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Abstract

Motivation: Drug combinations are a promising strategy for combating complex diseases by im-

proving the efficacy and reducing corresponding side effects. Currently, a widely studied problem

in pharmacology is to predict effective drug combinations, either through empirically screening in

clinic or pure experimental trials. However, the large-scale prediction of drug combination by a sys-

tems method is rarely considered.

Results: We report a systems pharmacology framework to predict drug combinations (PreDCs) on

a computational model, termed probability ensemble approach (PEA), for analysis of both the

efficacy and adverse effects of drug combinations. First, a Bayesian network integrating with a

similarity algorithm is developed to model the combinations from drug molecular and pharmaco-

logical phenotypes, and the predictions are then assessed with both clinical efficacy and adverse

effects. It is illustrated that PEA can predict the combination efficacy of drugs spanning different

therapeutic classes with high specificity and sensitivity (AUC¼ 0.90), which was further validated

by independent data or new experimental assays. PEA also evaluates the adverse effects

(AUC¼ 0.95) quantitatively and detects the therapeutic indications for drug combinations. Finally,

the PreDC database includes 1571 known and 3269 predicted optimal combinations as well as their

potential side effects and therapeutic indications.

Availability and implementation: The PreDC database is available at http://sm.nwsuaf.edu.cn/lsp/

predc.php.

Contact: yh_wang@nwsuaf.edu.cn

Supplementary Information: Supplementary data are available at Bioinformatics online.

1 Introduction

Drug combination therapies have been used for the treatment of

complex diseases such as cancer and infection for over 30 years due

to the advantage of higher efficacy, fewer side effects and less

toxicity compared with single-drug treatment (Al-Lazikani et al.,

2012; Roemer and Boone, 2013; Zimmermann et al., 2007). The

main reason is that complex diseases normally involve physiological

processes controlled in a combinatorial/systems fashion featured as
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redundancy and multifunctionality, which limits the therapeutic op-

portunity of one gene-one drug applications (Fitzgerald et al., 2006;

Shaheen et al., 2001). Despite the increasing number of drug com-

binations in use, many of them were found in clinic by experience,

or experimentally derived by dose–response curves for each pair of

drugs against a protein target. The mechanistic understanding of

synergistic drug pairs remains largely elusive, which makes it diffi-

cult to propose new drug combinations.

Systematic surveys of combination drugs in vitro have been pro-

posed to investigate the synergistic drug pairs such as the high-

throughput screening method (Borisy et al., 2003; Lehár et al., 2009)

and the ‘multiplex screening for interacting compounds’ (Tan et al.,

2012). However, the large-scale experiments currently used to evalu-

ate the drug combinations are very time consuming simply because

they are severely dependent on the searches of a vast space of possible

target combinations (Cokol et al., 2011; Winter et al., 2012).

Alternatively, some computational approaches have been proposed

which aimed at using network analysis and chemical biology data to

identify novel combinatorial drugs (Chou, 2010; Tang et al., 2013;

Zhao et al., 2011). But most of them are often limited in their capabil-

ity to dissect the underlying molecular mechanisms, or to extract the

information from a larger pharmacological space, or to associate the

targets with multiple diseases for combinatorial drugs.

Generally, simultaneous administration of two or more medica-

tions may result in significant drug–drug interactions (DDIs), lead-

ing to a high risk of adverse effects for patients (Manzi and

Shannon, 2005). DDIs may be pharmacokinetic or pharmacody-

namic (Jonker et al., 2005; Zhang et al., 2009). Previous work con-

cerns the prediction of DDIs, mainly relying on the pharmacokinetic

properties of the compound such as its solubility (Boobis et al.,

2002) or depending on pharmacodynamic constants (Huang et al.,

2013; Li et al., 2007) or handling both pharmacokinetic and phar-

macodynamic DDIs (Gottlieb et al., 2012). However, an up-to-date

combined analysis integrating both the efficacy and adverse effects

for known or novel drug pairs, which may provide the basis for fu-

ture clinical trials, is still lacking.

Recently, we have developed a set of systems pharmacology

strategies for systematic pursuit of optimal drug combinations.

These works lay foundations for a more comprehensive understand-

ing of pharmacological synergy in herbal medicine (Wang et al.,

2012) and the combination rule of Traditional Chinese Medicine

(Yao et al., 2013). Furthermore, a large-scale systematic analysis

combining pharmacokinetics, chemogenomics, pharmacology and

systems biology data was performed through computational meth-

ods and experimental validation, which results in a superior output

of information for systematic drug design strategies for complex dis-

eases (Li et al., 2014).

