
Large-Scale Evolution of Image Classifiers

Esteban Real 1 Sherry Moore 1 Andrew Selle 1 Saurabh Saxena 1

Yutaka Leon Suematsu 2 Jie Tan 1 Quoc V. Le 1 Alexey Kurakin 1

Abstract

Neural networks have proven effective at solv-

ing difficult problems but designing their archi-

tectures can be challenging, even for image clas-

sification problems alone. Our goal is to min-

imize human participation, so we employ evo-

lutionary algorithms to discover such networks

automatically. Despite significant computational

requirements, we show that it is now possible to

evolve models with accuracies within the range

of those published in the last year. Specifi-

cally, we employ simple evolutionary techniques

at unprecedented scales to discover models for

the CIFAR-10 and CIFAR-100 datasets, start-

ing from trivial initial conditions and reaching

accuracies of 94.6% (95.6% for ensemble) and

77.0%, respectively. To do this, we use novel and

intuitive mutation operators that navigate large

search spaces; we stress that no human participa-

tion is required once evolution starts and that the

output is a fully-trained model. Throughout this

work, we place special emphasis on the repeata-

bility of results, the variability in the outcomes

and the computational requirements.

1. Introduction

Neural networks can successfully perform difficult tasks

where large amounts of training data are available (He

et al., 2015; Weyand et al., 2016; Silver et al., 2016; Wu

et al., 2016). Discovering neural network architectures,

however, remains a laborious task. Even within the spe-

cific problem of image classification, the state of the art

was attained through many years of focused investigation

by hundreds of researchers (Krizhevsky et al. (2012); Si-

monyan & Zisserman (2014); Szegedy et al. (2015); He

et al. (2016); Huang et al. (2016a), among many others).
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It is therefore not surprising that in recent years, tech-

niques to automatically discover these architectures have

been gaining popularity (Bergstra & Bengio, 2012; Snoek

et al., 2012; Han et al., 2015; Baker et al., 2016; Zoph

& Le, 2016). One of the earliest such “neuro-discovery”

methods was neuro-evolution (Miller et al., 1989; Stanley

& Miikkulainen, 2002; Stanley, 2007; Bayer et al., 2009;

Stanley et al., 2009; Breuel & Shafait, 2010; Pugh & Stan-

ley, 2013; Kim & Rigazio, 2015; Zaremba, 2015; Fernando

et al., 2016; Morse & Stanley, 2016). Despite the promising

results, the deep learning community generally perceives

evolutionary algorithms to be incapable of matching the

accuracies of hand-designed models (Verbancsics & Har-

guess, 2013; Baker et al., 2016; Zoph & Le, 2016). In this

paper, we show that it is possible to evolve such competi-

tive models today, given enough computational power.

We used slightly-modified known evolutionary algorithms

and scaled up the computation to unprecedented levels, as

far as we know. This, together with a set of novel and

intuitive mutation operators, allowed us to reach compet-

itive accuracies on the CIFAR-10 dataset. This dataset

was chosen because it requires large networks to reach

high accuracies, thus presenting a computational challenge.

We also took a small first step toward generalization and

evolved networks on the CIFAR-100 dataset. In transi-

tioning from CIFAR-10 to CIFAR-100, we did not mod-

ify any aspect or parameter of our algorithm. Our typical

neuro-evolution outcome on CIFAR-10 had a test accuracy

with µ = 94.1%, σ = 0.4% @ 9×1019 FLOPs, and our

top model (by validation accuracy) had a test accuracy of

94.6% @ 4×1020 FLOPs. Ensembling the validation-top

2 models from each population reaches a test accuracy of

95.6%, at no additional training cost. On CIFAR-100, our

single experiment resulted in a test accuracy of 77.0% @

2×1020 FLOPs. As far as we know, these are the most

accurate results obtained on these datasets by automated

discovery methods that start from trivial initial conditions.

