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Abstract
Backgrounds: It is increasingly recognized that protein functions often require intricate
conformational dynamics, which involves a network of key amino acid residues that couple spatially
separated functional sites. Tremendous efforts have been made to identify these key residues by
experimental and computational means.

Results: We have performed a large-scale evaluation of the predictions of dynamically important
residues by a variety of computational protocols including three based on the perturbation and
correlation analysis of a coarse-grained elastic model. This study is performed for two lists of test
cases with >500 pairs of protein structures. The dynamically important residues predicted by the
perturbation and correlation analysis are found to be strongly or moderately conserved in >67%
of test cases. They form a sparse network of residues which are clustered both in 3D space and
along protein sequence. Their overall conservation is attributed to their dynamic role rather than
ligand binding or high network connectivity.

Conclusion: By modeling how the protein structural fluctuations respond to residue-position-
specific perturbations, our highly efficient perturbation and correlation analysis can be used to
dissect the functional conformational changes in various proteins with a residue level of detail. The
predictions of dynamically important residues serve as promising targets for mutational and
functional studies.

Background
Protein conformational dynamics [1,2] is critically
involved in many biochemical processes ranging from
catalysis [3] to allostery [4-9] and signal transduction
[10]. Protein dynamics spans a wide range of time scales
(from picoseconds to seconds or minutes). Biologically
relevant conformational motions of proteins are often
collective (for example in the form of hinge-bending or
shearing motions between rigid domains, see [11]). These

highly coordinated motions are thought to involve a net-
work of key amino acid residues that couple spatially sep-
arated functional sites [9]. The conservation and variation
of protein functions are likely underscored by the conser-
vation and co-evolution of these dynamically important
residues. The existence of a sparse network of allosterically
coupled residues in various proteins has been revealed by
the statistical coupling (or correlated mutation) analysis
based on multiple sequence alignment (see [12-14]). The
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discovery of dynamically important residues will lead to
the following important applications: first, facilitate the
mechanistic studies of a variety of biomolecular systems
whose conformational dynamics plays a key role in func-
tion [1]; second, enable drug design that dynamically
alters target proteins via small molecule binding [15-18];
third, guide the engineering of new molecular devices
with novel dynamic properties [19,20].

In complement with experimental efforts for probing pro-
tein dynamics at atomic resolution (such as NMR, see
[21,22]; and time-resolved Xray crystallography, see [23]),
structure-based computer simulations have promised to
elucidate the fine details of protein conformational
motions. When multiple crystal structures are available
for a protein at different states, structural analysis can
identify those residues involved in the functional confor-
mational changes between these states (such as local
motions in allosteric proteins, see [24]; conformational
changes due to binding of small molecules and other pro-
teins, see [25,26]). In one study, the analysis of local struc-
tural changes (such as changes in the pseudo-bond angles
and pseudo-dihedral angles along the Cα trace of a pro-
tein) was employed to identify key residues involved in
the lid-closing conformational change in adenylate kinase
[27]. Hinge residues of protein domain motions can be
identified by structural analysis tools such as DynDom
[28] and Hingefind [29], or graph theory based method
[30]. To further yield dynamic information from static
crystal structures, atomistic molecular dynamics (MD)
[31] and related methods (such as non-equilibrium MD,
see [32]; targeted MD, see [33]; biased MD, see [34]) have
been employed to identify key residues or structural ele-
ments involved in protein conformational fluctuations
and transitions (see [32,35,36]). Nevertheless, the appli-
cations of atomistic MD simulations are limited by the
high cost of simulating conformational dynamics beyond
tens of nanoseconds [31].

To overcome the time-scale barrier for atomistic MD sim-
ulations, a variety of coarse-grained (low-resolution)
modeling techniques [37] have been developed to explore
protein conformational motions more efficiently. For
example, the Go model [38] has been recently used to
simulate conformational transitions between known pro-
tein structures (see [39]). A structural thermodynamic
model (COREX) based on "Go-like" sampling of protein
ensembles was developed to simulate coupling between
local structural fluctuations, ligand binding and global
conformational changes [40]. Of particular interest to the
present study is the elastic network model (ENM) [41-43]
and its isotropic variation – Gaussian network model
(GNM) [44,45], which represent a protein structure as a
network of Cα atoms locally connected by springs with a
uniform force constant [46]. The normal mode analysis

(NMA) of ENM often yields a handful of low-frequency
modes that dominate the large-scale domain motions
observed between protein crystal structures [43,47,48].
Numerous studies have established ENM as an efficient
means to tease out the functionally relevant conforma-
tional dynamics from protein structures with no limit in
time scale or system size (for reviews, see [49-51]). The
ENM/GNM-based NMA has formed the basis of several
recently developed computational methods for locating
ligand-binding sites [52,53], predicting hinge residues
using low-frequency modes [54-56], and modeling con-
formational transition pathways [57-61]. Thanks to its
high efficiency the ENM/GNM-based NMA has proven to
be a powerful tool for bioinformatic analysis of protein
structures and motions at a large scale [47,48,62].

In several recent studies, we have proposed and employed
an ENM-based perturbation analysis to predict the
dynamically important residues involved in the observed
protein functional motions [63-65]. This method ana-
lyzes how the "dominant mode" (the normal mode that
dominates the observed protein functional motions)
changes in response to residue-position-specific perturba-
tions to the ENM force constant that mimic the effects of
point mutations (see Methods). By combining the pertur-
bation analysis with the linear response theory, a correla-
tion analysis was developed to locate hinge residues that
control the structural fluctuations of the entire protein
structure or its active site [66,67]. These novel methods
are available at an NIH-based webserver http://
enm.lobos.nih.gov. In our previous studies of chaperonin
GroEL, helicase, myosin and polymerases [63-67], we
have shown that the key residues involved in the func-
tional motions of these proteins are highly conserved, and
many of them were found to be functionally important by
mutational studies [63-65]. Nevertheless, the applicability
of these methods and other coarse-grained methods to a
large variety of proteins remains to be established. Addi-
tionally, the perturbation analysis was based on a single
dominant mode, while the conformational changes in
proteins often involve multiple modes [47,48]. So it is
necessary to extend our method to study protein func-
tional motions that are not dominated by a single normal
mode.