In this work, we propose a new systems pharmacology frame-

work consisting of a new algorithm termed probability ensemble ap-

proach (PEA), through integrating the molecular chemical space, the

pharmacological space, the gene annotations, in particular, the con-

nectivity of biological networks, to predict effective drug combin-

ations. In contrast to those previous studies mentioned above, the

novelty of PEA is threefold: (i) to the best of our knowledge, PEA

presents up to now the largest-scale unbiased prediction of effective

drug combinations based on a complete set of drug-combination,

drug-disease and drug–side effect relations; (ii) PEA also provides a

quantitative assessment of the therapeutic indications and side ef-

fects for each combination in clinical usage; (iii) to show the predict-

ive value of our approach, the predictions were benchmarked

against independent datasets and further tested using cancer cell and

antibacterial models.

2 Methods

2.1 Computational
We designed a novel algorithm termed PEA to integrate the molecu-

lar and pharmacological characteristics of drugs (Fig. 1). Given a

pair of query drugs, we firstly calculated its six similarity features to

a known drug pair including three drug-based and three target-based

similarity measures and combine them using a Bayesian network

into a likelihood ratio (LR) that represents its probabilistic similarity

to the known interaction. We then defined a raw score, as an esti-

mate of the overall similarity of the query drug pair, by summing its

LRs to all the known drug pairs in each set [either effective drug

combinations (EDCs) or undesirable drug–drug interactions

(UDDIs)] above a threshold LR. The raw score can be further con-

verted to a P value (ranging from 0 to 1) from a random raw score

distribution. This resulting P value represents the probability of a

given raw score that better to be observed from random data.

Because we trained our models separately for EDCs and UDDIs, the

likelihood that a query drug pair interacts is finally expressed as two

probabilities P1, P2 which reflect their reliabilities to be an EDC or

UDDI, respectively.

2.1.1 Drug–drug similarity measures

We defined and computed six drug–drug similarity measures includ-

ing the chemical similarity, the similarities based on side effects, the

anatomical therapeutic and chemical (ATC) classification system,

and the similarities between drug targets, represented by sequence

similarity, the distance on a protein–protein interaction (PPI) net-

work and gene ontology (GO) semantic similarity. All similarity

measures were normalized to be in the range [0, 1].

(1) Chemical based. The 2D chemical structures (Mol file format)

of the drugs were downloaded from DrugBank (Knox et al.,

2011). The hashed binary chemical fingerprints were computed

using the Chemical Development Kit with default 2D param-

eters (Steinbeck et al., 2006). The fingerprints were used to

compute the similarity score between two drugs using

Tanimoto coefficient, that is, the size of the intersection div-

ided by the size of the union of the two fingerprints.

(2) ATC based. The ATC classification system established by the

WHO is used for the classification of drugs (Skrbo et al.,

2004). This pharmaceutical coding system categorizes drugs

according to the organ or system on which they act and their

therapeutic, pharmacological and chemical characteristics. We

extracted ATC codes of the drugs from DrugBank.

Considering the hierarchical structure of ATC codes, we calcu-

lated the similarity scores between drugs using the semantic

similarity algorithm (Wang et al., 2003):

S ci; cj

� �
¼ wðci; cjÞexp ð�c � dðci; cjÞÞ (1)

where d (ci, cj) represents the shortest distance between

ATC codes ci and cj in the hierarchical structure of the ATC

classification system. c(ti) and c(tj) represent the weights of the

corresponding ATC-codes, and are defined as the inverse of

ATC-code frequencies, which means that more emphasis was

put on specific codes rather than the general ones. c is a pre-

defined parameter (set to be 0.25 in this study).

(3) Side-effect based. Drug side effects were obtained from SIDER

(Kuhn et al., 2010), a public resource containing drug side-

effect information. We assigned a side-effect profile to each

drug in our datasets, whose elements encode for the presence

or absence of each of the side-effect keywords by 1 or 0,
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respectively. As described above, we defined and computed the

similarity scores between drugs according to the Tanimoto co-

efficient between their side-effect profiles.

(4) Sequence based. Sequence-based similarity between two drug

target proteins was calculated based on the drug target-cen-

tered systems (Sharan et al., 2007). We defined a system simi-

larity score (S-score) to describe the target sequence similarity

for two drugs (di, dj) as the following:

S di;dj

� �
¼ < Pi;j;Ci;j >ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

< Ci;j;Ci;j >
p (2)

where <�,�> is the inner product, Pi,j¼ (P(1, 1), P(1, 2),���, P(1, n),

P(2, 1), ���, P(2, n), ���, P(m, 1), ���, P(m, n)) is a similarity vector, in

which m and n are the target number of the drug i and j respect-

ively, and P(t,k) is the sequence similarity between two target and

calculated based on the Smith–Waterman sequence alignment

score. Ci,j is the indicator vector with the same length to Pi,j,

ct;kðkÞ ¼
1 if pt;k � k

0 if pt;k < k

(
(3)

(k is a threshold where P(t, k) can be obtained by a probability

of less than 0.05 at random. We constructed the random distri-

bution of P(t, k) by calculating the 10 000 P(t, k) of two random

proteins. The k is 0.034 in this study. The normalized similar-

ity score between two drug target-centered systems is given by

dividing the S-score by the geometric mean of the scores ob-

tained from the S-score of each drug target-centered system

against itself.