Throughout this study, we placed special emphasis on the

simplicity of the algorithm. In particular, it is a “one-

shot” technique, producing a fully trained neural network

requiring no post-processing. It also has few impactful

meta-parameters (i.e. parameters not optimized by the al-

gorithm). Starting out with poor-performing models with
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Table 1. Comparison with single-model hand-designed architectures. The “C10+” and “C100+” columns indicate the test accuracy on

the data-augmented CIFAR-10 and CIFAR-100 datasets, respectively. The “Reachable?” column denotes whether the given hand-

designed model lies within our search space. An entry of “–” indicates that no value was reported. The † indicates a result reported by

Huang et al. (2016b) instead of the original author. Much of this table was based on that presented in Huang et al. (2016a).

STUDY PARAMS. C10+ C100+ REACHABLE?

MAXOUT (GOODFELLOW ET AL., 2013) – 90.7% 61.4% NO

NETWORK IN NETWORK (LIN ET AL., 2013) – 91.2% – NO

ALL-CNN (SPRINGENBERG ET AL., 2014) 1.3 M 92.8% 66.3% YES

DEEPLY SUPERVISED (LEE ET AL., 2015) – 92.0% 65.4% NO

HIGHWAY (SRIVASTAVA ET AL., 2015) 2.3 M 92.3% 67.6% NO

RESNET (HE ET AL., 2016) 1.7 M 93.4% 72.8%† YES

EVOLUTION (OURS)
5.4 M

40.4 M
94.6%

77.0%
N/A

WIDE RESNET 28-10 (ZAGORUYKO & KOMODAKIS, 2016) 36.5 M 96.0% 80.0% YES

WIDE RESNET 40-10+D/O (ZAGORUYKO & KOMODAKIS, 2016) 50.7 M 96.2% 81.7% NO

DENSENET (HUANG ET AL., 2016A) 25.6 M 96.7% 82.8% NO

no convolutions, the algorithm must evolve complex con-

volutional neural networks while navigating a fairly unre-

stricted search space: no fixed depth, arbitrary skip con-

nections, and numerical parameters that have few restric-

tions on the values they can take. We also paid close atten-

tion to result reporting. Namely, we present the variabil-

ity in our results in addition to the top value, we account

for researcher degrees of freedom (Simmons et al., 2011),

we study the dependence on the meta-parameters, and we

disclose the amount of computation necessary to reach the

main results. We are hopeful that our explicit discussion of

computation cost could spark more study of efficient model

search and training. Studying model performance normal-

ized by computational investment allows consideration of

economic concepts like opportunity cost.

2. Related Work

Neuro-evolution dates back many years (Miller et al.,

1989), originally being used only to evolve the weights

of a fixed architecture. Stanley & Miikkulainen (2002)

showed that it was advantageous to simultaneously evolve

the architecture using the NEAT algorithm. NEAT has

three kinds of mutations: (i) modify a weight, (ii) add a

connection between existing nodes, or (iii) insert a node

while splitting an existing connection. It also has a mech-

anism for recombining two models into one and a strategy

to promote diversity known as fitness sharing (Goldberg

et al., 1987). Evolutionary algorithms represent the models

using an encoding that is convenient for their purpose—

analogous to nature’s DNA. NEAT uses a direct encoding:

every node and every connection is stored in the DNA. The

alternative paradigm, indirect encoding, has been the sub-

ject of much neuro-evolution research (Gruau, 1993; Stan-

ley et al., 2009; Pugh & Stanley, 2013; Kim & Rigazio,

2015; Fernando et al., 2016). For example, the CPPN

(Stanley, 2007; Stanley et al., 2009) allows for the evolu-

tion of repeating features at different scales. Also, Kim

& Rigazio (2015) use an indirect encoding to improve the

convolution filters in an initially highly-optimized fixed ar-

chitecture.

Research on weight evolution is still ongoing (Morse &

Stanley, 2016) but the broader machine learning commu-

nity defaults to back-propagation for optimizing neural net-

work weights (Rumelhart et al., 1988). Back-propagation

and evolution can be combined as in Stanley et al. (2009),

where only the structure is evolved. Their algorithm fol-

lows an alternation of architectural mutations and weight

back-propagation. Similarly, Breuel & Shafait (2010) use

this approach for hyper-parameter search. Fernando et al.