In this study, we will first introduce a new fluctuation-
based perturbation protocol (see Methods) that does not
assume the existence of a single dominant mode. Then we
will perform a comprehensive evaluation of our ENM-
based methods together with several alternative ones for
predicting dynamically important residues. For the lack of
systematic data on protein dynamics and functions, we
will use sequence conservation as the primary metric for
method evaluation. The evaluation is performed on two
lists of protein structure pairs – a short list with 25 pairs of
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protein structures which is compiled from previous works
by us and others [43,68,69]; a long list with >500 pairs
gleaned from Protein Data Bank by an automated proce-
dure (see Methods). The above two lists are complemen-
tary in the following ways. The short list contains
functionally relevant structural changes whose biological
significance was established in literature (all of them are
involved in the binding/release of a biologically relevant
ligand), but the arbitrary selection of a small number of
cases may introduce artificial bias and statistical uncer-
tainty; the long list, however, may contain biologically
irrelevant structural changes (for example, due to crystal
packing), but it provides a less biased data set with smaller
statistical errors.

We have found that the dynamically important residues
predicted by the perturbation and correlation analysis are
strongly or moderately conserved for >67% of the test
cases. These key residues, which constitute a small fraction
of all residues (~15%), are clustered both in 3D space and
along protein sequence, and they dominate the structural
dynamics of ENM. Together, they form a sparse network
which may couple distant functional sites in a protein
complex. The conservation of these key residues is mainly
due to their dynamic role instead of ligand binding or
high network connectivity. This large-scale study, along
with previous database-scale studies using NMA
[47,62,70-72], will pave the way for future bioinformatic
analyses of protein structure-function relationships via
high-throughput dynamic modeling. These techniques
promise to offer new biophysical insights that will enrich
the existing databases of protein structures and motions
[71].

Methods
1. Elastic Network Model (ENM)
In an ENM, a protein structure is represented as a network
of Cα atoms of amino acid residues whose equilibrium
coordinates are given by a crystal structure. A harmonic
potential with a uniform force constant C accounts for
elastic interactions between two Cα atoms that lie within a
cutoff distance Rc (it is usually set within the range of 7 Å–
20 Å). The potential energy function of ENM is [46]

where dij is the distance between the Cα atom i and j, 

is the equilibrium distance between the Cα atom i and j in

the crystal structure, N is the number of Cα atoms, and θ
(x) is the Heaviside function.

The above potential energy function is expanded to sec-
ond order:

where δX = X - X0, X is a 3N-dimensional vector represent-

ing the Cartesian coordinates of N Cα atoms, Cα gives the

equilibrium Cα coordinates in the crystal structure,

 is the Hessian matrix, and the

matrix element of Hij is given by

, where a and b are

indices for x, y and z components of the Cartesian coordi-
nates of Cα atoms i' and j'.

A normal mode analysis of the Hessian matrix yields 3N-
6 non-zero normal modes (excluding 6 zero modes corre-
sponding to 3 rotations and 3 translations), which are
numbered from 1 to 3N-6 in order of ascending eigen-
value. To validate ENM, each normal mode is compared
with the observed structural change between two crystal
structures, which is represented by a 3N-dimensional vec-

tor ΔXobs obtained by superimposing the two structures

with minimal Root Mean Squared Deviation (RMSD). An

overlap  is calculated for mode m, where

Vm is its eigenvector, |ΔXobs| and |Vm| represent the ampli-

tudes of ΔXobs and Vm. The mode with the highest overlap

is named the dominant mode, if its overlap value is high
(|Im| > 0.5).

To assess how collective the observed structural change is,

we define the collectivity of ΔXobs as

[43], where  and ΔXobs,

i is the 3D component of ΔXobs at residue i.

2. Perturbation analysis based on a single dominant mode
To simulate the dynamic effect of a point mutation, we
have introduced a perturbation to the local elastic interac-
tions involving a given residue i as follows [63]:

E C R d d dc ij ij ij

j

i

i

N

= - -
=

-

=
åå1

2
0 0 2

1

1

1

q( )( ) , (1)

dij
0

E X H XT» 1
2 0d d , (2)

H C R d Hc ij
ij

j

i

i

N

0
0

1

1

1
= -

=

-

=
åå q( )

H d di a j b
ij

ij ijxi a x j b’ , ’ ’ ’
( )= -é

ë
ù
û

¶
¶ ¶

1
2

2 0 2

Im

Xobs
T Vm

Xobs Vm
=

×

D

D

exp log-
£ £

å
é

ë
ê

ù

û
úai ai

i N
N

1 ai
Xobs i

Xobs
=

D

D

,
2

2

d d qE C Rc dij dij dij
j i

i = - -
¹
å

1
2

0 0 2( )( ) , (3)
Page 3 of 17
(page number not for citation purposes)



BMC Structural Biology 2009, 9:45 http://www.biomedcentral.com/1472-6807/9/45
where δC represents an arbitrary change to the force con-
stant of those springs connecting residue i to its neighbors
(residue j). This perturbation results in the following
change in the Hessian matrix:

In the single-mode-based SPM proposed earlier [63-65],
we analyzed how much the above perturbations change
the eigenvalue (or eigenvector) of the mode that domi-
nates the protein functional motions:

where δλm, i (denoted as δωm in [63]) is the resulting

change in the eigenvalue of mode m, which is propor-
tional to the elastic energy stored in the springs that con-
nect residue i to its neighbors following a displacement of
the protein structure in the direction of the eigenvector

Vm. Because , if we set δC = C/2, then

 (named as normalized δλm, i) gives the fractional

contribution of local interactions at residue i to mode m.

 was found to be a good indicator for the dynamic

importance of residue positions [63].

3. Perturbation analysis based on overall structural 
fluctuations and structural fluctuations in the direction of 
observed conformational change
In addition to the perturbation analysis of individual nor-
mal modes [63-65], we have also evaluated how much the
perturbation in Eq. 3 changes the overall structural fluctu-
ations of the entire protein structure [66] or its active site
[67].

The change in the overall structural fluctuations caused by
a perturbation at residue i (see Eq. 3) is given by the fol-
low score [66]:

where , δHi is given in Eq. 4, Tr rep-

resents the trace of a matrix. In practice, H-1 can be calcu-

lated efficiently by inverting H + εI using a sparse linear

equation solver (I is the identity matrix and ε is a small
number set to be 0.00001). The purpose of adding a small

ε is to change the eigenvalues of six zero modes of H to
positive values so that H can be inverted by a linear equa-

tion solver. The eigenvectors are not changed by the addi-

tion of ε. Because δHi is translationally and rotationally

invariant, the inclusion of translational and rotational
modes in H-1 does not affect the calculations in Eq. 6
except for a small increase in the eigenvalues of all non-

zero modes by ε.

Because , if we assume δC =

-C/2, then δ2, then δfi/�(X - X0)2� (named as normalized

δfi) gives the fractional contribution of local interactions

at residue i to the overall structural fluctuations of the pro-
tein structure. This score was previously used to identify
the hinge residues in myosin motor domain [66].