(5) PPI network based. The similarity between each pair of drug

target proteins in the human PPI network was calculated using

the drug target-centered systems connection (Sharan et al.,

2007). We firstly defined a target-centered system for each

drug, which includes drug targets and their first-step neighbor-

ing proteins in the PPI network. Finally, we defined a system

connection score (S-score) to describe the connection between

target-centered systems for two drugs (di, dj) in the PPI net-

work as the following:

S di;dj

� �
¼ < Pi;j;Ci;j >ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

< Ci;j;Ci;j >
p (4)

where <�,�> is the inner product, Pi,j¼ (P(1,1), P(1,2),���, P(1, n),

P(2,1), ���, P(2,n), ���, P(m,1), ���, P(m,n)) is a similarity vector, in

which m and n are the target number of the drug i and j re-

spectively, and P(t,k) is the similarity between two target based

on the PPI distance:

p t;kð Þ ¼ edis t;kð Þ (5)

Ci, j is the indicator vector with the same length to Pi, j, and

ct;kðkÞ ¼
1 if pt;k � k

0 if pt;k < k

(
(6)

k is a threshold where P(t,k) can be obtained by a probability of

less than 0.05 at random. We constructed the random distribu-

tion of P(t,k) by calculating the 10 000 P(t,k) of two random

nodes in the PPI network. The k is 2 in this study. The normal-

ized similarity score between two drug target-centered systems

Fig. 1. A schematic overview of PEA model. (a) Computing the six drug–drug similarity measures and quantifying LR of query drug pairs according to the similar-

ity to known drug pairs. (b) Calculating P value by the statistical model inferred from the reference database. (c) Assessing potential of query drug pairs using

two probabilities P1 and P2

Drug combinations 2009

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/12/2007/214330 by guest on 16 August 2022

&centerdot;
&centerdot;


is given by dividing the system connection score by the geomet-

ric mean of the scores obtained from the S-score of each drug

target-centered system against itself.

(6) GO based: Semantic similarity scores between drug targets

were calculated according to Resnik (2011), using the csbl.go

R package (Ovaska et al., 2008) selecting the option to use all

three ontologies.

2.1.2 Features for drug pairs

We defined six features (F1, F2, F3, F4, F5 and F6) for drug pairs based

on the above drug-drug similarities to quantitatively describe the simi-

larities between drug pairs. To acquire the similarity of features be-

tween a query drug pair (d1, d2) and a known drug pair (d1’, d2’), we

first compute the drug–drug similarities S (d1, d1’) and S (d2, d2’) (and

symmetrically S (d1, d2’) and S (d2, d1’)). Then, the two similarities are

combined to a single feature similarity score by calculating their geo-

metric mean (Perlman et al., 2011). The overall score is

Fi dp; dp0ð Þ ¼ max d1 ;d2 6¼d
0
1
;d
0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S d1; d1

0ð Þ � S d2; d2
0ð Þ

p
(7)

2.1.3 Bayesian network for integrating features

To integrate the six features for a drug pair, i.e. F1, F2, F3, F4, F5 and

F6, we used a Bayesian networks approach, which was proved to be

competent in predicting PPIs by integrating evidence from different

sources (Jansen et al., 2003). Bayesian networks are a representation

of the joint probability distribution among multiple variables.

Formally, the feature F can be expressed as a LR, i.e. L (F), which is

defined as the fraction of gold-standard positives having feature F

divided by the fraction of negatives having F. For the six features F1,

F2, F3, F4, F5 and F6, the LR of the combined evidence is the product

based on the naive Bayesian network:

L F1 . . . F6ð Þ ¼
Y6
i¼1

L Fið Þ (8)

This equation is produced as the six features are independent

from the analysis of Pearson correlation coefficients for each pair of

features (Supplementary Tables S1 and S2). For each feature Fi, its

LR relates prior and posterior odds according to the Bayes rule:

L Fið Þ ¼
Opost

Oprior
(9)

where the ‘prior’ and ‘posterior’ odds are:

Oprior ¼
P positiveð Þ
P negativeð Þ ¼

P positiveð Þ
1� P positiveð Þ (10)

Opost ¼
P positivejFið Þ
P negativejFið Þ (11)

Among them, the terms ‘prior’ and ‘posterior’ refer to the situation

before and after knowing the feature Fi. P (positive) and P (negative)

are the odds that a drug pair is in the positive set and in the negative

set, respectively. P (positivejFi) and P (negativejFi) are the probabilities

that a drug pair is in the positive set and in the negative set after

knowing that this drug pair has feature Fi. This leads to:

L Fið Þ ¼
P Fijpositiveð Þ
P Fijnegativeð Þ (12)

Here P (Fijpositive) and P (Fijnegative) refer to the probabilities

that a drug pair in the positives and the negatives has the feature Fi,

respectively, and can be estimated by kernel density estimation

(KDE) method.