(2016) also use back-propagation, allowing the trained

weights to be inherited through the structural modifica-

tions.

The above studies create neural networks that are small in

comparison to the typical modern architectures used for im-

age classification (He et al., 2016; Huang et al., 2016a).

Their focus is on the encoding or the efficiency of the evo-

lutionary process, but not on the scale. When it comes to

images, some neuro-evolution results reach the computa-

tional scale required to succeed on the MNIST dataset (Le-

Cun et al., 1998). Yet, modern classifiers are often tested

on realistic images, such as those in the CIFAR datasets

(Krizhevsky & Hinton, 2009), which are much more chal-

lenging. These datasets require large models to achieve

high accuracy.

Non-evolutionary neuro-discovery methods have been

more successful at tackling realistic image data. Snoek

et al. (2012) used Bayesian optimization to tune 9

hyper-parameters for a fixed-depth architecture, reach-
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Table 2. Comparison with automatically discovered architectures. The “C10+” and “C100+” contain the test accuracy on the data-

augmented CIFAR-10 and CIFAR-100 datasets, respectively. An entry of “–” indicates that the information was not reported or is not

known to us. For Zoph & Le (2016), we quote the result with the most similar search space to ours, as well as their best result. Please

refer to Table 1 for hand-designed results, including the state of the art. “Discrete params.” means that the parameters can be picked

from a handful of values only (e.g. strides ∈ {1, 2, 4}).

STUDY STARTING POINT CONSTRAINTS POST-PROCESSING PARAMS. C10+ C100+

BAYESIAN

(SNOEK

ET AL., 2012)

3 LAYERS FIXED ARCHITECTURE, NO

SKIPS

NONE – 90.5% –

Q-LEARNING

(BAKER

ET AL., 2016)

– DISCRETE PARAMS., MAX.
NUM. LAYERS, NO SKIPS

TUNE, RETRAIN 11.2 M 93.1% 72.9%

RL (ZOPH &
LE, 2016)

20 LAYERS, 50%
SKIPS

DISCRETE PARAMS.,
EXACTLY 20 LAYERS

SMALL GRID

SEARCH, RETRAIN

2.5 M 94.0% –

RL (ZOPH &
LE, 2016)

39 LAYERS, 2 POOL

LAYERS AT 13 AND

26, 50% SKIPS

DISCRETE PARAMS.,
EXACTLY 39 LAYERS, 2
POOL LAYERS AT 13 AND 26

ADD MORE FILTERS,
SMALL GRID

SEARCH, RETRAIN

37.0 M 96.4% –

EVOLUTION

(OURS)
SINGLE LAYER,
ZERO CONVS.

POWER-OF-2 STRIDES NONE
5.4 M
40.4 M
ENSEMB.

94.6%

95.6%

77.0%

ing a new state of the art at the time. Zoph &

Le (2016) used reinforcement learning on a deeper

fixed-length architecture. In their approach, a neu-

ral network—the “discoverer”—constructs a convolutional

neural network—the “discovered”—one layer at a time. In

addition to tuning layer parameters, they add and remove

skip connections. This, together with some manual post-

processing, gets them very close to the (current) state of

the art. (Additionally, they surpassed the state of the art on

a sequence-to-sequence problem.) Baker et al. (2016) use

Q-learning to also discover a network one layer at a time,

but in their approach, the number of layers is decided by

the discoverer. This is a desirable feature, as it would allow

a system to construct shallow or deep solutions, as may be

the requirements of the dataset at hand. Different datasets

would not require specially tuning the algorithm. Compar-

isons among these methods are difficult because they ex-

plore very different search spaces and have very different

initial conditions (Table 2).

Tangentially, there has also been neuro-evolution work on

LSTM structure (Bayer et al., 2009; Zaremba, 2015), but

this is beyond the scope of this paper. Also related to this

work is that of Saxena & Verbeek (2016), who embed con-

volutions with different parameters into a species of “super-

network” with many parallel paths. Their algorithm then

selects and ensembles paths in the super-network. Finally,

canonical approaches to hyper-parameter search are grid

search (used in Zagoruyko & Komodakis (2016), for ex-

ample) and random search, the latter being the better of the

two (Bergstra & Bengio, 2012).

