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Abstract

Motivation: In neuroscience, as in many other scientific domains, the primary form of knowledge

dissemination is through published articles. One challenge for modern neuroinformatics is finding

methods to make the knowledge from the tremendous backlog of publications accessible for

search, analysis and the integration of such data into computational models. A key example of this

is metascale brain connectivity, where results are not reported in a normalized repository. Instead,

these experimental results are published in natural language, scattered among individual scientific

publications. This lack of normalization and centralization hinders the large-scale integration of

brain connectivity results. In this article, we present text-mining models to extract and aggregate

brain connectivity results from 13.2 million PubMed abstracts and 630 216 full-text publications

related to neuroscience. The brain regions are identified with three different named entity recog-

nizers (NERs) and then normalized against two atlases: the Allen Brain Atlas (ABA) and the atlas

from the Brain Architecture Management System (BAMS). We then use three different extractors

to assess inter-region connectivity.

Results: NERs and connectivity extractors are evaluated against a manually annotated corpus. The

complete in litero extraction models are also evaluated against in vivo connectivity data from ABA

with an estimated precision of 78%. The resulting database contains over 4 million brain region

mentions and over 100 000 (ABA) and 122 000 (BAMS) potential brain region connections. This

database drastically accelerates connectivity literature review, by providing a centralized repository

of connectivity data to neuroscientists.

Availability and implementation: The resulting models are publicly available at github.com/

BlueBrain/bluima.

Contact: renaud.richardet@epfl.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Accessing the vast amounts of data and knowledge embedded in the

previous decades of neuroscience publications is essential for mod-

ern neuroinformatics. Making these data and knowledge accessible

can help scientists maintain a state-of-the-field perspective and im-

prove efficiency of the neuroscientific process by reducing repeated

experiments and identifying priorities for new experiments. Efforts

to build models of neural circuitry must integrate such data into the

model building process to benefit from the data of many years of

prior research. In the case of metascale brain region connectivity,

thousands of experiments have been published in scientific journals.

However, these have not been systematically normalized and

VC The Author 2015. Published by Oxford University Press. 1640
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 31(10), 2015, 1640–1647

doi: 10.1093/bioinformatics/btv025

Advance Access Publication Date: 20 January 2015

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/10/1640/177648 by guest on 16 August 2022

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv025/-/DC1
in order 
http://www.oxfordjournals.org/


registered in a central repository of brain region connectivity. Thus,

researchers resort to manual searches on PubMed that are very time

consuming.

1.1 Brain connectivity data integration
Brain connectivity data consist of information about one brain

region projecting nerve fibers to another region and forming synap-

tic connections. Additional metadata includes, for example connec-

tion strength, animal species and experimental methods.

Brain connectivity data can be integrated from different sour-

ces. For the mouse brain, one central source is the Allen Mouse

Brain Connectivity Atlas [AMBCA, Oh et al. (2014)]. As of today,

the Allen Institute has published 1772 standardized connectivity

experiments tracking axonal projections in the adult mouse brain

by two-photon imaging of fluorescently labeled neurons.

Experimental results have been normalized to a coordinate-based

reference space and are freely available to researchers via a pub-

licly accessible API (connectivity.brain-map.org). The AMBCA is a

very valuable source of connectivity data because of the consist-

ency of the experimental methods, the standardized brain region

naming, the availability of the data and the overall high level of

quality of the data.

A second central source of connectivity data comes from curated

databases of the published literature. For the rat brain, the most

important is the Brain Architecture Management System [BAMS,

Bota and Swanson (2008)]. Neuroscientists from the BAMS project

have manually curated over 600 scientific articles. They analyzed

each article (including tables, images and supplementary materials)

and assessed the quality of the experiment. Finally, they normalized

brain region mentions to the BAMS ontology and recorded the con-

nectivity data into a database (including directionality and strength).

One other major source of connectivity data is the analysis of

neuroscientific articles. This is commonly performed by manual

search on databases like PubMed or Google Scholar. The search,

curation and integration of these articles might be a manageable

task for a researcher focused on one or a few brain regions, but it

does not scale for whole-brain models. Furthermore, manual search

for brain region connections has several disadvantages. First, the

naming of brain regions is diverse, making it difficult to search for

brain region names. These nomenclatures rely on different detection

methods (e.g. Nissl staining, immunostaining, functional magnetic

resonance imaging and diffusion tensor imaging) that result in

different sizes and shapes of brain regions.

Another disadvantage of manual search is its low recall (Recall is

the ratio of the number of relevant records retrieved to the total

number of relevant records.). It is likely to miss a significant part of

the brain regions because it lacks synonym expansion. For example,

exact search for ‘Basolateral amygdala nucleus’ (17 results on

PubMed) will neither return results from the synonym ‘Basolateral

nucleus of the amygdala’ (297 results) nor from the Latin name

‘Nucleus amygdalae basolateralis’ (8 results). Another reason for

low recall is the lack of abbreviation expansion. For example, when

searching for ‘Ventral tegmental area’, the abbreviated form ‘VTA’

will not be retrieved. A random sample corpus of 179 full-text art-

icles from the Journal of Comparative Neurology contained on aver-

age 91.6 brain regions mentions and 29.7 abbreviations of brain

regions per article. This represents a maximal possible 32% increase

in recall when performing abbreviation expansion (Note, however,

that an article containing an abbreviated brain region might still be

returned by a manual search, since abbreviations are almost always

explicitly defined in an article, so the expected increase is smaller.).