2.1.4 Kernel density estimation

KDE is a non-parametric way of estimating the probability density

function population. The probability Pi(FijC¼ c) was estimated

using Equation:

Pi FijC ¼ cð Þ ¼ 1

Nch

XNc

j¼1

K Fi;Fjjijc
� �

(13)

K a; bð Þ ¼ 1ffiffiffiffiffiffi
2p
p e

a�bð Þ2

2h2 (14)

where K is a Gaussian function kernel with mean zero and variance

1, Nc represents the number of the input data F belonging to class c,

Fjjijc is the feature value in the ith position of the j-th input F¼ (F1

F2 . . . Fi . . . Fn) in class c, and h is a bandwidth, or a smoothing par-

ameter. To optimally estimate the conditional probabilities, h was

optimized on the training dataset.

2.1.5 Raw score and P value

To obtain a good estimate of the overall similarity with the positive

set for a drug pair, we first defined a raw score for this drug pair by

summing its combined LRs relative to all N drug pairs in positive set

with Lj � Lcut.

Raw score ¼
XN
j¼1

Lj F1 . . . F6ð Þ; Lj�Lcut

� �
(15)

We determined the threshold Lcut by leave-one-out analysis. By

sampling across the range of Lcut choices, we chose the threshold

which led to the highest F1 score in cross-validation. Scores below

the LR threshold are discarded and do not contribute to the overall

set similarity.

Then, a model for the random LRs of the raw scores was de-

veloped and fit. A random raw score was calculated by comparing a

randomly selected drug pair to a random positive set (with the same

size) which was randomly populated from the drugs in the real posi-

tive set. We here generated overall n¼1�106 random raw scores,

and the probability of obtaining the same or better raw score by ran-

dom chance alone can be estimated by (Pearson, 1998):

P̂ R�rð Þ ¼ 1� k

n
(16)

where k is the amount of raw scores that are greater than r occurring

in the random distribution.

2.2 Experimental
We used a 10-fold cross validation scheme to evaluate the accuracy

of our prediction model. And we compared the performance of the

PEA algorithm with a K-Nearest Neighbors algorithm (or KNN for

short) which is a non-parametric method used for classification. We

benchmarked the prediction results against a number of independent

researches about drug combination. To further illustrate the power

and potential of our large-scale approach, a set of in vitro experi-

mental assays using anti-bacterial and cancer cell models were

applied, in which the DDIs characterizing the additivity and syner-

gism are quantitated based on the Chou–Talalay method (Chou,

2006). More details can be found in the Supplementary text.

3 MATERIALS

We collected drug combinations from three localities: (i) 300 com-

binations in the Drug Combination Database (DCDB) as of 2010
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(Liu et al., 2010); (ii) 97 combinations from the Therapeutic Target

Database Version 4.3.02(Zhu et al., 2010); and (iii) 1613 combin-

ations from Pubmed literatures (downloaded on September 27,

2012) by data mining through keywords ‘drug combination’, ‘drug

interaction’, ‘multi-drug’, ‘additive’, ‘antagonism’, ‘antagonistic’,

‘infra-additive’, ‘potentiated’, ‘potentiative’, ‘potentiation’, ‘reduc-

tive’, ‘supra_additive’, ‘synergism’, ‘synergistic’ and ‘synergy’, fol-

lowed by the actual reading of all full texts (Jia et al., 2009). We

then discarded drug combinations that are redundant (the same

combination extracted from different sources) and vague (the com-

binations with none or unclear efficacy). This led to 1571 drug com-

binations spanning 951 drugs. All these data are available at our

website (http://sm.nwsuaf.edu.cn/lsp/predc.php). The DDIs were ex-

tracted from DrugBank version 3 (Knox et al., 2011). The full list of

the DDIs contains 11 085 DDIs involving 1110 drugs. We manually

checked each DDIs and distinguished 1536 UDDIs from all these

DDIs. The UDDIs are defined as those in which two drugs can cause

an adverse effect, such as the increase of the toxicity or the decrease

of the effect.

The 2D chemical structures of the drugs were downloaded in

Mol file format from DrugBank (Knox et al., 2011). Drug targets

were obtained from the DCDB (Liu et al., 2010) and DrugBank

databases. Drug side effects were downloaded from the SIDER data-

base (Kuhn et al., 2010). Human PPI data were assembled from mul-

tiple sources (see Supplementary Text for details). Protein sequences

and GO annotations (Ashburner et al., 2000) were parsed from

Uniprot (Jain et al., 2009). Anatomical Therapeutic Chemical

(ATC) codes of drugs were extracted from DrugBank (Knox et al.,

2011). Overall, we collected 656 EDCs spanning 375 drugs and

1536 UDDIs involving 313 drugs for which all six drug–drug simi-

larity measures could be computed.