To focus on the fluctuations in the direction of the crystal-
lographically observed conformational change (ΔXobs), we
introduce a new fluctuation-based perturbation score:

Because , if we

assume δC = -C/2, then 

(named as normalized ) gives the fractional contri-

bution of local interactions at residue i to the fluctuations

in the direction of ΔXobs Therefore, those residue positions

with high  are significantly involved in the structural

fluctuations that sample the new structural state at X0 +

ΔXobs If the observed conformational change is dominated

by a single mode m (ΔXobs~Vm),  is reduced to

. Otherwise,  can be calculated without

assuming the existence of a single dominant mode.

4. Alternative scores for assessing dynamic importance of 
residue positions
For comparison with the ENM-based scores of dynamic
importance defined in Eqs 5–7, we have also examined
the following alternative scores based on structural analy-
sis or GNM modes:

a. Two scores based on changes in the pseudo-bond
angles and pseudo-dihedral angles associated with the
observed conformational change (ΔXobs): they are defined
as follows
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where δθ(i - l, i, i + l) is the change in the pseudo-bond
angle of three consecutive Cα atoms i-1, i, i+1; δφ (i-2, i-1,
i, i+1) (δφ (i-1, i, i+1, i+2)) is the change in the pseudo-
dihedral angle of four consecutive Cα atoms i-2, i-1, i, i+1
(i-1, i, i+1, i+2).

b. Strain energy score: it is defined as the elastic energy
stored in the springs that connect residue i to its neighbors
following the observed conformational change (ΔXobs):

c. GNM-based fluctuation score: it is defined as follows
using the lowest two nonzero GNM modes (following
[55])

where Vmi is the i'th component of the eigenvector of the

GNM mode m, and λm is the corresponding eigenvalue.

Note that residues with high  values have low

mobility and correspond to hinge centers of a protein
structure (see [55]).

5. Evaluation of predictions of dynamically important 
residue positions
Since the dynamically important residues are not com-
pletely known for the proteins in our lists, we will evaluate
our predictions indirectly by assessing the conservation of
the predicted key residues. As we proposed previously
[63], the dynamically important residue positions are
under functional constraints so they must be either con-
served in amino acid type/property, or under co-evolution
with each other (See [12]). Therefore, they are expected to
be more conserved than those residues not under func-
tional constraints. Consequently, the quality of our pre-
dictions can be evaluated by the average conservation
scores for the predicted key residue positions.

For a given score of dynamic importance (Si = δλm, i, δfi,

, , , , or ), we rank and select the

top 15% key residue positions (the choice of a different
percentage between 10% and 20% does not qualitatively
change our results).

Next we calculate the average conservation score for Nkey =

15%·N key residue positions

( ), and for all residue

positions ( ). The conservation

scores (CS) are calculated based on the multiple sequence
alignments of homologous protein sequences by ConSurf
server (http://consurf.tau.ac.il/, [73]). The lowest (high-
est) conservation score represents the most (least) con-
served residue position.

Then we calculate the following Z score to assess statisti-
cally how well the predicted residue positions are con-
served than average:

where σrand is the squared root of the variation of the aver-
age conservation score for Nkey randomly chosen residue
positions calculated as follows:

where {X1, ... } is a randomly selected subset of

{CS1, ... CSN}.

The more negative Z is, the more significant is the overall
conservation of the key residue positions.

The above evaluation is performed on two lists of test
cases (see Table S1&S2 in Additional file 1). For each
score, the average (�Z�) and standard deviation (σZ) of the
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Z scores are calculated for the test cases in both lists. A
more negative �Z� is indicative of a better performance

6. Generation of a long list of PDB structure pairs
We follow an automated procedure to generate a long list
of PDB structure pairs (represented as (pdb1, pdb2)):

a. Start from an initial list of 2039 high-resolution protein
structures (with sequence identity <30%, resolution <1.6
Å, and R-factor < 0.25) obtained from culledpdb web site
http://dunbrack.fccc.edu/;

b. Remove protein structures with <100 residues from the
initial list;

c. For each protein structure (denoted as pdb1) from the
initial list, generate a list of homologous structures
(denoted as pdb2) that satisfy the following conditions:
(i). sequence identity with pdb1 ≥ 90%; (ii). number of
residues ≥ 100; (iii). RMSD between pdb1 and pdb2 ≥ 1
Å. Note: A larger list of homologous structures (denoted
as pdb2') with only condition (i) satisfied is compiled to
define ligand-binding residues of pdb1, which are either
in heavy-atom-contact with a hetero atom in pdb1 or
mapped sequentially to residues of a pdb2' which are in
heavy-atom-contact with a hetero atom in pdb2';

d. Select the pdb2 with the maximal RMSD relative to
pdb1 (denoted as pdb2max) and add the structure pair
(pdb1, pdb2max) to the final list.

The final list contains 502 PDB structure pairs. Among
them, 473 have ConSurf scores calculated for ≥ 50% of
residue positions in pdb1, which are used for Z score cal-
culations. For details see Table S2 in Additional file 1.

Results and discussion
To evaluate the performance of various scores for selecting

dynamically important residues (δλm, i, δfi, , ,

, , and , see Methods), we have assessed

the conservation of the predicted residues (using a Z score,
see Methods) for both a short and a long list of test cases
(see Table S1&S2 in Additional file 1). The two lists con-
tain a broad range of proteins with diverse biochemical
functions (including signaling proteins, DNA-binding
proteins, motor proteins and enzymes) and structural
architectures (single-domain and multi-domain pro-
teins). The results are summarized in Table 1. Then we
have analyzed factors (including ENM parameter, proper-
ties of protein structures and conformational changes, see
Table 2) that may affect the performance of the ENM-

based scores (δλm, i, δfi, ), and their relationships

with each other and alternative scores based on structural

analysis ( , ) and GNM ( ). Next, we have stud-

ied how the predicted key residues correlate with ligand-
binding residues and hub residues with high network con-
nectivity, and verified that they form a sparse spatially and
sequentially clustered network within protein complexes.
Finally, we have illustrated the application of perturba-
tion and correlation protocols to two motor proteins
(myosin and kinesin).

For the simplicity of evaluation, we have chosen the
dynamically important residues as the top 15% residues
ranked by a given score. The use of a small percentage like
15% is in line with the previous findings of a sparse net-
work of allosterically coupled residues in various proteins
(for example, the allosteric network consists of only 14%
of all residues in GPCR, see [13]). It is conceivable that the
percentage of dynamically important residues varies from
protein to protein. A more sophisticated cutoff scheme
will be developed in our future studies.