Our approach builds on previous work, with some im-

portant differences. We explore large model-architecture

search spaces starting with basic initial conditions to avoid

priming the system with information about known good

strategies for the specific dataset at hand. Our encoding

is different from the neuro-evolution methods mentioned

above: we use a simplified graph as our DNA, which is

transformed to a full neural network graph for training and

evaluation (Section 3). Some of the mutations acting on

this DNA are reminiscent of NEAT. However, instead of

single nodes, one mutation can insert whole layers—i.e.

tens to hundreds of nodes at a time. We also allow for

these layers to be removed, so that the evolutionary process

can simplify an architecture in addition to complexifying it.

Layer parameters are also mutable, but we do not prescribe

a small set of possible values to choose from, to allow for

a larger search space. We do not use fitness sharing. We

report additional results using recombination, but for the

most part, we used mutation only. On the other hand, we

do use back-propagation to optimize the weights, which

can be inherited across mutations. Together with a learn-

ing rate mutation, this allows the exploration of the space

of learning rate schedules, yielding fully trained models

at the end of the evolutionary process (Section 3). Ta-

bles 1 and 2 compare our approach with hand-designed ar-

chitectures and with other neuro-discovery techniques, re-

spectively.
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3. Methods

3.1. Evolutionary Algorithm

To automatically search for high-performing neural net-

work architectures, we evolve a population of models.

Each model—or individual—is a trained architecture. The

model’s accuracy on a separate validation dataset is a mea-

sure of the individual’s quality or fitness. During each evo-

lutionary step, a computer—a worker—chooses two indi-

viduals at random from this population and compares their

fitnesses. The worst of the pair is immediately removed

from the population—it is killed. The best of the pair is

selected to be a parent, that is, to undergo reproduction.

By this we mean that the worker creates a copy of the par-

ent and modifies this copy by applying a mutation, as de-

scribed below. We will refer to this modified copy as the

child. After the worker creates the child, it trains this child,

evaluates it on the validation set, and puts it back into the

population. The child then becomes alive—i.e. free to act

as a parent. Our scheme, therefore, uses repeated pairwise

competitions of random individuals, which makes it an ex-

ample of tournament selection (Goldberg & Deb, 1991).

Using pairwise comparisons instead of whole population

operations prevents workers from idling when they finish

early. Code and more detail about the methods described

below can be found in Supplementary Section S1.

Using this strategy to search large spaces of complex im-

age models requires considerable computation. To achieve

scale, we developed a massively-parallel, lock-free infras-

tructure. Many workers operate asynchronously on differ-

ent computers. They do not communicate directly with

each other. Instead, they use a shared file-system, where

the population is stored. The file-system contains direc-

tories that represent the individuals. Operations on these

individuals, such as the killing of one, are represented as

atomic renames on the directory2. Occasionally, a worker

may concurrently modify the individual another worker is

operating on. In this case, the affected worker simply gives

up and tries again. The population size is 1000 individuals,

unless otherwise stated. The number of workers is always
1

4
of the population size. To allow for long run-times with

a limited amount of space, dead individuals’ directories are

frequently garbage-collected.

3.2. Encoding and Mutations

Individual architectures are encoded as a graph that we

refer to as the DNA. In this graph, the vertices represent

rank-3 tensors or activations. As is standard for a convo-

2The use of the file-name string to contain key information
about the individual was inspired by Breuel & Shafait (2010), and
it speeds up disk access enormously. In our case, the file name
contains the state of the individual (alive, dead, training, etc.).

lutional network, two of the dimensions of the tensor rep-

resent the spatial coordinates of the image and the third is

a number of channels. Activation functions are applied at

the vertices and can be either (i) batch-normalization (Ioffe

& Szegedy, 2015) with rectified linear units (ReLUs) or (ii)

plain linear units. The graph’s edges represent identity con-

nections or convolutions and contain the mutable numeri-

cal parameters defining the convolution’s properties. When

multiple edges are incident on a vertex, their spatial scales

or numbers of channels may not coincide. However, the

vertex must have a single size and number of channels for

its activations. The inconsistent inputs must be resolved.