Additionally, for a significant number of articles in PubMed, only

the abstract is indexed and searchable, not the full article body. On

the aforementioned corpus, the abstracts contained on average 2.8

brain region mentions. This represents a possible 32-fold increase in

recall when using full-text instead of abstracts.

In terms of precision (Precision is the fraction of retrieved

records that are relevant.), a manual search will return all brain

regions that co-occur within the same document. Most of these

co-occurrences do not necessarily represent true neurophysiological

connections but simply that two brain regions are mentioned in the

same document. At the abstract level, French et al. (2012) found

that only 2.2% of the co-occurrences represent true connections.

At the sentence level, the proportion raises to only 13.3%. Thus, the

precision of manual search is expected to be quite low, meaning that

researchers will waste time in manually post-processing the search

result and probably discard most retrieved co-occurrences.

1.2 Information Extraction
One way to improve manual literature search is to make use of

automated information extraction (IE). IE aims at extracting struc-

tured information from unstructured text. It facilitates the manual

search of brain connectivity data by analyzing very large numbers of

scientific articles and proposing to the neuroscientist a list of brain

regions potentially connected. In the present case, the IE process is

divided in two phases: named entity recognition (NER) and relation

extraction (Fig. 1).

To build a brain region NER, the first and simplest approach is

to match entities from a list of brain regions (lexical-based NER).

There exist a plethora of brain region ontologies and taxonomies

that can be used as lexica (see Section 2.1). However, most of these

have been designed to structure and organize brain regions but not

to serve as a resource for IE. Typically, they lack appropriate syno-

nyms and can be too specific, resulting in low recall [e.g. ‘Entorhinal

area, lateral part, layer 6a’ is a brain region from the Allen Brain

Atlas (ABA) ontology that is very unlikely to be found in a scientific

article].

A second and more sophisticated approach to building a NER is

to train a machine learning model on annotated corpora providing

examples of brain regions. The model relies on so-called features to

take a decision on whether a group of words represent a brain

region. Features can be, for example that a word starts with a capital

Fig. 1. Overview of datasets, methods and models. Three named entity recog-

nizers (NER) identify and normalize brain region mentions: BAMS and ABA

(lexical-based) and BraiNER (machine learning-based). Three different extrac-

tors predict the connectivity probability of brain region co-occurrences:

Filters takes a top–down filtering approach, Kernel is a machine learning-

based classifier and Rules consists of hand-written extraction rules.

Connectivity results are presented in a searchable web interface. In the future,

feedback from the interface can be used to retrain the NERs and extractors

for continuous model improvement

Brain connectivity extraction from neuroscientific literature 1641
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letter, whether the word belongs to a neuroanatomical lexicon or

whether the previous word is a verb. A model usually includes

several hundreds different features and model training consists in

learning which combinations of features are most likely to identify a

brain region. Once a model has been trained on an annotated cor-

pus, it can be used to identify brain regions on new, unseen text.

The advantage is that the model will match complex brain region

names, even if they are not present in any lexica, for example

‘contralateral prepositus hypoglossal nucleus’ or ‘distal parts of the

inferior anterior cerebellar cortex’. However, a drawback of this

machine learning approach is that corpus annotations, required to

train the model, are very time-consuming and require domain

experts.

Machine learning NERs have been successfully developed in the

biomedical field for entities like proteins (Campos et al., 2013),

chemicals (Jessop et al., 2011), species (Gerner et al., 2010) and ana-

tomical entities (Pyysalo and Ananiadou, 2014). For brain regions,

NER models have been published by Burns et al. (2008) and French

et al. (2012). They both rely on linear chain conditional random

fields (CRFs), with model features based on morphological, lexical,

syntactic and contextual information. French’s model achieves a

state-of-the-art performance of 86% recall and 92% precision on a

training corpus of 1377 abstracts with 18 242 brain region

annotations.

Once named entities have been identified, we normalize them, so

that, e.g. both ‘diencephalon’ and ‘interbrain’ resolve to the same

entity. Normalization can be performed by automatically or manu-

ally attaching synonyms to lexical-based NER or by performing

morpho-syntactic transformations on the brain regions extracted by

a NER. For example, French and Pavlidis (2012) used transform-

ation to remove prefixes that specify hemispheres (‘Contralateral

inferior olivary’ is transformed into ‘Inferior olivary’) or to remove

neuroanatomical direction specifiers (‘Caudal cuneate nucleus’ is

transformed into ‘Cuneate nucleus’).