1. Conservation of dynamically important residues

We first examine the distribution of Z scores for the key

residues predicted by the perturbation-based scores (δλm,

i, δfi, , see Figure 1). We have divided all test cases in

the long list into three classes based on their Z scores:

highly conserved (Z ≥ -2), moderately conserved (-2<Z ≥ -
1) and not conserved (-1<Z). Assuming a normal distribu-
tion of the average conservation score for Nkey randomly

chosen residue positions (Nkey is the number of key resi-

dues), a Z score ≥ -2 corresponds to 98% confidence level,

and a Z score ≥ -1 corresponds to 84% confidence level.

Using one of the three scores (δλm, i, δfi, , see Figure

1), the predicted residues in 41–48% (20–26%) of cases
are highly (moderately) conserved. Therefore, in most
(>67%) of the cases, the dynamically important residues
predicted by our perturbation-based scores are either
highly or moderately conserved.

We have found large variations in the conservation of
dynamically important residues (see Figure 1 and Table
1), which may be attributed to the following causes:

First, it is likely that those key residues co-evolve with each
other, which results in weaker conservation of them indi-
vidually. A detailed analysis of correlated mutations (see
[12-14]) is needed to explore this possibility which is
beyond the present study.

Second, the accuracy of ENM (with its simplified force
field) in predicting the key residues may vary from case to
case. We will further explore how the properties of protein
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structures and conformational changes affect the accuracy
in Subsection 3.

Third, some crystallographically observed conformational
changes in the long list may not be functionally relevant,
therefore the residues involved in these changes are not
under functional constraints. The relevance of this factor
is supported by the observation that the average Z scores
are significantly more negative for the short list (see Table
1) which includes manually selected protein conforma-
tional changes whose functional relevance is established
in literature.

Judging from the average Z scores (�Z�),  and δfi per-

form slightly better than δλm, i (with more negative �Z�, see

Table 1), which is attributed to the use of more modes
than the dominant one in the perturbation and correla-
tion analysis. To show the statistical significance of the
above improvement, we perform the following Z score

estimation. The standard error of �Z� for the long list is esti-

mated to be  (σZ is given in Table 1, 473

is the number of protein structure pairs used for Z score
calculations, see Methods). The significance of the differ-

ence in �Z� between  and δλm, i is assessed by the fol-

lowing Z score:(-1.8 + 1.60)/σ�Z� ≈ -2.6 (�Z� values are given

in Table 1). This large negative Z score indicates that the

improvement from δλm, i to  is statistically signifi-

cant. Similarly, we can show that the improvement from

δλm, i to δfi is also statistically significant.

2. Optimal performance of perturbation and correlation 
analysis at a low cutoff distance Rc = 7 Å

To explore how the performance of perturbation-based

scores (δλm, i, δfi, ) depends on ENM parameter (cut-

off distance Rc), the Z score calculations are done for a

range of Rc values (7 Å ≤ Rc ≤ 15 Å) (we do not consider

Rc<7 Å because it causes many zero modes to arise due to

insufficient connectivity in ENM). For both the short and

d fi
obs

s sZ Z» / 473

d fi
obs

d fi
obs

d fi
obs

Table 1: Performance of various scores of dynamic importance assessed by the average (�Z�) and standard deviation (σZ) of Z scores for 
two lists of test cases (short list in row 2 and long list in row 3).

�Z�(σZ) of

Rc(Å) δfi δλm, i

7* -1.41(2.00) -2.68(2.11) -2.18(2.02) -2.38(2.38) -1.92(2.19) -0.55(1.30) 0.28(1.27)
7 -1.65(2.09) -2.63(1.90) -1.50(1.61) -2.32(1.84)
8 -1.92(1.90) -2.36(1.75) -1.21(1.82) -2.07(1.86)
9 -1.82(2.11) -2.26(1.83) -0.61(1.77) -1.77(2.02)
10 -1.89(1.94) -2.32(1.54) -0.48(1.87) -1.70(2.07)
11 -1.90(2.01) -2.40(1.56) -0.16(2.11) -1.55(1.88)
12 -1.93(2.09) -2.40(1.67) -0.09(2.11) -1.33(2.08)
13 -1.87(2.11) -2.24(1.71) +0.26(2.16) -1.08(1.97)
14 -1.93(2.06) -2.08(1.58) +0.51(2.30) -0.96(1.89)
15 -1.96(1.94) -2.06(1.52) +0.79(2.45) -0.88(1.99)
7** -1.20(1.96) -2.44(1.97) -2.11(1.82) -2.21(2.18)

7* -0.06(2.01) -1.80(1.72) -1.81(1.52) -1.60(1.72) -1.98(1.82) -0.38(1.25) 0.03(1.29)
7 -1.30(1.97) -1.30(1.97) -1.02(1.71) -1.24(1.89)
8 -0.30(2.27) -0.97(2.21) -0.62(1.81) -0.94(2.00)
9 -0.36(2.34) -0.78(2.23) -0.33(1.87) -0.65(2.04)
10 -0.40(2.39) -0.61(2.30) -0.08(1.90) -0.40(2.10)
11 -0.43(2.44) -0.51(2.35) +0.16(2.01) -0.29(2.20)
12 -0.49(2.47) -0.43(2.37) +0.37(2.09) -0.23(2.26)
13 -0.50(2.53) -0.34(2.39) +0.54(2.06) -0.01(2.14)
14 -0.50(2.56) -0.24(2.44) +0.74(2.11) +0.15(2.16)
15 -0.47(2.58) -0.16(2.50) +0.98(2.20) +0.32(2.17)
7** +0.09(1.88) -1.68(1.64) -1.76(1.46) -1.54(1.66)

* in combination with heavy-atom-contact
** in combination with heavy-atom-contact, and after removing conserved ligand-binding residues
Note: σZdescribes the variations of Z scores among the list of test cases. To assess the accuracy of �Z�, the standard error of �Z� for the long list can 
be estimated as follows:

(473 is the number of protein structure pairs used for Z score calculations, see Methods).
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long list, we have found that the best performance (the

most negative �Z�) for δλm, i, δfi and  is attained at Rc

= 7 Å (see Table 1). In addition, if the Cα-Cα distance cut-

off at 7 Å is combined with a heavy-atom-contact criterion
(namely, two residues are in contact if the minimal dis-
tance between their heavy atoms is <4 Å), the perform-
ance is further improved (see Table 1).