Resolution is done by choosing one of the incoming edges

as the primary one. We pick this primary edge to be the

one that is not a skip connection. The activations coming

from the non-primary edges are reshaped through zeroth-

order interpolation in the case of the size and through trun-

cation/padding in the case of the number of channels, as in

He et al. (2016). In addition to the graph, the learning-rate

value is also stored in the DNA.

A child is similar but not identical to the parent because of

the action of a mutation. In each reproduction event, the

worker picks a mutation at random from a predetermined

set. The set contains the following mutations:

• ALTER-LEARNING-RATE (sampling details below).

• IDENTITY (effectively means “keep training”).

• RESET-WEIGHTS (sampled as in He et al. (2015), for

example).

• INSERT-CONVOLUTION (inserts a convolution at a ran-

dom location in the “convolutional backbone”, as in Fig-

ure 1. The inserted convolution has 3 × 3 filters, strides

of 1 or 2 at random, number of channels same as input.

May apply batch-normalization and ReLU activation or

none at random).

• REMOVE-CONVOLUTION.

• ALTER-STRIDE (only powers of 2 are allowed).

• ALTER-NUMBER-OF-CHANNELS (of random conv.).

• FILTER-SIZE (horizontal or vertical at random, on ran-

dom convolution, odd values only).

• INSERT-ONE-TO-ONE (inserts a one-to-one/identity

connection, analogous to insert-convolution mutation).

• ADD-SKIP (identity between random layers).

• REMOVE-SKIP (removes random skip).

These specific mutations were chosen for their similarity

to the actions that a human designer may take when im-

proving an architecture. This may clear the way for hybrid

evolutionary–hand-design methods in the future. The prob-

abilities for the mutations were not tuned in any way.

A mutation that acts on a numerical parameter chooses the

new value at random around the existing value. All sam-

pling is from uniform distributions. For example, a muta-

tion acting on a convolution with 10 output channels will
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result in a convolution having between 5 and 20 output

channels (that is, half to twice the original value). All val-

ues within the range are possible. As a result, the models

are not constrained to a number of filters that is known to

work well. The same is true for all other parameters, yield-

ing a “dense” search space. In the case of the strides, this

applies to the log-base-2 of the value, to allow for activa-

tion shapes to match more easily3. In principle, there is also

no upper limit to any of the parameters. All model depths

are attainable, for example. Up to hardware constraints, the

search space is unbounded. The dense and unbounded na-

ture of the parameters result in the exploration of a truly

large set of possible architectures.

3.3. Initial Conditions

Every evolution experiment begins with a population of

simple individuals, all with a learning rate of 0.1. They

are all very bad performers. Each initial individual consti-

tutes just a single-layer model with no convolutions. This

conscious choice of poor initial conditions forces evolution

to make the discoveries by itself. The experimenter con-

tributes mostly through the choice of mutations that demar-

cate a search space. Altogether, the use of poor initial con-

ditions and a large search space limits the experimenter’s

impact. In other words, it prevents the experimenter from

“rigging” the experiment to succeed.

3.4. Training and Validation

Training and validation is done on the CIFAR-10 dataset.

This dataset consists of 50,000 training examples and

10,000 test examples, all of which are 32 x 32 color images

labeled with 1 of 10 common object classes (Krizhevsky &

Hinton, 2009). 5,000 of the training examples are held out

in a validation set. The remaining 45,000 examples consti-

tute our actual training set. The training set is augmented

as in He et al. (2016). The CIFAR-100 dataset has the same

number of dimensions, colors and examples as CIFAR-10,

but uses 100 classes, making it much more challenging.

Training is done with TensorFlow (Abadi et al., 2016), us-

ing SGD with a momentum of 0.9 (Sutskever et al., 2013), a

batch size of 50, and a weight decay of 0.0001. Each train-

ing runs for 25,600 steps, a value chosen to be brief enough

so that each individual could be trained in a few seconds to

a few hours, depending on model size. The loss function is

the cross-entropy. Once training is complete, a single eval-

uation on the validation set provides the accuracy to use as

the individual’s fitness. Ensembling was done by majority

voting during the testing evaluation. The models used in

the ensemble were selected by validation accuracy.