The second and last IE step involves relationship extraction. It

aims at classifying co-occurrences between two brain region entities

and predicting whether they represent neurophysiological connec-

tions (It is worth noting that IE only predicts whether the author

reports a connection between two brain region, not whether the con-

nection actually exists, which is out of the scope of such an IE sys-

tem.). Models for relationship extraction include rule-based and

supervised machine learning approaches. Relationship extraction

between two biomedical entities is a current research topic, applied

to problems like protein–protein interaction (Krallinger et al., 2011)

or pathway curation (Ohta et al., 2013). The difficulty of the task

resides in the complexity of the relation between two or more brain

regions (Table 1). French et al. (2012) developed and evaluated

several models to extract brain region connectivity. Their simple

co-occurrence-based methods yielded high recall but low precision,

whereas the advanced machine learning models recalled 70.1% of

the sentence-level connectivity statements at 50.3% precision. More

complex models based on dependency parsing were successfully

evaluated by French et al. (2012) but discarded because of their high

computational cost.

Our work builds on top of French et al. (2009, 2012) and French

and Pavlidis (2012) and extends it in several aspects: ensemble of

three different extractors and application to a large corpus of over

8 billion words.

2 Methods

To build a database of brain region connectivity data from the

literature, two steps are required. First, NERs identify brain region

mentions in text and normalize them to a standard brain region

ontology. Second, extractors are developed to determine whether

two brain region co-occurrence mentions are semantically con-

nected. Finally, the connectivity results are stored in a database to

be accessible by researchers.

2.1 Brain region NERs
Three different NERs have been developed to identify and normalize

brain region mentions (Table 2). The first lexical NER (ABA) con-

sists of all 1197 entities from the Allen Mouse Brain Atlas [Allen

Reference Atlas, version 2 (2011), Mouse Brain Atlas Ontology].

Lexical matching is performed using UIMA ConceptMapper, with

order dependant lookup, longest contiguous match and a stemmer

that removes endings of words longer than three characters.

As discussed in Section 1.1, the atlas is designed to structure and

organize brain regions within the Allen Brain Institute and not as a

lexical resource for IE. Thus, the ABA NER contains no synonyms.

To retrieve more relevant data (and improve recall), a second NER

Table 1. Example of sentences exhibiting connectivity statements between brain regions

Sample sentence Connectivity statement, comment

The nucleus accumbens (AC) receives projections from both the substantia nigra (SN) and the ventral

tegmental area (VTA) (Dworkin, 1988).

(SN, VTA)! AC

Substantial numbers of tyrosine hydroxylase-immunoreactive cells in the dorsal raphe nucleus (DR) were

found to project to the nucleus accumbens (AC) (Stratford and Wirtshafter, 1990).

DR! AC

The dentate gyrus (DG) is, of course, not only an input link between the entorhinal cortex (Ent) and the

hippocampus proper (CAs) but also a major site of projection from the hippocampus (CA), as are the

amygdala (Amg), entorhinal cortex (Ent) and septum (Spt) (Izquierdo and Medina, 1997).

CAs! DG! Ent, (CA, Amg, Ent, Spt)

! DG Complex, long range

relationships

This latter nucleus (N?), which projects to the striatum (CP), receives inputs from motor cortex (MO)

as well as the basal ganglia (BG) and is situated to integrate these and then provide feedback to the

basal ganglia (BG) (Strutz, 1987).

MO!N?! CP, BG$N? Anaphora:

‘latter nucleus (N?)’ was defined in

previous sentence

In this review, we summarize a classic injury model, lesioning of the perforant path, which removes the

main extrahippocampal input to the dentate gyrus (Perederiy and Westbrook, 2013).

Injury model, not normal conditions

The most commonly proposed mechanism is that the periaqueductal gray of the midbrain (PAG) or the

cerebral cortex (Cx) have descending influences to the spinal cord (SpC) to modulate pain transmission

at the spinal cord (SpC) level (Andersen, 1986).

PAG! SpC, Cx! SpC ‘proposed’

implies an hypothesis, not a finding

Abbreviations have been manually added.
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(ABA-SYN) is automatically augmented with corresponding syno-

nyms found in several lexica of rodent brain region: BAMS (Bota

and Swanson, 2008), Hof et al. (2000), Neuronames (Bowden and

Dubach, 2003), Paxinos and Watson (2006), Swanson (2004). For

example, for the ABA entity ‘Pontine gray’, the Neuronames lexicon

also contains several synonyms (e.g. ‘Nuclei pontis’) that are added

back to the corresponding ABA entry. This results in a 3-fold

increase in recall between ABA and ABA-SYN. To further improve

recall, ABA-SYN is manually augmented with brain region mentions

appearing frequently in scientific articles but not included in ABA-

SYN. Additionally, abbreviation expansion is performed on the input

text using a machine learning-based model [hidden Markov model,

Movshovitz-Attias and Cohen (2012)]. The same procedure for ABA

is applied to the BAMS ontology (Swanson, 2004).