The above results suggest that the accuracy of ENM-based
perturbation and correlation analysis is optimal when the
range of Cα-Cα interactions in ENM matches the center of
the distribution of Cα-Cα distances between residues in
atomic contacts (4.4 Å ~12.8 Å, see [74]). This is contrary
to previous studies that found better ENM performance
for fitting crystallographic B factors at relatively high Rc
(15 Å ≤ Rc ≤ 24 Å) [62]. This is also at odds with our find-
ing that the maximal overlap for the dominant mode is
lower at Rc = 7 Å (0.35 ± 0.14 for the long list) than at 8 Å
≤ Rc ≤ 11 Å (0.42 ± 0.16 for the long list). Interestingly, the
finding of optimality at low Rc is roughly consistent with
a recent study that found the optimal descriptions of
structural fluctuations and conformational changes by a
generalized anisotropic network model at Rc = 8 Å [75].

The above discrepancy may be explained as follows. Intu-
itively, the use of high Rc tends to suppress local motions
(for example, in a dangling loop) that often arise as extra
zero modes at low Rc. Therefore, high Rc helps to remove
the tip effects (overly flexible pieces of proteins that pro-
trude out of the main globular body, see [76]) and
improve the description of collective domain motions

observed crystallographically [11]. However, the intro-
duction of additional elastic interactions beyond the
range of physical interactions between contacting residues
may compromise the accuracy of modeling local pertur-
bations by point mutations, which explains the lower per-
formance as Rc increases from 7 Å to 15 Å (Table 1).
Therefore, the optimal choice of ENM parameter is appli-
cation-dependent. To simulate the dynamic effects of
local perturbations to protein structures, it is preferable to
use a relatively low Rc, which allows the structural fluctu-
ations and low-frequency modes of ENM to respond more
sensitively to residue-position-specific perturbations to
local interactions (see Eq. 3 of Methods). Indeed, we have
found that the percentage of structural fluctuations con-
tributed by the top 15% key residues (ranked by δfi)
decreases significantly (from 59 ± 10% to 31 ± 18%, for
cases in the long list) as Rc increases from 7 Å to 15 Å.
Therefore, despite the findings that low-frequency modes
are robust to ENM parameters (see [77]), the use of pertur-
bation methods to probe ENM dynamics [63,64,53,78]
remains feasible (especially at low Rc). In this study, we
will use ENM constructed with Rc = 7 Å and the heavy-
atom-contact criterion.

3. Dependence of performance on properties of protein 
structures and conformational changes

We now study how the performance of three perturba-

tion-based scores ( , δfi, δλm, i) depends on four prop-

erties of protein structures and conformational changes in
the long list. To reduce the statistical noise due to large
variations in Z scores (large width in distribution of Z

d fi
obs

d fi
obs

Table 2: Dependence of performance of perturbation-based scores on various properties of protein structures and conformational 
changes evaluated by the average (�Z�) and standard deviation (σZ) of the Z scores (statistics of the long list).

Property Range �Z�(σZ) of
δfi δλm, i

Size 100–153 -1.14(1.34) -1.30(1.24) -1.08(1.44)
153–263 -1.72(1.55) -1.90(1.41) -1.32(1.59)
263–804 -2.48(1.91) -2.22(1.69) -2.36(1.81)

RMSD 1.00–1.40 -1.71(1.96) -1.71(1.58) -1.58(1.76)
1.40–2.28 -1.65(1.53) -1.95(1.48) -1.62(1.79)
2.28–20.85 -2.09(1.62) -1.78(1.48) -1.66(1.64)

Max overlap 0.05–0.27 -1.61(1.55) -1.75(1.48) -1.25(1.58)
0.27–0.37 -1.85(1.66) -1.80(1.50) -1.57(1.79)
0.37–0.82 -1.93(1.91) -1.88(1.58) -1.97(1.71)

Collectivity 0.01–0.13 -1.81(1.68) -1.97(1.43) -1.49(1.59)
0.13–0.33 -1.84(1.66) -1.85(1.58) -1.69(1.70)
0.33–0.79 -1.76(1.82) -1.61(1.52) -1.64(1.86)

DynDom domain partition success -1.68(1.63) -1.77(1.45) -1.47(1.61)
fail -2.11(1.88) -1.92(1.67) -1.93(1.94)

d fi
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scores, see Figure 1), we have performed the following
three-tier averaging: for each property, all test cases are
sorted by the property value and then divided equally into
three tiers (the bottom 1/3, middle 1/3 and top 1/3 go
into the low, medium and high tier, respectively); the

average (σZ) and the standard deviation (�Z�) of the Z

scores are calculated separately for each tier (see Table 2).
The statistical significance of the observed differences in

�Z� between tiers can be demonstrated following the same
Z score estimation as given at the end of subsection 1.

a. Protein size (number of residues in a protein structure)

For all three scores ( , δfi, δλm, i), �Z� decreases signif-

icantly from low-size, medium-size to high-size tier. Thus
a better performance is expected for larger proteins despite
large variations in Z scores. This result agrees with the gen-
eral understanding that ENM modeling is more suitable
for large proteins whose low-frequency dynamics is more
dependent on the global shape, and less sensitive to inac-
curacy in local interactions.

b. RMSD between two PDB structures

The dependence on RMSD differs between three scores –

δλm, i has the weakest RMSD-dependence; δfi performs best

in medium-RMSD tier;  performs best in high-

RMSD tier. Therefore, δfi and  may be used selec-

tively depending on the magnitude of conformational

change. It is encouraging that  is applicable to large-

scale conformational changes beyond thermal fluctua-
tions.

c. Overlap of the dominant mode for the observed conformational 
change

A negative correlation (�Z� decreases from low-, medium-
to high-overlap tier) is found for all three scores, which is

strongest for δλm, i and relatively weak for δfi and .

This is expected because δλm, i relies on the assumption of

a single dominant mode while δfi and  do not.

Therefore ENM remains valid for describing structural
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Distribution of Z scores for 473 cases in the long list using the following three perturbation-based scoresFigure 1
Distribution of Z scores for 473 cases in the long list using the following three perturbation-based scores. (a) 

: the percentage of highly conserved (Z ≤ -2) and moderately conserved (-2<Z ≤ -1) cases is 47% and 20%; (b) δfi: the 

percentage of highly conserved and moderately conserved cases is 48% and 20%; (c) δλm, i: the percentage of highly conserved 
and moderately conserved cases is 41% and 26%.
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fluctuations and residues involved even if it fails to cap-
ture the observed conformational changes by a single
dominant mode.

d. Collective nature of the observed conformational change

Previous studies have found that ENM performs better in
describing protein conformational changes (see Yang
2007) with high collectivity (for definition, see Methods).
We have explored the dependence of Z scores on the col-
lectivity of the observed conformational change. Surpris-
ingly, it is found that high/medium collectivity only

improves the performance of δλm, i but not  or δfi.