4 RESULTS

4.1 Performance evaluation
To quantitatively assess the performances of the PEA model with all

six features or each single feature in predicting effective drug com-

binations, we used the 656 EDCs of our gold standard and per-

formed a 10-fold cross validation accompanied with the receiver

operating characteristic (ROC) curve analysis. As a result, the model

with whole features (AUC¼0.90) exhibits better performance than

those with single feature (AUC¼0.72–0.85) (Fig. 2a). Among the

six features, ATC has the most predicting performance

(AUC¼0.85). In order to check if ATC is a dominant contributor to

the model, PEA was further trained with the remaining five features

without considering the ATC one. Surprisingly, the resultant model

shows a very similar performance in predictions (AUC¼0.89) com-

pared to the whole-feature one, indicating that PEA is not biased by

the ATC parameter. Moreover, considering the high negative/posi-

tive ratio (238.6 � 1) in samples, the precision recall (PR) curve

(Fig. 2b) was also applied to evaluate these models for highlighting

the differences of performance that might be lost in the ROC curve

analysis (Davis and Goadrich, 2006). It turns out that the whole-fea-

ture PEA achieves AUC¼0.15 and a high precision of 91%,

whereas the single-feature model never exceeds 50% precision,

including ATC.

A combinational use of drugs could cause complex either pharma-

codynamic or pharmacokinetic interactions, or both, which makes it

difficult to characterize its effectiveness and side effects (Sun et al.,

2013) and may, meanwhile, bring up additional health problems

(Zhao et al., 2013). Therefore, we further evaluated whether an

effective combination has possible adverse effects. Here, we applied

the PEA model with 1536 UDDIs to quantitatively characterize a

drug pair with respect to adverse effects. Resultantly, similar to the

previous case, the whole-feature model exhibits the optimal predic-

tions with AUC¼0.95 for ROC analysis and 0.36 (AUC) for PR ana-

lysis respectively, superior to any other models with single feature

(Fig. 2c and 2d). The high prediction accuracy for the whole-feature

PEA model indicates that the model is reasonable for predicting the

adverse effects of drug combinations. In addition and not surprisingly,

ATC is again not predictive for detecting the adverse effects of drug

combinations based on the PR curves (Fig. 2d). In view of that the

sparsely space of DDIs and the non-uniformly covered by experimen-

tal data, we have also calculated model accuracy for the drug combin-

ations by dividing drugs into ‘new drugs’ and ‘known drugs’. Drugs in

the training set are called ‘known’ whereas those not in the training

set are called ‘new’. Overall, the result showed that our model have a

better performance for the drug combinations consisted by known

drugs (ROC AUC¼0.88 and 0.91 for EDCs and UDDIs, respectively)

than those consisted by new drugs (ROC AUC¼0.76 and 0.71 for

EDCs and UDDIs, respectively). Still, the model has a good predictive

ability for the drug combinations consisted by ‘new’ drugs

(Supplementary Table S3).

Further, in order to verify the newly developed PEA algorithm,

the performance of this method to transform the predictive features

to objective activity (combination or adverse effect) is compared

with the K-nearest neighbor (KNN) method where k is determined

by cross-validation and then pick maximum performance k. After 5

folds of cross-validations, k¼6 was determined since it has the best

performance. Firstly, we calculated the overall similarity between a

query drug pair and all known EDCs (UDDIs) by simply multiplying

the six feature similarity scores (rather than using a Bayesian trans-

formation as in PEA), and then assigned the highest similarity score

to that query drug pair. The resulting ROC and PR AUC scores of

the KNN model trained on the EDC set are 0.79 and 0.04, respect-

ively, which have been considerably outperformed by the new PEA

Fig. 2. Performance of PEA model. (a) ROC and (b) PR (precision-recall) curves

for the whole-feature PEA (blue) and the six single features for predicting ef-

fective drug combinations (EDCs). (c) ROC and (d) PR curves for the whole-

feature PEA (blue) and the six single features for predicting UDDIs
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algorithm. In addition, the model trained on UDDIs also obtains

similar inferior results with the ROC and PR AUC scores of 0.85

and 0.13, respectively. All this demonstrates the feasibility of our

method in dealing with drug combinations, which is thus further

employed for predicting new effective drug pairs with undesirable

adverse effects in consideration.

4.2 Integrative analysis of side-beneficial effects for

drug combinations
To maximize the therapeutic effects and minimize the adverse effects

of drug treatment, the recognition and quantification of the situ-

ation, in multiple dimensions, is a critical prerequisite. The integra-

tive analysis of side-beneficial effects would enable us to analyze the

relationships between them for drug combinations and also to evalu-

ate the functional consequences of the same to different disease-

associated treatment. Here, for each query drug pair, PEA model

outputs two values: P1 and P2 to represent its effectiveness and per-

niciousness, respectively. To visualize these two quantitative stand-

ards, we first constructed a binary diagram of known EDCs (green

dots) and UDDIs (red dots) (Fig. 3a). We observed that PEA has high

recall rates with bigger P1 and lower P2, confirming P value as an

appropriate measure of the odds of a real interaction. In addition,

the disease distributions with respect to P1 and P2 indicate that cur-

rent drug pairs (known EDCs) have higher P1 (0.8–1.0) and lower

P2 (0.0–0.2), and mainly focus on infection, cancer, nervous system

disease and cardiovascular disease. Conservatively, we here selected

P value as 0.9 throughout our analysis. The EDCs and UDDIs are

intensively apportioned in two distinct areas: the (I, II) quadrant

(P1>0.9) for EDCs and (II, III) quadrant (P2>0.9) for UDDIs, re-

spectively. The recall rates are 67 and 82% for the two quadrants,

respectively, further proving the reliability and validity of PEA.