The third brain region NER, BraiNER, extends the work from

French et al. (2009) and relies on a supervised machine learning

model [linear chain CRF (McCallum, 2002)]. The model is trained

on WhiteText (www.chibi.ubc.ca/WhiteText), a manually anno-

tated corpus of brain region mentions composed of 1377 PubMed

abstracts from the Journal of Comparative Neurology, containing

18 242 brain region mentions. Inter-annotator agreement was eval-

uated by French et al. (2009) by two curators for a subset of the

documents and reached 90.7% and 96.7% for strict and lenient

matching, respectively.

The model features from French et al. (2009) are primarily derived

from existing neuroanatomical lexica. These include, for example lex-

ical features such as the presence of directionality words like dorsal or

ventral or morphological features like the word length or whether it

contains only lowercase letters, numbers or special characters.

BraiNER uses the following additional features: the presence of

species information in the document (identified using the Linnaeus

NER (Gerner et al., 2010)] and the presence of a measure entity

[e.g. a measure like 10 mm or 10(-7) molar]. Indeed, a qualitative

analysis of the performance of BraiNER on full-text articles revealed

that measures were often incorrectly labeled as brain regions

(false positives). Furthermore, several other features are developed to

improve robustness on full-text articles, motivated by the large

amount of false positives when analyzing full-text articles, in particu-

lar when processing bibliographical information or tables.

2.2 Connectivity Extractors
Connectivity extractors are binary classifiers. They take as input a

sentence containing at least two brain region mentions (as identified

by the above NERs) and take a decision whether the sentence enun-

ciates a connection between these two brain regions. The models de-

veloped in this article focus on extracting connections with high

precision. They are limited to brain regions that are co-located

within the same sentence (no anaphora resolution) and do not

extract the directionality of the connection.

Three different approaches are developed to classify connectivity

statements (Fig. 1). (i) FILTER considers all possible co-occurrences

of brain regions and subsequently applies filters to remove unlikely

ones. More precisely, it starts with all permutations of brain regions

within a sentence and then keeps only nearest neighbors, that is:

only co-occurrences that are located closest to each other. After

that, co-occurrences in sentences longer than 500 characters are

removed, since longer sentences are unlikely to be meaningful sen-

tences. Similarly, sentences containing more than seven brain

regions are removed, since they are too complex to extract. These

filters were developed based on our experience with full-text articles

that can contain very long sentences or lists of brain regions. Finally,

only sentences containing one of the following trigger character

sequences are retained: afferent, efferent, project, connecti, pathway

and inputs. (ii) KERNEL relies on a supervised classifier [shallow

linguistic kernel (Giuliano et al., 2006), identical to French et al.

(2012)] that requires only shallow parsing information such as word

occurrences and part-of-speech tags. (iii) RULES consists of nine

rules of the kind ‘projection from the region A (of the region B) to

the region C and the region D’. Here, the strategy is to identify char-

acteristic sentence constructs and thus achieve a very high precision

at the cost of recall. Rules are manually crafted using the Apache

UIMA Ruta workbench (Kluegl et al., 2014). The Ruta workbench

enables a rapid and iterative development of lexical rules.

3 Experiments and results

We begin by quantitatively evaluating the performance of the brain

region NERs and connectivity extractors against annotated corpora.

We then build a database by applying these models on three differ-

ent corpora. We describe the database and conclude by performing

a qualitative evaluation of the database against the connectivity data

from ABA.

3.1 NERs evaluation
All five NERs described in Table 2 are evaluated against WhiteText

(French et al., 2009) (Table 3). Two types of evaluations are

performed: exact comparison (meaning that the span of a proposed

brain region must exactly match a manually annotated brain region)

and lenient comparison (meaning that the span of an identified brain

region may be equal or smaller than a manually annotated brain

region). When performing exact comparison, lexical-based NERs

score low on both precision and recall. For both NERs enriched

with synonyms (ABA-SYN and BAMS-SYN), recall is significantly

higher (21.9% and 17.5%, respectively). Using lenient comparison,

lexical-based NERs score much higher on precision (between 89.8%

and 92.1%). However, recall is low, even with synonyms (between

16.2% and 34.2%). One reason why lexical-based NERs do not

achieve perfect precision is that they wrongly label implicit brain

regions (e.g. they will label ‘midbrain’ in ‘midbrain ventral tegmen-

tal area’ or ‘midbrain lateral tegmental field’). Another reason is

that they sometimes label brain regions that are more specific

(e.g. ‘brachium of the superior colliculus’ was labeled, whereas the

gold-standard only includes ‘superior colliculus’).

For machine learning NERs, we first reproduce the results from

French et al. (2009), using the same model and features (github.com/

leonfrench/public/). This model is denoted BraiNER-W and its per-

formance is slightly higher than the results reported by French et al.