Therefore, unlike other ENM assessing metrics (such as
the overlap of the dominant mode, see [48]), the accuracy
of ENM-based predictions for dynamically important res-

idues (using  or δfi) does not strongly depend on the

collectivity of conformational changes.

In complement to the collectivity calculations, we have
also determined how the performance depends on
whether the observed conformational change can be
approximated by rigid-body domain motions. To this
end, we have applied DynDom [28] to the observed con-
formational changes in the long list, which are then
divided into two subsets (success/failure) depending on
whether DynDom succeeds/fails in dynamic domain par-
tition. Domain partitions were made successfully by Dyn-
Dom for 135 out of 502 cases. We have found that all
three scores perform better if the conformational change
involves domain motions. For those cases where domain

partition succeeds,  performs the best; for those

cases where domain partition fails, δfi performs the best.

In sum, the performance of the three perturbation-based
scores depends more on the protein size than the proper-
ties of conformational changes (see Table 2). In particular,

δfi and  perform well even when the observed con-

formational change is not collective or not dominated by

a single mode. In fact, they outperform δλm, i under those

conditions (see Table 2). Therefore the fluctuation-based
perturbation and correlation analysis may be applied
more broadly than the single-mode-based protocol to
cases where many modes are involved in the functional
motions.

4. Relationship between various scores of dynamic 
importance

To evaluate how much the key residues predicted by two
scores of dynamic importance (denoted as S1 and S2)

overlap with each other, we have calculated a correlation
factor – it is defined as the enrichment in the probability
of finding a key residue predicted by S2 within the set of
key residues predicted by S1 relative to that expected if
randomly selecting a residue from all residues in a pro-
tein. In practice, the correlation factor is calculated as

, where Nkey12 is the number of key residues

predicted by both S1 and S2, Nkey1(Nkey2) is the number of

key residues predicted by S1 (S2), and N is the total
number of residues. A correlation factor >>1 indicates
strong correlation between S1 and S2. Based on the statis-
tics of the long list (same below in this subsection), the
correlation factor between the key residues predicted by

 and δfi (δλm, i) is 3.57 ± 1.13 (3.18 ± 1.39). In addi-

tion, 55 ± 17% (49 ± 21%) of the key residues predicted

by  and δfi(δλm, i) overlap with each other. Namely,

55 ± 17% (49 ± 21%) of the key residues predicted by

 are also predicted by δfi(δλm, i). Therefore, there are

strong overlaps between the key residues predicted by the

three perturbation-based scores ( , δfi and δλm, i).

Many common residues are involved in both the equilib-

rium fluctuations (in all directions as probed by δfi) and

the large conformational change (in a particular direction

as probed by ). Therefore, it may be possible to pre-

dict those residues involved in the slow conformational
change from a known structural state toward an unknown
structural state, by simulating the fast equilibrium fluctu-
ations near the known state [27]. This useful strategy
avoids the need for costly long-time MD simulations.

Compared with the above perturbation-based scores, the
residues involved in the observed conformational changes
as identified by alternative scores based on energetic or

structural analysis ( , , , see Methods) are

much less conserved (see Table 1). Therefore, we infer that
not all residues involved in the observed conformational
changes are equally constrained by functions. From the
point of view of structural transition, not all changes in
local structures/interactions are equally important to the
transition – those early-occurring changes are more likely
to affect the transition rate than the late-occurring ones
(see [60]). It is conceivable that the early structural
changes involve intrinsic motions described by the low-
frequency normal modes. Therefore, by capturing these
early structural changes, the NMA-based perturbation and
correlation analysis can predict dynamically important
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residues more accurately than standard structural and
energetic analysis.

Following [55] we have also calculated a GNM-based
score for predicting hinge residues with minimal mobil-

ity. This score ( ) is based on the calculation of

mean-squared fluctuations due to the lowest two GNM
modes (see Methods). It is found that the hinge residues

(defined as the top 15% residues ranked by ) are

significantly conserved (see Table 1), which supports their
functional importance [55]. Nevertheless, they do not
overlap significantly with the key residues predicted by
the perturbation and correlation analysis. Indeed, the cor-
relation factor between the key residues predicted by

 and  is only 1.6 ± 0.95, and only 25 ± 14% of

key residues predicted by  and  overlap with

each other. Such a lack of correlation is not unexpected,
because these methods are based on different principles:
the GNM score depends on the distribution of structural

fluctuations, while  and δfi probe how the overall

fluctuations are coupled to local perturbations. Therefore,
the two methods may complement each other in probing
different aspects of protein conformational dynamics.

5. Correlation between dynamically important residues 
and ligand-binding residues
The correlation between conformational dynamics and
ligand binding in enzymes has been explored computa-
tionally in several recent studies. In one study, Yang and
Bahar found that catalytic residues are often co-localized
with hinge residues identified by GNM [55]. Another
study found that the ability to trigger large changes in con-
formational distribution makes a good score function for
predicting ligand-binding site [52,53]. One can argue that
evolution favors ligand binding to dynamically important
regions of proteins to effectively trigger or regulate protein
dynamics. Thus these key residues may be constrained by
both conformational dynamics and ligand binding affin-
ity.

To explore the correlation between ligand-binding resi-
dues and the dynamically important residues predicted by
our perturbation and correlation analysis, we have evalu-
ated if these two sets of residues co-localize in protein
structures. To enable analysis of a large dataset, the iden-
tification of ligand-binding residues is automated using
two criteria: first, they are highly conserved (with grade =
9 based on the ConSurf conservation scores, [73]); sec-
ond, they are in heavy-atom-contact with at least one het-
ero atom (from the HETATM records of PDB files,

excluding waters and hydrogen atoms) in the PDB file of
the given structure or a homologous protein structure

with ≥ 90% sequence identity. The first criterion allows us
to automatically filter out those unconserved residues that
bind biologically irrelevant ligands or reagents used for
crystallization (see [79]). For each test case of the long list,
we have calculated a correlation factor (defined as the
enrichment in the probability of finding a ligand-binding
residue from the set of key residues relative to that
expected if randomly selecting a residue from all residues
in a protein). A high correlation factor (>>1) indicates a
high level of co-localization between the two residue sets.
The average correlation factors for the three perturbation-

based scores ( , δfi and δλm, i) are 1.58 ± 1.32, 1.45 ±

1.38 and 1.47 ± 1.30, respectively. This result indicates a
weak tendency of co-localization – there is ~1.5 times
higher probability for ligands to bind with dynamically
important residues than random. The ligand-binding res-
idues only comprise a small fraction of the predicted key
residues (the average percentage of key residues which are
also ligand-binding is only ~6–7%). Therefore, we infer
that the conservation of the predicted key residues is not
primarily due to the conservation of ligand-binding resi-
dues. Indeed, we have reevaluated the performance of the
perturbation-based scores after removing all highly con-
served ligand-binding residues, the average Z scores are
only slightly reduced (see Table 1). Therefore, most of the
predicted key residues are evolutionarily constrained by
their roles in conformational dynamics rather than spe-
cific interactions with ligands.