3For integer DNA parameters, we actually store and mutate a
floating-point value. This allows multiple small mutations to have
a cumulative effect in spite of integer round-off.

3.5. Computation cost

To estimate computation costs, we identified the basic

TensorFlow (TF) operations used by our model training

and validation, like convolutions, generic matrix multipli-

cations, etc. For each of these TF operations, we esti-

mated the theoretical number of floating-point operations

(FLOPs) required. This resulted in a map from TF opera-

tion to FLOPs, which is valid for all our experiments.

For each individual within an evolution experiment, we

compute the total FLOPs incurred by the TF operations in

its architecture over one batch of examples, both during its

training (Ft FLOPs) and during its validation (Fv FLOPs).

Then we assign to the individual the cost FtNt + FvNv ,

where Nt and Nv are the number of training and validation

batches, respectively. The cost of the experiment is then

the sum of the costs of all its individuals.

We intend our FLOPs measurement as a coarse estimate

only. We do not take into account input/output, data prepro-

cessing, TF graph building or memory-copying operations.

Some of these unaccounted operations take place once per

training run or once per step and some have a component

that is constant in the model size (such as disk-access la-

tency or input data cropping). We therefore expect the esti-

mate to be more useful for large architectures (for example,

those with many convolutions).

3.6. Weight Inheritance

We need architectures that are trained to completion within

an evolution experiment. If this does not happen, we are

forced to retrain the best model at the end, possibly hav-

ing to explore its hyper-parameters. Such extra explo-

ration tends to depend on the details of the model being

retrained. On the other hand, 25,600 steps are not enough

to fully train each individual. Training a large model to

completion is prohibitively slow for evolution. To resolve

this dilemma, we allow the children to inherit the par-

ents’ weights whenever possible. Namely, if a layer has

matching shapes, the weights are preserved. Consequently,

some mutations preserve all the weights (like the identity or

learning-rate mutations), some preserve none (the weight-

resetting mutation), and most preserve some but not all. An

example of the latter is the filter-size mutation: only the fil-

ters of the convolution being mutated will be discarded.

3.7. Reporting Methodology

To avoid over-fitting, neither the evolutionary algorithm nor

the neural network training ever see the testing set. Each

time we refer to “the best model”, we mean the model with

the highest validation accuracy. However, we always report

the test accuracy. This applies not only to the choice of the

best individual within an experiment, but also to the choice



Large-Scale Evolution

of the best experiment. Moreover, we only include ex-

periments that we managed to reproduce, unless explicitly

noted. Any statistical analysis was fully decided upon be-

fore seeing the results of the experiment reported, to avoid

tailoring our analysis to our experimental data (Simmons

et al., 2011).

4. Experiments and Results

We want to answer the following questions:

• Can a simple one-shot evolutionary process start from

trivial initial conditions and yield fully trained models

that rival hand-designed architectures?

• What are the variability in outcomes, the parallelizabil-

ity, and the computation cost of the method?

• Can an algorithm designed iterating on CIFAR-10 be ap-

plied, without any changes at all, to CIFAR-100 and still

produce competitive models?

We used the algorithm in Section 3 to perform several ex-

periments. Each experiment evolves a population in a few

days, typified by the example in Figure 1. The figure also

contains examples of the architectures discovered, which

turn out to be surprisingly simple. Evolution attempts skip

connections but frequently rejects them.

To get a sense of the variability in outcomes, we repeated

the experiment 5 times. Across all 5 experiment runs, the

best model by validation accuracy has a testing accuracy of

94.6%. Not all experiments reach the same accuracy, but

they get close (µ=94.1%, σ=0.4). Fine differences in the

experiment outcome may be somewhat distinguishable by

validation accuracy (correlation coefficient = 0.894). The

total amount of computation across all 5 experiments was

4×1020 FLOPs (or 9×1019 FLOPs on average per exper-

iment). Each experiment was distributed over 250 parallel

workers (Section 3.1). Figure 2 shows the progress of the

experiments in detail.