(2009) for exact comparison (83.6% precision against 81.3% and

Table 2. NERs for brain regions

NER name Description Brain regions Terms

ABA Lexicon from ABA Institute 1197 1197

ABA-SYN ABAþ automated synonyms

enrichment from other lexica

1197 3882

BAMS Lexicon from BAMS,

version Swanson (2004)

832 832

BAMS-SYN BAMSþ automated synonyms

enrichment from other lexica

832 2705

BraiNER Machine learning-based NER

(linear chain CRF)

(1) (1)
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76.4% recall against 76.1%). This can be explained by the differences

in pre-processing (tokenization, part-of-speech, abbreviation expan-

sion). For lenient comparison, results from BraiNER-F are slightly

worse, probably because we use a stricter lenient comparison criter-

ion. Finally, we evaluate BraiNER that includes additional model

features. Performance is slightly higher than BraiNER-W (e.g. F score

81.6% against 79.8% in strict comparison and 84.6% against 82.1%

in lenient comparison). However, differences are not statistically

significant. Nevertheless, qualitatively we found that the performance

of BraiNER is higher when analyzing full-text articles.

Compared with lexical-based NERs, both machine learning-

based NERs score slightly higher on precision, but have a much

higher recall (more than twice as much). However, the low recall of

lexical-based NERs is still acceptable for our purpose, since we

apply theses NERs on very large corpora and focus on precision.

3.2 Connectivity Extractors Evaluation
The connectivity extractors are evaluated on the WhiteText connect-

ivity corpus from French et al. (2012), that goes beyond the original

WhiteText corpus and contains 3097 manually annotated connectiv-

ity relations across 989 abstracts and 4338 sentences from

the Journal of Comparative Neurology. Inter-annotator agreement

reaches a precision and recall of 93.9% and 91.9%, respectively

(partially matching spans, two curators). In this evaluation, the loca-

tions of the brain region entities in the text are provided, so we are

only concerned with the evaluation of the extractors.

Table 4 lists the evaluation results. The baseline connectivity

extractor returns all permutations of two brain regions within a

sentence and has a perfect recall of 100% but a very low precision

of 9%. Note that French et al. (2012) estimated that over a forth of

all connectivity relations are formed with regions spanning different

sentences. Extracting connections that span sentences was not

considered and the evaluation is performed without accounting for

the relations spanning sentences. Subsequently, four filters are

applied and evaluated. The first two (filter if sentence is longer than

500 characters or contains more than 7 brain regions) do not signifi-

cantly improve precision on the evaluation corpus, but they proved

very effective when dealing with full-text articles. The next filter

requires certain trigger words (like project) to be present in the

sentence and improves the precision to 15%. The last filter (keeping

only nearest neighbors co-occurrences) improves the baseline preci-

sion (9%) 3-fold to 28%. When combining all filters (FILTERS),

almost half of the extracted connections are correct (45% precision).

However, only 31% of the connections are recalled.

For the machine learning model (KERNEL), 10-fold cross-valid-

ation with splits at document level is performed, resulting in a

precision of 60%. Recall (68%) is significantly higher than with

FILTERS. Finally, RULES (manually created rules) yields the highest

precision, at the cost of a very low recall. Still, this performance is

quite remarkable, considering its simplicity (only nine rules).

Ensemble of extractors is also considered to improve precision.

For example, the connections returned by all three extractors have a

highest precision of 82% at only 7% recall. For connections

returned by FILTERS or KERNEL, together with RULES, the

performance is 80% precision at 11% recall.

3.3 Database
The models presented in this article are applied to two large corpora

of biomedical literature. The resulting brain connectivity statements

are stored in a database and an interface is created to navigate and

make the results accessible to neuroscientists (see Fig. 1).

The two datasets consist of all PubMed article containing an

abstract (13.2 million in total) and 630 216 neuroscientific full-text

articles (Table 5). PubMed abstracts have the advantage to be avail-

able in large quantities and to capture the essential semantics of an

article. On the other hand, full-text articles represent a very import-

ant source of connectivity information, as they potentially contain

more connectivity statements. We found on average 6.4 times more

connections in full-text articles than in abstracts. The full-text

corpus used is focused on neuroscience and was created by aggregat-

ing articles from the personal libraries of all researchers in our

research institute. This process was facilitated by the massive collab-

orative use of Zotero (www.zotero.org). In addition, full-text

articles containing mentions of ABA brain regions were collected

Table 3. Performance comparison of brain region NER models against the WhiteText corpus (partially matching spans)

Model Exact comparison Lenient comparison

Precision Recall F score Precision Recall F score

ABA lexicon 58.4% 11.1% 18.6% 89.9% 16.9% 28.5%

ABA-SYN lexicon 58.4% 21.9% 31.9% 92.1% 34.2% 49.9%

BAMS lexicon 61.1% 11.0% 18.6% 90.7% 16.2% 27.5%

BAMS-SYN lexicon 61.3% 17.5% 27.2% 89.8% 25.5% 39.7%

WhiteText (French et al., 2009) 81.3% 76.1% 78.6% 91.6% 85.7% 88.6%

BraiNER-W (features from WhiteText) 83.6% (3.3) 76.4% (4.6) 79.8% (3.9) 87.1% (3.6) 77.8% (7.4) 82.1% (5.8)

BraiNER (with additional features) 84.6% (1.3) 78.8% (1.2) 81.6% (0.9) 88.4% (1.0) 81.0% (1.8) 84.6% (1.3)

For machine learning-based NERs [French et al. (2009) and BraiNER], average values over 8-fold cross validation with splits at document level and

5 repetitions, including standard deviation in parenthesis where appropriate.