Next, we applied PEA to predict novel drug combinations.

To visualize the prediction results, we drew a heat map of all the

156 520 unknown drug pairs with the two values: P1 and P2

(Fig. 3b). Figure 3b shows that drug pairs in the quadrant 1 are

regarded as effective drug combinations. The ideal drug combin-

ations mainly cluster in the quadrant 1’ involving 3269 (2.1%) pairs

with P1>0.9 (a high probability of synergism) and P2<0.1 (low

probability of causing adverse effects). Here, the critical standard

for initialing the P values for the quadrant n’ (n¼1, 3, 4) is to assure

the prediction accuracy with high confidence in each quadrant. In

order to validate the quadrant 1’ efficiency, we benchmarked the

predictions against an independent dataset (see later for details) and

also experimentally examined 44 predicted drug pairs from this re-

gion. As a result, 35 drug pairs (79.5%) are demonstrated effective

(as seen in Supplementary Table S4). The drug combinations in

quadrant 2 should be warranted in clinic as they are more likely to

cause unwanted adverse effects although they might be effective. For

example, voriconazole and itraconazole (P1¼0.96, P2¼0.97) are

synergistic in treating infections caused by Fusarium (Spader et al.,

2013), but the combination of these two drugs may cause a danger-

ous abnormal heart rhythm (RxList, 2008). Drug pairs in quadrant

3 have a high probability to cause undesirable DDIs. These pairs

strongly intend to produce adverse effects (P2>0.9), but with low

possibility to become an effective combination (P1<0.1). Quadrant

4’ components have both small P1 and P2 values, which suggests

that there is a small chance of interactions between the two drugs in

one drug pair. In addition, looking specifically at the 3269 optimal

drug combinations, their associations with specific diseases is in

good agreement with the interest of current combination therapies

for complex and chronic diseases (Fig. 3c).

4.3 External literature validation
To validate the reliability of our method, we further check whether

the predicted drug pairs were validated in external literatures which

were not used to build the training dataset for the PEA model. The

experiment types, effectiveness, diseases and adverse effects of the

predicted drug combinations were manually collected from an un-

biased survey of the literature (See Supplementary Table S5)

Overall, we obtained detailed information about 642 novel drug

Fig. 3. Integrative analysis of side–beneficial effects for drug combinations. (a) The binary diagram of known EDCs (green dots) and UDDIs (red dots), the EDC re-

call rate (> P1 or < P2) and the disease distribution with respect to P1 and P2. (b) The heat map of all the 156 520 unknown drug pairs with respect to the two val-

ues: P1 and P2. The colors of the heat map represent the number of drug pairs with the specific P1, P2 score. (c) The number of known and predicted drug

combinations in 21 MeSH (Medical Subject Headings) disease categories
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combinations. Surprisingly, 84% of which are consistent with our

predictions. Among the 537 effective predictions directly supported

by the literature, 69% have already entered clinical trials and 45

drug combinations were proved to be effective in at least two experi-

ment types (Fig. 4a). Moreover, 85% of the drug combinations vali-

dated by cell assays have a synergistic effect (Fig. 4b).

To put our finding into context, we divided the drugs into differ-

ent drug classes based on their third level of ATC code and com-

puted the proportion of verified drug combinations in predicted

ones within and between drug classes. We then calculated the sig-

nificance (by P-value using Fisher’s exact test) of overrepresentation

against the background incidence of the respective drug class. The

P-values were then adjusted to control for multiple hypothesis test-

ing, yielding q-values. More formally, q-values represent the min-

imum false discovery rate for which the connection will be regarded

as significant. To find out which drug class connections have a high

verified rate, we utilized the significant (q-value<0.05) drug class

connections to create a drug class combination network. We filtered

connections that are involved with at least 10 predicted drug com-

binations and with a verified proportion greater than 0.3.

In total, we found 65 statistically significant drug-class connec-

tions between 41 drug classes, the majority of which are inter-class

connections, indicating that most of the predicted drug combin-

ations consist of drugs belonging to different drug classes (Fig. 4c).