As a control, we disabled the selection mechanism, thereby

reproducing and killing random individuals. This is the

form of random search that is most compatible with our

infrastructure. The probability distributions for the pa-

rameters are implicitly determined by the mutations. This

control only achieves an accuracy of 87.3% in the same

amount of run time on the same hardware (Figure 2). The

total amount of computation was 2×1017 FLOPs. The low

FLOP count is a consequence of random search generating

many small, inadequate models that train quickly but con-

sume roughly constant amounts of setup time (not included

in the FLOP count). We attempted to minimize this over-

head by avoiding unnecessary disk access operations, to no

avail: too much overhead remains spent on a combination

of neural network setup, data augmentation, and training

step initialization.

We also ran a partial control where the weight-inheritance

mechanism is disabled. This run also results in a lower

accuracy (92.2%) in the same amount of time (Figure 2),

using 9×1019 FLOPs. This shows that weight inheritance

is important in the process.

Finally, we applied our neuro-evolution algorithm, with-

out any changes and with the same meta-parameters, to

CIFAR-100. Our only experiment reached an accuracy

of 77.0%, using 2× 1020 FLOPs. We did not attempt

other datasets. Table 1 shows that both the CIFAR-10

and CIFAR-100 results are competitive with modern hand-

designed networks.

5. Analysis

Meta-parameters. We observe that populations evolve

until they plateau at some local optimum (Figure 2). The

fitness (i.e. validation accuracy) value at this optimum

varies between experiments (Figure 2, inset). Since not all

experiments reach the highest possible value, some popu-

lations are getting “trapped” at inferior local optima. This

entrapment is affected by two important meta-parameters

(i.e. parameters that are not optimized by the algorithm).

These are the population size and the number of training

steps per individual. Below we discuss them and consider

their relationship to local optima.

Effect of population size. Larger populations explore the

space of models more thoroughly, and this helps reach bet-

ter optima (Figure 3, left). Note, in particular, that a pop-

ulation of size 2 can get trapped at very low fitness values.

Some intuition about this can be gained by considering the

fate of a super-fit individual, i.e. an individual such that any

one architectural mutation reduces its fitness (even though

a sequence of many mutations may improve it). In the case

of a population of size 2, if the super-fit individual wins

once, it will win every time. After the first win, it will pro-

duce a child that is one mutation away. By definition of

super-fit, therefore, this child is inferior4. Consequently,

in the next round of tournament selection, the super-fit in-

dividual competes against its child and wins again. This

cycle repeats forever and the population is trapped. Even if

a sequence of two mutations would allow for an “escape”

from the local optimum, such a sequence can never take

place. This is only a rough argument to heuristically sug-

gest why a population of size 2 is easily trapped. More

generally, Figure 3 (left) empirically demonstrates a bene-

fit from an increase in population size. Theoretical analy-

ses of this dependence are quite complex and assume very

specific models of population dynamics; often larger pop-

ulations are better at handling local optima, at least beyond

a size threshold (Weinreich & Chao (2005) and references

4Except after identity or learning rate mutations, but these pro-
duce a child with the same architecture as the parent.
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Figure 1. Progress of an evolution experiment. Each dot represents an individual in the population. Blue dots (darker, top-right) are alive.

The rest have been killed. The four diagrams show examples of discovered architectures. These correspond to the best individual (right-

most) and three of its ancestors. The best individual was selected by its validation accuracy. Evolution sometimes stacks convolutions

without any nonlinearity in between (“C”, white background), which are mathematically equivalent to a single linear operation. Unlike

typical hand-designed architectures, some convolutions are followed by more than one nonlinear function (“C+BN+R+BN+R+...”,

orange background).

therein).

Effect of number of training steps. The other meta-

parameter is the number T of training steps for each indi-

vidual. Accuracy increases with T (Figure 3, right). Larger

T means an individual needs to undergo fewer identity mu-

tations to reach a given level of training.

Escaping local optima. While we might increase popu-

lation size or number of steps to prevent a trapped popu-

lation from forming, we can also free an already trapped

population. For example, increasing the mutation rate or

resetting all the weights of a population (Figure 4) work

well but are quite costly (more details in Supplementary

Section S3).