Table 4. Evaluation of extraction models against the WhiteText

corpus

Extractor Prec. Recall F score

All co-occurrences (all permutations) 9% 100% 16%

Filter sentence> 500 characters 10% 93% 18%

Filter sentence with> 7 brain regions 11% 80% 19%

Keep if contain trigger words 15% 53% 23%

Keep nearest neighbor co-occurrence 28% 51% 36%

All filters (FILTERS) 45% 31% 37%

Shallow linguistic kernel (KERNEL) 60% 68% 64%

Ruta rules (RULES) 72% 12% 21%

FILTERS and KERNEL 66% 19% 29%

FILTERS and RULES 80% 7% 13%

KERNEL and RULES 81% 10% 18%

FILTERS and KERNEL and RULES 82% 7% 12%

(FILTERS or KERNEL) and RULES 80% 11% 19%
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from the PubMed Central Open Access Subset and from open access

journals related to neuroscience.

Connections are extracted using Bluima, an integrated suite of

software components for natural language processing (NLP) of neu-

roscientific literature (Richardet et al., 2013). The processing is dis-

tributed on a cluster and the extraction results are aggregated in a

database. The resulting database contains several million brain re-

gion mentions (Table 5). In the PubMed abstracts, 42, 50 and

189 000 connection pairs are extracted for ABA, BAMS and

BraiNER, respectively. For the full-text neuroscience corpus, 62, 72

and 279 000 connection pairs are extracted for ABA, BAMS and

BraiNER, respectively. Figure 2 highlights the overlap of the results

from all three extractors. For example, 31 736 connections are ex-

tracted uniquely by KERNEL, whereas all three extractors return

3846 connections. Thus, each extractor contributes to extracting a

different set of brain region connections, with a different perform-

ance. This will turn out to be useful to display connectivity data: the

connections that are returned by all three extractors have a higher

estimated precision and ought to be displayed at the top of the list of

proposed results.

The database is accessible through a web service, with a simple

web front end. It allows neuroscientists to search for a given region

and display all other connected regions. It also allows to provide a

feedback on the results for future model improvements.

Normalization and standardization of brain region entities identified

by BraiNER can be manually performed by the user (no morpho-

syntactic transformation).

3.4 Database evaluation against AMBCA
Results extracted from the literature (LIT) are evaluated against con-

nectivity data from the AMBCA. The AMBCA validation corpus

consists of the normalized connectivity data from 469 in vivo experi-

ments [See Oh et al. (2014), Supplementary Table S3 for the under-

lying data.]. Regions were filtered by two criteria (bigger than 50

voxels and containing enough data for the signal to be well linearly

separable), resulting in 213 selected regions (out of a total of 1204

regions in the complete ontology). Thus, AMBCA consists of a

square matrix of 213 brain regions, whose values represent

normalized ipsilateral connection strengths. In total, 16 954 brain

region pairs are reported as connected (37%) and 28 415 as not

connected.

The evaluation of LIT against AMBCA proved to be quite com-

plex. First, it is not possible to determine which articles are missing

in LIT (i.e. articles that should have been retrieved by LIT but were

missed). Therefore, it is not possible to correctly evaluate the recall

of LIT. Second, AMBCA contains 213 regions, whereas LIT con-

tains 451 regions, thus 238 regions from LIT cannot be evaluated

and were removed from the evaluation. Third, many ABA brain re-

gions never occur in the literature (mainly because they are very

specific, like ‘Anterior cingulate area, dorsal part, layer 2/3’). In

fact, half of the ABA regions (603 out of 1204) are never found in

the literature by the ABA lexical NERs. Forth, AMBCA uses one

single and systematic experimental method, whereas many different

methods and experimental settings are reported in scientific reports

from AMBCA, making the comparison problematic. Fifth, it is

important to highlight that the frequency of a brain region connec-

tion reported in scientific articles does not necessarily reflect the

physiological intensity of a connection; the former reflecting the

popularity of a region.

Despite all these limitations, the evaluation is highly relevant, as

it allows to compare our models with experimental data. Figure 3

illustrates the evaluation results. 904 brain region pairs are cor-

rectly predicted (present in LIT and connected in AMBCA) and 261

brain region pairs are incorrectly predicted (present in LIT but not

connected according to AMBCA), resulting in a 78% precision,

Table 5. Statistics of the corpora used, extracted brain regions and connections using all three extractors (FILTERS or KERNEL or RULES)

Corpus Corpus statistics Brain regions Connectivity statements

Documents Words ABA BAMS BraiNER ABA BAMS BraiNER

All PubMed abstracts 13 293 649 2.1� 109 1 705 549 1 918 561 1 992 747 41 965 50 331 188 994

Full-text neuroscience articles 630 216 6.1� 109 2 327 586 2 514 523 2 751 952 62 095 72 602 279 100

The number of documents and words refers to non-empty documents after pre-processing. Two generic terms from BAMS (brain and nerves) are omitted.

