20 provides a balance

between efficiency and accuracy. The trends seen as a function of a point to

a remedy for systems where the preconditioned linear solver is not able to

reach the specified tolerance: increase a and p until the linear problem can

be solved and then increase the number of outer iterations needed by the

eigensolver (and therefore the number of linear solves required) until (5) is

sufficiently small for the rightmost eigenvalues.

13
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Figure 5: The error in the eigenvalue calculation for the three rightmost

eigenvalues is shown to be a function of the acceptance criterion of the iter-

ative linear solver. The eigensolver residual error and linear solver tolerance

is given in (5) and (6).
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6: The model eigenvalue calculation is repeated for several values of

the a parameter in the Cayley transformation. The effect of a on (a) the

magnitude of the three largest complex d pairs, (b) the residual errors (5)

associated with the three largest complex 0 pairs in the transformed system,

(c) the time for the calculation, and (d) the average number of GMRES

iterations needed for each of the 24 linear solve are shown.

15



.’ . )

4.2 Using Aztec

Another issue associated

ness of the algorithm in

with preconditioned iterative solvers is the robust-

reaching a specified tolerance. This includes the

access to, and selection of, an appropriate preconditioned and solution algo-

rithm. For the calculations in this paper, the Aztec linear solver library was

used 1. An ILUT preconditioned with considerable fill-in was selected so that

the preconditioned required almost 4 times more memory than the matrix

itself. The preconditioned is computed only one time, and reused for each

iteration of Arnoldi’s method needed by the eigensolver.

Since Figure 6(d) shows that a few hundred GMRES iterations are pos-

sibly needed during each outer iteration, the numerical stability of the GM-

RES implementation becomes critical. Originally, a classical Gram-Schmidt

scheme was used for the orthogonalization, but the lack of numerical stabil-

ity prevented the GMRES algorithm from reaching the required tolerance.

Two alternative orthogonalization schemes were used successfully: two-step

classical Gram-Schmidt (CGS) and a modified Gram-Schmidt (MGS). The

CGS method uses two steps of orthogonalization (the second step is the cor-

rection for the possible loss of orthogonality of the Arnoldi basis vectors)

but the number of global communication points remains fixed (at two) in-

dependent of the GMRES iteration. On the other hand, the MGS scheme

requires i communications to orthogonalize i vectors (at GMRES iteration

Z) but no additional floating point operations (flops). Both schemes reached

the specified tolerance and provided identical results in terms of the number

of GM RES iterations needed.

There was a significant difference in the scalability of the two algorithms

as the number of processors was changed. The time required to perform a

single linear solve (using a pre-calculated preconditioned) was recorded with

the number of processors being varied from 100 to 1000. The message of this

calculation is clear when presenting the total CPU time (calculated as the

wall clock time multiplied by the number of processors) as shown in Figure

7. When the problem was run on 100 processors, the extra communications

required by MGS were slightly less expensive than the extra flops required

by the CGS algorithm. However, as the number of processors is increased, it

is seen that the communication time in MGS starts to dominate, while the

total CGS time remains relatively flat. At 1000 processors, the CGS routine

1http: //www.cs.sandia. gov/CRF/aztecl .html
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Figure 7: The parallel efficiency of two stable orthogonalization schemes in

the GJIRES algorithm is compared. The extra communications of the Modi-

fied Gram-Schmidt (NIGS) approach scale poorly with number of processors,

while the extra operations of the 2-step Classical Gram-Schmidt (CGS) ap-

proach scale well.

requires only about a quarter of the time of the MGS method.

The results in Figure 7 show that the two-step classical Gram-Schmidt

(CGS) scheme scales much better than the modified Gram-Schmidt (MGS)

scheme. It should be pointed out that the inter-processor communication

rate of the Sandia-Intel Tflop computer is very fast compared to more loosely

coupled parallel machines, where we would expect the difference to be more

dramatic and the crossover point (at around 175 processors for this case) to

occur at fewer processors.

4.3 Mesh Resolution

All the calculations previously discussed were carried out for a single finite

element mesh corresponding to just over a half million unknowns (see section

2). While we have shown above that the eigenvalues are accurate for this

given discretized system, a mesh resolution study verifies that these eigen-

values are good approximations to those of the continuous PDE model. The

results of such a study are shown in Table 2. The six eigenvalues with largest
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Table 2: Mesh resolution studies at Gr = 15000 on the six eigenvalues with

largest real parts. The coarse mesh results would indicate a stable solution,

but the finest mesh shows that two pairs of eigenvalues have positive real

parts.

Number of Unknowns First Eigenvalue Second Eigenvalue Third Eigenvalue

.25 Million -0.08 & 25.3% –0.49 & 9.63z – 1.44+ 5.96z

.50 Million 0.35 & 25.16z –0.05 * 9.502 –1.13 * 5.912

1 Million 0.57 + 25.06z 0.21 + 9.362 –0.98 + 6.012

2 Million 0.73 & 25.02% 0.39 * 9.312 –0.85 + 6.03t

4 Million 0.84 & 24.94t 0.50 + 9.22z –0.78 + 6.082

2D mesh 1.06 A 24.69z

..50Million

real parts at Gr = 15000 are shown for five successively finer meshes, each

doubling the number of unknowns of the previous. They range from 250

thousand to 4 million unknowns. A final calculation on a very fine 2D ax-

isymmetric mesh of 0.5 million unknowns was used to verify the first eigen

mode, which was determined to be axisymmetric through visualization of the

eigenvectors.