Analysis of the known EDCs in drug classes also shows similar re-

sults (Supplementary Fig. S1). The drug class J05A (direct acting

antiviral drugs), which has 45 predicted drug combinations in it, has

the highest proportion of the verified drug combinations (64%, q-

value¼7�10�9). Following on are combinations between D07X

(corticosteroids, other combinations) and R03A (adrenergics, inhal-

ants) (60%, q-value ¼ 0.024). Interestingly, there is actually no ef-

fective drug combinations (EDCs) consist of drugs belong to D07X

and R03A in our gold-standard dataset (Supplementary Table S6).

These results further indicated that the PEA model was not biased

by the ATC code similarity between drugs, but provided a weighted

similarity measurement which took all drug molecular and pharma-

cological features into account. There are 20 drug-class connections

have a verified proportion greater than or equal to 50%, which indi-

cates that a half or more than a half of our predictions consist of

drugs between these drug classes have gained direct supports of cer-

tain literature. The full list of the verified proportion and q-values

between or within drug classes is provided in Supplementary Table

S6. The connection between drug classes L01X (other antineoplastic

agents) and L01B (antimetabolites), which is the most connected

one between drug classes (36%, q-value ¼ 2.3�10�5), has 102

drug combinations in it. This result indicates that drugs in these two

drug classes have a larger chance to combine with each other to cre-

ate synergy. The L01X class mainly includes platinum compounds

and protein kinase inhibitors, which have been used widely in cancer

combination therapy (Dancey and Sausville, 2003; Lee et al., 2008).

4.4 Experimental validation
In total, we examined 102 novel predicted drug pairs, resulting in

the confirmation of 77 effective combinations (�75% of all tested

drug pairs) (Supplementary Table S11). In the cancer model, we

examined 55 predicted drug pairs against the human non-small cell

lung cancer A549 cells. Resultantly, 39 of these pairs are found ef-

fective (�71% accuracy), among which 34 cases are synergistic and

5 are additive (Supplementary Table S7). For anti-bacterial model,

47 drug pairs were tested by Staphylococcus aureus and Escherichia

coli. We validate that 38 pairs (�81% of all 47 antibacterial pairs)

are effective (Supplementary Tables S8 and S9). Among them, 9

drug pairs exhibit activities (synergy or additivity) against both bac-

terial species. More details can be found in the Supplementary text.

5 DISCUSSION

A major challenge in predicting the drug combination in a large

scale is to achieve the desired prediction accuracy while dealing with

Fig. 4. Benchmarking against independent datasets. (a) The overview of the independent datasets of drug combinations derived from the literature. (b) The distri-

bution of synergistic, additive and antagonistic effects in cell assays. (c) The drug class networks. Edge color depth corresponds to the proportion of verified drug

combinations in predicted ones. Edge width corresponds to the number of drug combinations between two drug classes. Node size corresponds to the number

of drugs in the drug class. The first letter of each ATC category denotes the top level, anatomical class
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the complex conditions of missing data, different data types, unclear

mechanisms, etc. One means to achieve this is to exploit a large

database with sufficient information for drug combinations and a

method that distinguishes the therapeutic efficacy from adverse ef-

fects that may make it feasible to more precisely select the optimal

combinations. The incompleteness of target network information

and the scarceness of the side effect features hinder the application

of computational approaches to drug combinations (Brouwers et al.,

2011). Compared with the present available models (Zhao et al.,

2011), the PEA algorithm shows several major advantages, such as

high training efficiency and extensive applicability. More particu-

larly, PEA provides two quantitative indexes to describe the prop-

erty of a drug combination, which is convenient and easy to

understand.

PEA is specifically designed to accommodate those missing data

and differing types of variables and handle unbalanced multiclass

datasets. By integrating the weakly predictive features, such as

Target sequence, Chemical structure, etc., PEA exhibits similar per-

formances as the whole-feature model. The major reason is due to

that Bayes algorithm extracts the underlying pattern of features by

converting features to a common probabilistic framework so as to

improve the performance of the ensemble-based scoring approach.

In detail, Bayesian network algorithm transforms the features to a

LR, which provides probabilistic scoring for drug combinations in

an ensemble. The ensemble score is further converted to a P value

based on a random raw score distribution to calculate the reliability

for a predicted drug pair. In contrast to conventional method, where

an optimal combination is often determined by comparing the simi-

larity with a single known reference (Gottlieb et al., 2012), the en-

semble approach compares a probability distribution of a query

drug pair with all related combinations, resulting in the improve-

ment of generalization ability of the PEA tool. However, the simple

feature-enrich method (Zhao et al., 2011), as well as the one-nearest

neighbor, may not be capable of dealing with this complex system

due to the unadaptability and information loss. In addition, it

should be noted that we just calculated the protein global similarity

instead of the drug binding regions (Konc and Janežič, 2014). Our

considerations are: (i) sequence similar proteins might have similar

functions, since they might be homologs. However, similar drug

binding regions may not reveal whether the two proteins are func-

tionally similar; (ii) the analyses of drug binding regions are nor-

mally dependent of the crystal structures, which severely limits the

algorithms for more general applications. And more importantly,

even we have obtained the structures; we still need to define which

amino acids are involved in drug binding, since different drugs might

bind to different amino acids in most cases even in the same pocket

for the same protein.