Fig. 2. Number of extracted connections for the three extractors, on PubMed

and full-text corpora using the ABA-SYN NER

AMBCA Pos
n=16,954

AMBCA Neg
n=28,415

LIT
n=7,949

LIT FP
n=261

LIT TP
n=904

Fig. 3. Evaluation against AMBCA. AMBCA contains 16 954 distinct connected

brain region pairs (AMBCA Pos) and 28 415 unconnected pairs (AMBCA Neg).

Connectivity data extracted from the literature contain 7949 distinct con-

nected brain region pairs (LIT), of which 904 are connected in AMBCA (LIT

TP) and 261 are not connected in AMBCA (LIT TN)
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which is an impressively good result regarding the five previously

mentioned limitations of this evaluation. In comparison, the preci-

sion of co-mentioned brain region mentions (two brain regions

within the same sentence, without any filtering) is 67%. By thresh-

olding co-mentions to those predicted at least four times, precision

reaches 72%, suggesting that frequent co-mentions can successfully

predict connectivity.

The 6784 brain region pairs present in LIT but not in AMBCA

(represented as the blue square with white background in Fig. 3) are

valuable connections that might complement experimental datasets

like AMBCA. However, it is impossible to quantitatively evaluate

these brain regions because of the lack of objective reference.

Furthermore, when using another NER like BrainNER, even more

brain regions (not present in AMBCA) would be retrieved, resulting

in an even larger size of LIT.

Figure 4 shows the in vivo connectivity matrix from AMBCA

(left), the symmetrized matrix from AMBCA (middle, required, to

compare against the NLP models that do not extract directionality)

and the in litero connectivity matrix extracted from the literature

(LIT, right). The LIT matrix is much sparser than AMBCA, as was

previously noted. However, both matrices exhibit a similar struc-

ture. To evaluate this similarity, the precision between LIT and

AMBCA (symmetrized) matrices are compared against 1000 ran-

dom matrices created by shuffling the brain region names in the

same way for rows and columns. That ensures symmetry with the

same node degree distribution and density. LIT is significantly closer

to AMBCA than the random matrices (P<0.01).

No significant difference in precision can be observed between

the connections originating from abstracts and the ones from full-

text articles. Similarly, no significant difference in distance can be

observed between abstracts and full-text articles. We also evaluate

the depth of the extracted connections, measured as the mean num-

ber of parents (higher structures) in the ABA ontology. Connections

from AMBCA have a mean depth of 6.21, whereas connections

extracted from the literature have a depth of 5.08.

4 Discussion

We demonstrate that an exploitable brain region connectivity

database can be extracted from a very large amount of scientific

articles. Our models extract large amounts of connectivity data

from unstructured text and compare favorably against in vivo

connectivity data. They provide a helpful tool for neuroscientists

to facilitate the search and aggregation of brain connectivity data.

Our work builds on top of French et al. (2009, 2012) and French

and Pavlidis (2012) and extends it in several aspects: Our connectiv-

ity extraction model uses a combination of three different extrac-

tors, including a novel rule-based extractor that achieves

state-of-the-art precision. Models were applied to a comprehensive

corpus of over 8 billion words, consisting of all available PubMed

abstracts and a very large number of full-text articles related to

neuroscience. New model features and extraction filters were added

to improve robustness on full-text extraction. Connectivity results

are presented to neuroscientist in an interface to rapidly search and

evaluate connectivity results.

We highlight the fact that the presented models are not meant to

replace manual and individual evaluation of the connectivity be-

tween two brain regions. The objective is to speed-up this evaluation

and complement in vivo or manually curated connectivity data. We

assume that the extracted connectivity data will be reviewed and

validated before being included in further analysis or models.

Manual review is also mandatory since connection extractors have a

very limited capacity to differentiate between hypothesized or

contradictory connections, connections referred from another article

or connections supported by experimental data. Therefore, the effi-

cient representation of connectivity data is important, so that do-

main experts can rapidly evaluate it.

A drawback of manual search (as it is most commonly per-

formed for literature search) is the inability to provide feedback on

search results. More that 3 million manual searches are performed

daily on the PubMed web site (www.nlm.nih.gov/services/pubmed_

searches.html). Yet, a manual search performed by a researcher will

neither improve future searches nor contribute to the building and

curation of a structured knowledge base. In contrast, our database

interface allows researcher to rate search results (collaborative filter-

ing). Once enough feedback data are collected, the models can be re-

trained to achieve even higher performance.

This study highlights the differences in complexity and perform-

ance between machine learning and rule-based approaches. The for-

mer delivers superior performance but requires a significantly more

complex setup, in particular in terms of knowledge required (model

and feature selection) and time for corpus annotation and model

training. On the other hand, rule-based approaches are much

simpler and require less time to develop. They are also less tightly

Fig. 4. Comparison of the inter-region connectivity matrices, renormalized between 0 (white) and 1 (blue). Rows and columns correspond to ABA brain regions.