The parameter value was chosen to be near a Hopf bifurcation. What

we find is that while the coarsest mesh indicates a stable steady state, the

second coarsest mesh (which is used in all other computations in this paper)

shows one unstable eigenpair, and the three finest meshes predict that two

eigenvalues are unstable. While the change in the eigenvalues with successive

refinement is slowing, the values are still changing even when the number of

unknowns increases from 2 to 4 million unknowns.

We recall that the accuracy of the nonlinear steady state calculation and

of the linear solves within the eigensolver are additional sources of error that

may be influencing the convergence rate of the mesh resolution study. These

results imply that very fine meshes may be needed to pinpoint the exact

parameter value of a Hopf bifurcation in 3D problems. However, the fact

that the coarsest mesh is converging to the same physical modes implies that

the system’s behavior can be quickly explored with a relatively coarse mesh,
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and the finer meshes are only needed to locate the parameter values to a

higher degree of accuracy.

For the finest mesh, the steady state solution was reached from atrivial

guess in three continuation steps in the Gr number, using 2.5 hours of CPU

time on 1024 processors. The eigenvalues where calculated in under 5 hours,

where each linear solve required about 12 minutes. The linear solves used the

ILUT preconditioned with a fill-in factor of 8 and an average of 825 GMRES

iterations.

5 Reactor Analysis

In this section we apply the linear stability analysis capability that has

been presented above. Experiments have shown that the desirable non-

recirculating flow in the rotating disk reactor can go unstable to periodic

oscillations [4]. It is important during reactor design to be able to locate

this instability. With that goal in mind, the steady-state solution branch

was tracked using first-order cent inuat ion and the leading eigenvalues were

calculated at each step. The calculations were performed on the standard

mesh corresponding to half a million unknowns.

Figure 8 shows how the six eigenvalues that have largest real part at

Gr = 1.5000 evolve from Gr = 10(IOCIto Gr = 16000. By interpolating

between the symbols to where the curves cross the imaginary axis, the first

Hopf bifurcation is seen to occur near 14800, the second just above 15000

and a third near 15500. By including the trends seen in the mesh resolution

study in Table 2, where the systems became less stable with more refined

meshes, we ‘can extrapolate that with a finer mesh the first Hopf bifurcation

would fall in the range Gr = 14000 – 14500.

The eigenvectors associated with these largest eigenvalues are the pertur-

bations that will not get damped out if the Hopf bifurcation has occurred.

Visualization of the eigenvectors gives information to the designers that could

be used to modify the reactor design or operation to delay the onset of these

unwanted instabilities. Since the instabilities involve oscillations between the

real and imaginary parts of the eigenvector, each of which corresponds to a

thre~dimensional flow field, it was not possible to produce satisfactory still

pictures for this publication. What the visualization found was that the first

Hopf bifurcation is an axisymmetric state with a toroidal roll cell. The os-
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cillation is the roll cell being forced out by a counter-rotating roll cell. The

second Hopf bifurcation breaks symmetry with a mode 1 instability, with

a single large roll cell over the disk that rotates in time. The third Hopf

bifurcation is a mode 2 symmetry breaking, where there is up-flow in two

quadrants of the disk and down-flow in the two others. Again, this flow

structure precesses around reactor in time. It is interesting that the modes

O, 1, and 2 symmetry breakings occur at nearly the same conditions. While

this problem could have been solved using a two-dimensional model with an

axisymmetric formulation and complex arithmetic for the non-axisymmetric

modes, the methods were developed as a general 3D capability. And since

Cartesian coordinates were used to model the system, the fact that the so-

lution was axisymmetric did not simplify the calculations in any way.

6 Summary and Conclusions

A massively parallel code for calculating steady-states of incompressible and

reacting flows has been linked to a library for calculating selected eigenval-

ues using PA RPACK for the purpose of linear stability analysis. A novel

implementation of the Cayley transform has been presented and analyzed

for an example of 3D flow and heat transfer in a rotating disk CVD reactor.

This implementation allows control over the spectral condition number of

the linear system that must be solved during each step Arnoldi’s iteration

used by PA RPACK making it particularly well suited for use with scalable

iterative linear solvers.

By using sophisticated linear algebra algorithms and software for iterative

solutions of large, sparse, distributed matrices, we were able to calculate sev-

eral “rightmost eigenvalues for linearized systems corresponding to 4 million

unknowns and 530 million nonzero matrix entries on 1024 parallel processors.

The stability of the flow in the rotating disk reactor was analyzed as a

function of the Grashof number, Gr. The desirable flow field was found to go

unstable in the range of Gr = 14000 — 14500 after extrapolating the results

to finer meshes. While this flow goes unstable to an axisymmetric mode,

there are mode 1 and mode 2 instabilities that go unstable at slightly higher

values of Gr.

We have shown that determining the linear stability of steady state solu-

tions arising from discretization of 3D incompressible flow PDE’s is possible.
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We have also demonstrated the potential impact by locating a flow instability

in an engineering system that can be used to interpret certain experimental

results and guide the design of the next generation, scale-up reactors.
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