Recombination. None of the results presented so far

used recombination. However, we explored three forms of

recombination in additional experiments. Following Tuson

& Ross (1998), we attempted to evolve the mutation prob-

ability distribution too. On top of this, we employed a re-

combination strategy by which a child could inherit struc-

ture from one parent and mutation probabilities from an-

other. The goal was to allow individuals that progressed

well due to good mutation choices to quickly propagate

such choices to others. In a separate experiment, we at-

tempted recombining the trained weights from two parents

in the hope that each parent may have learned different

concepts from the training data. In a third experiment,

we recombined structures so that the child fused the ar-

chitectures of both parents side-by-side, generating wide

models fast. While none of these approaches improved our

recombination-free results, further study seems warranted.

6. Conclusion

In this paper we have shown that (i) neuro-evolution is ca-

pable of constructing large, accurate networks for two chal-

lenging and popular image classification benchmarks; (ii)

neuro-evolution can do this starting from trivial initial con-

ditions while searching a very large space; (iii) the pro-

cess, once started, needs no experimenter participation; and

(iv) the process yields fully trained models. Completely

training models required weight inheritance (Sections 3.6).

In contrast to reinforcement learning, evolution provides a

natural framework for weight inheritance: mutations can

be constructed to guarantee a large degree of similarity be-
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Figure 2. Repeatability of results and controls. In this plot, the

vertical axis at wall-time t is defined as the test accuracy of the

individual with the highest validation accuracy that became alive

at or before t. The inset magnifies a portion of the main graph.

The curves show the progress of various experiments, as follows.

The top line (solid, blue) shows the mean test accuracy across 5

large-scale evolution experiments. The shaded area around this

top line has a width of ±2σ (clearer in inset). The next line down

(dashed, orange, main graph and inset) represents a single experi-

ment in which weight-inheritance was disabled, so every individ-

ual has to train from random weights. The lowest curve (dotted-

dashed) is a random-search control. All experiments occupied the

same amount and type of hardware. A small amount of noise in

the generalization from the validation to the test set explains why

the lines are not monotonically increasing. Note the narrow width

of the ±2σ area (main graph and inset), which shows that the high

accuracies obtained in evolution experiments are repeatable.

tween the original and mutated models—as we did. Evo-

lution also has fewer tunable meta-parameters with a fairly

predictable effect on the variance of the results, which can

be made small.

While we did not focus on reducing computation costs,

we hope that future algorithmic and hardware improvement

will allow more economical implementation. In that case,

evolution would become an appealing approach to neuro-

discovery for reasons beyond the scope of this paper. For

example, it “hits the ground running”, improving on arbi-

trary initial models as soon as the experiment begins. The

mutations used can implement recent advances in the field

and can be introduced without having to restart an exper-

iment. Furthermore, recombination can merge improve-

ments developed by different individuals, even if they come

from other populations. Moreover, it may be possible to

combine neuro-evolution with other automatic architecture

discovery methods.
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Figure 3. Dependence on meta-parameters. In both graphs, each

circle represents the result of a full evolution experiment. Both

vertical axes show the test accuracy for the individual with the

highest validation accuracy at the end of the experiment. All pop-

ulations evolved for the same total wall-clock time. There are 5

data points at each horizontal axis value. LEFT: effect of pop-

ulation size. To economize resources, in these experiments the

number of individual training steps is only 2560. Note how the ac-

curacy increases with population size. RIGHT: effect of number

of training steps per individual. Note how the accuracy increases

with more steps.

Figure 4. Escaping local optima in two experiments. We used

smaller populations and fewer training steps per individual (2560)

to make it more likely for a population to get trapped and to re-

duce resource usage. Each dot represents an individual. The verti-

cal axis is the accuracy. TOP: example of a population of size 100

escaping a local optimum by using a period of increased mutation

rate in the middle (Section 5). BOTTOM: example of a population

of size 50 escaping a local optimum by means of three consecu-

tive weight resetting events (Section 5). Details in Supplementary

Section S3.
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