Left: connection matrix from AMBCA (ipsilateral), using ABA’s inter-region connectivity model, with values representing a combination of connection strength

and statistical confidence [see Fig. 4a of Oh et al. (2014)]. Middle: same matrix from AMBCA, but symmetrized (connection directionality is ignored, since the NLP

models do not extract directionality). Right: connection matrix from the results extracted from the literature (LIT) with values representing the number of

extracted connectivity statements, weighted by the estimated precision of each connectivity extractor
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bound to the domain they are applied to. For example, the FILTERS

extractor (Section 3.2) could be applied to relationship extraction

between other entities (like neurons or proteins) without significant

modification. However, the performance of rule-based approaches

is significantly lower, especially in terms of recall.

In the future, we plan to extend the developed rule-based extrac-

tors with a large-scale data-driven strategy. We also plan to apply

the presented models to support the selection of relevant seed

regions when performing magnetic resonance imaging experiments.
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workers for developing the WhiteText annotated corpus.

Funding

This research was supported by the European Union Seventh Framework

Programme [FP7/2007-2013] under grant agreement no. 604102 (HBP).

Conflict of Interest: none declared.

References

Bota,M. and Swanson,L.W. (2008) BAMS neuroanatomical ontology: design

and implementation. Front. Neuroinform., 2, 2.

Bowden,D. and Dubach,M. (2003) NeuroNames 2002. Neuroinformatics, 1,

43–59.

Burns,G. et al. (2008) Intelligent approaches to mining the primary

research literature: Techniques, systems, and examples. In: Computational

Intelligence in Medical Informatics. Vol. 85. Springer, Berlin, pp. 17–50.

Campos,D. et al. (2013) Gimli: open source and high-performance biomedical

name recognition. BMC Bioinformatics, 14, 54.

French,L. and Pavlidis,P. (2012) Using text mining to link journal articles to

neuroanatomical databases. J. Comp. Neurol., 520, 1772–1783.

French,L. et al. (2009) Automated recognition of brain region mentions in

neuroscience literature. Front. Neuroinform., 3.

French,L. et al. (2012) Application and evaluation of automated methods to

extract neuroanatomical connectivity statements from free text.

Bioinformatics, 28, 2963–2970.

Gerner,M. et al. (2010) Linnaeus: a species name identification system for

biomedical literature. BMC Bioinformatics, 11, 85.

Giuliano,C. et al. (2006) Exploiting shallow linguistic information for

relation extraction from biomedical literature. In: Proc. of the Eleventh

Conference of the European Chapter of the Association for Computational

Linguistics (EACL2006). Vol. 18, European Chapter of the Association for

Computational Linguistics, pp. 401–408.

Hof,P.R. et al. (2000) Mouse Brains. Comparative Cytoarchitectonic Atlas of

the C57BL/6 and 129/SV. Elsevier Science, Amsterdam.

Jessop,D. et al. (2011) OSCAR4: a flexible architecture for chemical text--

mining. J. Cheminform., 3, 41.

Kluegl,P. et al. (2014) UIMA ruta: Rapid development of rule-based informa-

tion extraction applications. Nat. Lang. Eng, 1–40.

Krallinger,M. et al. (2011) The protein-protein interaction tasks of

BioCreative III: classification/ranking of articles and linking bio-ontology

concepts to full text. BMC Bioinformatics, 12(Suppl. 8), S3.

McCallum,A.K. (2002) MALLET: a machine learning for language toolkit.

http://mallet.cs.umass.edu.

Movshovitz-Attias,D. and Cohen,W. (2012) Alignment-HMM-based extrac-

tion of abbreviations from biomedical text. In: Proceedings of the 2012

Workshop on Biomedical Natural Language Processing, Stroudsburg, PA,

pp. 47–55. Association for Computational Linguistics.

Oh,S.W. et al. (2014) A mesoscale connectome of the mouse brain. Nature,

508, 207–214.

Ohta,T. et al. (2013) Overview of the pathway curation (PC) task of bioNLP

shared task 2013. In: Proceedings of the BioNLP Shared Task 2013

Workshop, Association for Computational Linguistics, pp. 1–7.

Paxinos,G. and Watson,C. (2006) The Rat Brain in Stereotaxic Coordinates:

Hard Cover Edition. Academic Press; 6 edition (February 20, 2007).

Pyysalo,S. and Ananiadou,S. (2014) Anatomical entity mention recognition at

literature scale. Bioinformatics, 30, 868–875.

Richardet,R. et al. (2013) Bluima: a UIMA-based NLP toolkit for neuro-

science. In: Proceedings of the 3rd Workshop on Unstructured

Information Management Architecture, Darmstadt, Germany, 2013,

pp. 34–41, Gesellschaft für Sprachtechnologie und Computerlinguistik.

Swanson,L.W. (2004) Brain Maps: Structure of the Rat Brain. Elsevier

Academic Press, San Diego, Calif.

Brain connectivity extraction from neuroscientific literature 1647

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/10/1640/177648 by guest on 16 August 2022

.
e
leading to these results has 
received
funding
from
(
)
o
http://mallet.cs.umass.edu

	btv025-TF1
	btv025-TF2
	btv025-TF3