The present computational solution considers drug actions and

their clinical effects in the context of molecular network systems,

which provides information for further understanding of the mo-

lecular mechanism and pharmacological effect underlying drug com-

binations. Generally, due to the unclearness of the molecular

mechanisms underlying combination therapies, most drug combin-

ations are inferred based on sets of clinical rules derived from clin-

ical experience or randomized clinical trials. For example,

combination therapy for hypertension has been assigned some pre-

ferred combinations from various classes of antihypertensive medi-

cations, such as renin-angiotensin-aldosterone system (RAAS)

inhibitor þ diuretic, RAAS inhibitor þ calcium channel blocker

(CCB), and CCB þ diuretics (Salahuddin et al., 2013). Although

these conventional rules facilitate searching for valid combinations,

they limit this search into drug entities with similar functions, that

is, drugs in combinations often have the same first level of the ATC

code. This is confirmed by the fact that majority (�70%) of known

1571 drug combinations in our dataset belong to the same thera-

peutic category (from the first to fifth level of the ATC code)

(Supplementary Fig. S1).

To analyze whether PEA could overcome this limitation, we

have counted the predicted EDCs in the database that are composed

by drugs with different ATC classes (the first level). Extremely inter-

esting, we found 43% of our high-confidence predictions (with

P1�0.9 and P2�0.1) are such kind of combinations, indicating

that our model is not restrained by the functional similarity between

two drugs for a combination. The benchmark dataset also shows

that 121 such combinations have been proved to be effective.

Moreover, we have experimentally validated 10 novel EDCs that

are combined by antibacterial and anticancer drugs (Supplementary

Tables S6–S8). The results show that 80% pairs are synergistic to

cancer models. For example, the antibacterial agent, tetracycline, as

a bacterial 30 S ribosomal subunit inhibitor, displays synergistic

cytotoxicity against A549 cells when being combined with some

anticancer drugs, such as the DNA synthesis inhibitor fludarabine

(CI 0.49), cross-linking reagent cisplatin (CI 0.69) and protein kin-

ase inhibitor imatinib (CI 0.80). It is worth noting that the ‘wet’ ex-

periment could only found �16% (38/200) synergistic pairs in

antifungal test (Cokol et al., 2011), which partially proves that the

PEA algorithm carries out high efficiency prediction in practice.

Various approaches have been suggested to benefit-risk assess-

ment during the development of new medicines (Eichler et al., 2008;

Garrison et al., 2007), but little has been reported of being applied

on the combinational drugs, though they have attracted more and

more interests from researchers and industry in recent years. Drug

combinations may overcome the side effects by countering network

robustness and bypass compensation, and thereby increasing the

clinical efficacy while minimizing the overlapping toxicity and

allowing reduced dosage of each compound (Jia et al., 2009;

Ramaswamy, 2007). The efficacy and side effect are normally

coupled together, and the best end results actually depend on the

side effects contributing to the overall therapeutic benefit. Thus, the

decision to take a drug combination depends upon the benefit-risk

weighting of all the potential risks and benefits, which up to date are

still extremely difficult to predict on a global scale. The complex

DDIs in multiple dimensions pose modeling challenges to classical

linear approaches, as well as hinder the targeted experimental

approaches due to a combinatorial explosion both in the pharmaco-

logical and molecular spaces.

In an effective combinatorial setting, the PEA algorithm has

incorporated the clinical efficacy and adverse effect evaluation into

the current model, resulting in two standards, i.e. P1 and P2. The

combined evaluation for a predicted combination opens new av-

enues of drug combination and even guides the drug dosage. For ex-

ample, the fludarabine þ tetracycline combination with high P1

(0.87) and low P2 (0.36) shows a significant synergistic effect (CI

0.46) on A549 cells. By lowering the dosage of fludarabine (from

0.08611 lM to 0.03538 lM at the 50% cytotoxicity level), tetracyc-

line also reduces the risk of opportunistic infections induced by flu-

darabine. More importantly, those combinations with low P1 and

high P2 predicted by PEA should be very carefully applied in practice

due to their uncertain influence on the efficacy and safety of drug

co-administration. For example, the monoamine oxidase (MAO) in-

hibitor, tranylcypromine, may increase the vasopressor effect of the

alpha1-agonist, midodrine, whose P1 and P2 are 0.055 and 0.993,

respectively. Thus, concomitant use of these two drugs should be

avoided.
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One limitation for this work is that the dosage is not taken into

account in the model. Till now, two methods are in common use for

calculating the expected dose-response relationship for drug com-

bination as compared to mono-therapy: Loewe additivity and Bliss

independence (Fitzgerald et al., 2006). They both need experiments

to characterize drug combinations. Therefore, following in silico

studies should focus not only strategies for predicting drug combin-

ations but also improving the efficiency of trials.
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