6. Correlation between dynamically important residues 
and hub residues
In an ENM, the hub residues with high connectivity
(defined as the number of neighboring residues in heavy-
atom-contact with a given residue) are likely involved in
both structural stability and dynamics [80]. Indeed, we
have found a high level of conservation for the hub resi-
dues with top 15% connectivity (their Z scores are -3.35 ±
1.42 for cases in the long list). Because the residue-posi-
tion-specific perturbation (see Eq. 3 of Methods) is
applied to the interactions between a given residue and its
neighbors, it is natural to expect such perturbation to be
larger for residues with more neighbors than those with
fewer neighbors. To evaluate the connectivity-dependence
of the perturbation-based scores, we have assessed how
much the predicted key residues overlap with the hub res-
idues.

The correlation factors for the three perturbation-based

scores ( , δfi and δλm, i) are 1.65 ± 0.45, 1.69 ± 0.48
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and 1.65 ± 0.50, respectively (statistics of long list). This
result indicates a relatively weak overlap between the two
sets of residues – there is ~1.7 times higher probability to
find dynamically important residues to be hub residues
than random. The hub residues only comprise a minor
fraction of the predicted key residues (the average percent-
age of key residues predicted by the three scores which are
also hub residues is 34–35% for cases in the long list).
Thus the majority (>65%) of the dynamically important
residues are not hub residues, whose dynamic importance
is not due to their high connectivity in ENM.

7. A sparse network formed by dynamically important 
residues

The three perturbation-based scores (after normalization,
see Methods) give the fractional contribution of each res-

idue position to either structural fluctuations ( , δfi)

or elastic energy (δλm, i). For cases in the long list, on aver-

age 59–70% of the structural fluctuations or elastic energy
are contributed by the top 15% key residues predicted by
one of the three scores. Therefore the protein dynamics is
dominated by a sparse set of key residues, which agrees
with similar findings by sequence-based analysis (see
[12,13]).

To further explore how the key residues are distributed in
3D space and along protein sequence, we have calculated
a spatial (or sequential) correlation factor defined as the
enrichment in the probability of finding two key residues
in heavy-atom-contact (or sequentially separated by <10
residues) relative to that expected if these residues are dis-
tributed randomly in a protein structure (or sequence). In
practice, the spatial correlation factor is calculated as

, where Nkey, par(Npar) is the

number of key residue pairs (all residue pairs) that are in
heavy-atom-contact. For cases in the long list, the spatial

correlation factors for the three scores ( , δfi and δλm,

i) are 3.69 ± 0.63, 3.61 ± 0.59 and 3.56 ± 0.69, respec-

tively; the sequential correlation factors for the three
scores are 2.14 ± 0.67, 1.99 ± 0.58 and 2.08 ± 0.66, respec-
tively. Therefore, the dynamically important residues are
clustered both in 3D space and along protein sequence
(though to a less extent), which form a strongly coupled
network. This finding complements a recent finding that
the residues involved in local motions of allosteric pro-
teins are correlated in 3D space and along sequence [24].
The high degree of spatial and sequential connectivity

allows these key residues to mediate signal transmissions
over long distances between spatially separated functional
sites.

8. Case studies of dynamically important residues in 
myosin and kinesin

Finally, we will apply the above methods to the functional
conformational changes in myosin and kinesin – two fil-
ament-based motor proteins driven by ATP binding and
hydrolysis. Myosin has been previously studied by the sin-
gle-mode-based perturbation analysis [64] and correla-
tion analysis [66]. Here we will focus on a comparison of
the predictions of dynamically important residues made

by various protocols ( , δfi, δλm, i, , connectiv-

ity and DynDom).

a. myosin

We have examined the large conformational change (see
Figure 2d) from a pre-powerstroke transition-state struc-
ture (PDB: 1VOM) to a post-powerstroke nucleotide-free
structure (PDB: 2AKA), which pertains to the force gener-
ation and hydrolysis product release in myosin [81]. This
conformational change involves large rotations of the
converter, the upper/lower 50 kDa subdomains (U50/
L50) relative to the N-terminal subdomain (see Figure
2d). This collective conformational change is captured by
the lowest two ENM modes calculated for 1VOM[66]. The

key residues predicted by , δfi and δλm, i are highly

conserved (with Z scores of -8.35, -7.80, -7.70, respec-

tively). The key residues predicted by  overlap

strongly with those predicted by δfi(66% identical, see Fig-

ure 2a) and δλm, i (74% identical, see Figure 2b). These res-

idues are clustered in 3D space, forming a sparse network
that connects the active site to the force-generating com-
ponent (converter) via two flexible connectors – relay
helix and SH1 helix (see Figure 2a, b). Interestingly, a few

key residues predicted by δfi are located near the actin-

binding cleft (see Figure 2a), which may allow actin bind-
ing to regulate the structural fluctuations of myosin [66].

For comparison, we have also shown the hinge residues
predicted by the GNM score [55], the hub residues with
high connectivity (see Figure 2c) and the hinge-bending
residues identified by DynDom (see Figure 2d). They
overlap insignificantly with the key residues predicted by

 (18% identical for the GNM score, 27% identical

for the hub residues, 11% identical for DynDom). Unlike
the key residues predicted by the perturbation-based
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scores, the hub residues are extensively distributed rather
than clustered in space, while the hinge residues predicted
by the GNM score are concentrated near the active site
[55]. Therefore, they do not provide a signaling path that
connects the active site to converter.

b. kinesin

We have studied the observed conformational change (see
Figure 3d) from an ADP-bound KIF1A structure (PDB:
1I5S) to an ATP-analog-bound KIF1A structure (PDB:
1VFW) which pertains to ADP release followed by ATP-
binding-induced force generation in kinesin [82,83]. This
conformational change involves an en block translation

and rotation of the switch II cluster (including α4, α5 hel-
ices and switch II at the active site, see Figure 3a, d) and

local changes in the switch I region (see Figure 3a, d)

[82,83]. The key residues predicted by , δfi and δλm,

i are highly conserved (with Z scores of -4.48, -2.09, -5.21,

respectively). The key residues predicted by  overlap

moderately with those predicted by δfi(44% identical, see

Figure 3a) and δλm, i (30% identical, see Figure 3b). The

divergence among the three perturbation-based scores
may be due to the involvement of many modes in the
structural fluctuations and the observed conformational
changes. However, despite the lack of a dominant mode
(the maximal overlap is only 0.23), the perturbation-
based scores still predict a highly conserved network of
residues that connect the active site to the force-generating

neck linker via α4 helix (see Figure 3a, b, d).

d fi
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d fi
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Comparison of dynamically important residues in myosin predicted by various protocolsFigure 2
Comparison of dynamically important residues in myosin predicted by various protocols. (a). key residues pre-

dicted by  and δfi are shown as red and green spheres, the common residues are colored in yellow, key components and 

sites in myosin are also labeled; (b). key residues predicted by  and δλm, i are shown as red and blue spheres, the common 

residues are colored in purple; (c). key residues predicted by GNM score and high connectivity are shown as green and blue 
spheres, the overlapping residues are colored in cyan; (d). hinge residues identified by DynDom are shown as red spheres. Also 
shown in panel (d) is the observed conformational change from a pre-powerstroke myosin structure (PDB: 1VOM, colored in 
silver) to a post-powerstroke myosin structure (PDB: 2AKA, colored in cyan) superimposed along the N-terminal subdomain 
(residues 80–186), including rotations of U50, L50 and converter subdomains (shown as arrows). For details of the predicted 
key residues, see Table S3 in Additional file 1.
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For comparison, we have also shown the hinge residues
predicted by the GNM score, and the hub residues with
high connectivity (see Figure 3c). They overlap moder-

ately with the key residues predicted by (30% iden-

tical for the GNM score, 22% identical for the hub
residues). Similar to myosin, the hub residues are exten-
sively distributed while the hinge residues predicted by
the GNM score are clustered spatially (see Figure 3c).

Conclusion
In this study, we have performed a large-scale evaluation
of the predictions of dynamically important residues by a

variety of computational protocols including three based
on the perturbation and correlation analysis of ENM, and
alternative ones based on structural analysis or GNM. We

have found that the two fluctuation-based scores (

and δfi), by accounting for contributions from many ENM

modes, outperform the previously proposed single-mode-

based score (δλm, i, see [63-65]) especially in cases where

many modes are involved in the conformational changes.
The dynamically important residues predicted by the per-

turbation-based scores ( , δfi, δλm, i) are strongly or

moderately conserved, and they form a sparse network of

d fi
obs d fi

obs

d fi
obs

Comparison of dynamically important residues in kinesin predicted by various protocolsFigure 3
Comparison of dynamically important residues in kinesin predicted by various protocols. (a). key residues pre-

dicted by  and δfi are shown as red and green spheres, the common residues are colored in yellow, key components and 

sites in kinesin are also labeled; (b). key residues predicted by  and δλm, i are shown as red and blue spheres, the common 

residues are colored in purple; (c). key residues predicted by GNM score and high connectivity are shown as green and blue 
spheres, the overlapping residues are colored in cyan. Shown in panel (d) is the observed conformational change from an ADP-
bound KIF1A structure (PDB: 1I5S, colored in silver) to an ATP-analog-bound KIF1A structure (PDB: 1VFW, colored in cyan), 
including rotations and translations of α4, α5 helices (shown as arrows). For details of the predicted key residues, see Table S4 
in Additional file 1.
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residues which are clustered both in 3D space and along
protein sequence. Their overall conservation is attributed
to their dynamic role rather than ligand binding or high
connectivity in ENM. Future functional studies are needed
to dissect the detailed roles of these predicted residues.

As shown by numerous studies (see reviews [49-51]), the
coarse-grained ENM captures the essence of collective pro-
tein dynamics, which is largely determined by the global
shape of and local packing in protein structures. There-
fore, ENM provides a simple and adequate framework for
exploring, with a residue level of details, how much a per-
turbation to local packing affects protein structural
dynamics. Nevertheless, our perturbation methods are
only useful for locating the residue positions of dynamic
importance, but not for predicting the functional effects of
a particular perturbation, which may require more accu-
rate modeling of energetics and dynamics beyond coarse-
grained modeling.

Compared with standard NMA, the major advantage of

the fluctuation-based scores (  and δfi) is their low

computational cost (the CPU time for analyzing the long
list of >500 pairs of structures is < 25 minutes on a quad-
core Xeon workstation). The calculation does not require
the solution of all ENM modes which is computationally
expensive and memory-demanding for large proteins.
Instead, it only requires the inversion of a sparse Hessian
matrix (see Eq. 6 and 7 in Methods), which can be done
much faster than NMA, thanks to the availability of highly
efficient sparse linear equation solver [84]. The sparseness
of the Hessian matrix is particularly high for low Rc where

the perturbation and correlation analysis is optimal (see
Table 1).

The perturbation-based protocols are different from and
complementary to the GNM-based technique (see [55])
and various others (see [56] and references therein) that
find hinge regions of protein domain motions. The
dynamically important residues defined by our perturba-
tion analysis are different from the hinge residues defined
based on other criteria (see [56]). Our approach can be
applied to protein conformational changes that are not
rigid-body domain motions, where inter-domain hinges
are not well defined.

The finding of conservation of the key residues involved
in the fluctuations toward the direction of a structural
transition supports the functional importance of such
fluctuations. For a biochemical transition from an apo to
a ligand-bound state, our finding supports the proposal

that sampling of the ligand-bound-state conformation in
the absence of a ligand is essential for the transition (see

[4]). The key residues predicted by  are likely

involved in coordinating such pre-existing sampling,
which call for future mutational and functional studies of
these residues.

It is increasingly recognized that in many proteins the
allosteric effects on function involve changes in dynamics
in the absence of detectable structural changes [4,5,85].
The ENM-based perturbation and correlation analysis
involves local perturbations that do not change the equi-
librium structure, so they are well suited for simulating
the allosteric effects via dynamic regulation and entropic
changes [85]. These methods complement alternative
computational techniques that simulate changes in equi-
librium structure during biomolecular transitions, includ-
ing several transition pathway modeling methods [57-
61]. Our perturbation methods also complement alterna-
tive allostery-modeling techniques, including those based
on Markov propagation of information across the protein
structure [86-88].

The perturbation methods described here are similar in
spirit to the dynamics perturbation analysis algorithm
proposed by Ming and Wall [89]. Both are based on the
first order perturbation theory, although the mathematic
form of the perturbation to Hessian matrix differs.

Besides predicting dynamically important residues, our
perturbation methods can also be used to parameterize
ENM to fit crystallographic temperature factors, which
depend on both the intrinsic dynamics of a protein struc-
ture and its crystalline environment (see [90]). We have
also explored the use of perturbation and correlation anal-
ysis to probe allosteric couplings in F1 ATPase [91] and the
coupling between normal modes in myosin motor [92].
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