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Large-Scale-Fading Decoding in Cellular Massive
MIMO Systems with Spatially Correlated Channels
Trinh Van Chien, Student Member, IEEE, Christopher Mollén, Emil Björnson, Senior Member, IEEE

Abstract—Massive multiple-input–multiple-output (MIMO)
systems can suffer from coherent intercell interference due to
the phenomenon of pilot contamination. This paper investigates
a two-layer decoding method that mitigates both coherent and
non-coherent interference in multi-cell Massive MIMO. To this
end, each base station (BS) first estimates the channels to intra-
cell users using either minimum mean-squared error (MMSE) or
element-wise MMSE (EW-MMSE) estimation based on uplink
pilots. The estimates are used for local decoding on each BS
followed by a second decoding layer where the BSs cooperate to
mitigate inter-cell interference. An uplink achievable spectral
efficiency (SE) expression is computed for arbitrary two-layer
decoding schemes. A closed-form expression is then obtained for
correlated Rayleigh fading, maximum-ratio combining, and the
proposed large-scale fading decoding (LSFD) in the second layer.
We also formulate a sum SE maximization problem with both
the data power and LSFD vectors as optimization variables.
Since this is an NP-hard problem, we develop a low-complexity
algorithm based on the weighted MMSE approach to obtain
a local optimum. The numerical results show that both data
power control and LSFD improve the sum SE performance over
single-layer decoding multi-cell Massive MIMO systems.

Index Terms—Massive MIMO, Large-Scale Fading Decoding,
Sum Spectral Efficiency Optimization, Channel Estimation.

I. Introduction

MASSIVE MIMO BSs, which are equipped with
hundreds of antennas, exploit channel reciprocity

to estimate the channel based on uplink pilots and
spatially multiplex a large number of users on the same
time–frequency resource [2], [3]. It is a promising technique
to meet the growing demand for wireless data traffic of
tomorrow [4], [5]. In a single-cell scenario, there is no
need for computationally heavy decoding or precoding
methods in Massive MIMO, such as successive interference
cancellation or dirty paper coding. Linear processing
schemes (e.g., zero-forcing combining) can effectively
suppress interference and noise if the BS is equipped with
a large number of antennas [6]. In a multi-cell scenario,
however, pilot-based channel estimation is contaminated by
the non-orthogonal transmission in other cells. This results
in coherent intercell interference in the data transmission,
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so-called pilot contamination [7], unless some advanced
processing schemes are used to suppress it [8]. Pilot
contamination causes the gain of having more antennas
to decrease and the SE of linear decoding methods, such
as maximum-ratio combining (MRC) or zero-forcing, to
saturate as the number of antennas grows.

Much work has been done to mitigate the effects of pilot
contamination. The first and intuitive approach to mitigate
pilot contamination is to increase the length of the pilots.
In practical networks, however, it is not possible to make all
pilots orthogonal due to the limited channel coherence block
[9]. Hence, there is a trade-off between having longer pilots
and low pilot overhead. Another method to mitigate pilot
contamination is to assign the pilots in a way that reduces
the contamination [10], since only a few users from other
cells cause substantial contamination. The pilot assignment
is a combinatorial problem and heuristic algorithms with
low computational complexity can be developed to mitigate
the pilot contamination. In [11], a greedy pilot assignment
method is developed that exploits the statistical channel
information and mutual interference between users. Pilot
assignment approaches still suffer from asymptotic SE
saturation since we only change one contaminating user
for a less contaminating user. A third method is to utilize
the spatial correlation to mitigate the coherent interference
using multi-cell minimum-mean-square error (M-MMSE)
decoding [8], but this method has high computational
complexity.

Instead of combating pilot contamination, one can
utilize it using more advanced decoding schemes [12]–[14].
This approach was initially called pilot contamination
decoding since the BSs cooperate in suppressing the pilot
contamination [12]. The original form of this technique
used simplistic MRC, which does not suppress interference
very well, thus it required a huge number of antennas
to be effective [13]. The latest version of this decoding
design, called large-scale fading decoding (LSFD) [14],
was designed to be useful also with a practical number
of antennas. In the two-layer LSFD framework, each BS
applies an arbitrary local linear decoding method in the first
layer, preferably one that suppresses intra-cell interference.
The result is then gathered at a common central station
that applies so-called LSFD vectors in a second-layer
to combine the signals from multiple BSs to suppress
pilot contamination and inter-cell interference. This new
decoding design overcomes the aforementioned limitations
in [12] and attains high SE even with a limited number of
BS antennas.
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To explain why LFSD vectors are necessary to mitigate
pilot contamination, we consider a toy example comprising
of two BSs, each serving one user with the same index
as their BS. There are four different channels and hi,j ∼
CN (0, βi,jIM ) denotes the channel between BS i and user j
for i, j ∈ {1, 2}. Let si denote the desired signal from the
user in cell i. When using single-layer decoding with MRC,
the noise vanishes as M → ∞, but pilot contamination
remains [3]. The resulting detected signals ŝ1, ŝ2 at the
two BSs are then given by

[
ŝ1
ŝ2

]
=

[
β1,1s1 + β1,2s2
β2,1s1 + β2,2s2

]
=

[
β1,1 β1,2

β2,1 β2,2

]

︸ ︷︷ ︸
,B

[
s1
s2

]
. (1)

Since each BS observes a linear combination of the two
signals, the asymptotic SE achieved with single-layer
decoding is limited due to interference. However, in a
two-layer decoding system, a central station can process
ŝ1 and ŝ2 to remove the interference as follows:

B−1

[
ŝ1
ŝ2

]
= B−1B

[
s1
s2

]
=

[
s1
s2

]
. (2)

The rows of the inverse matrix B−1 are called the LFSD
vectors and only depends on the statistical parameters
β1,1, β1,2, β2,1, β2,2, so the central station does not need
to know the instantaneous channels. Since the resulting
signals in (2) are free from noise and interference, the
network can achieve an unbounded SE as M → ∞.

This motivating example, adapted from [12], exploits
the fact that the channels are spatially uncorrelated
and requires an infinite number of antennas. The prior
works [12], [14] are only considering uncorrelated Rayleigh
fading channels and rely on the particular asymptotic
properties of that channel model. The generalization
to more practical correlated channels is non-trivial and
has not been considered until now.1 In this paper, we
consider spatially correlated channels with a finite number
of antennas. We stress that these generalizations are
practically important: if two-layer decoding will ever be
implemented in practice, the channels will be subject to
spatial correlation and the BSs will have a limited number
of antennas.

A. Main Contributions
In this paper, we generalize the LSFD method from

[12], [14] to a scenario with correlated Rayleigh fading and
arbitrary first-layer decoders, and also develop a method
for data power control in the system. We evaluate the
performance by deriving an SE expression for the system.
Our main contributions are summarized as follows:

1The concurrent work [15] appeared just as we were submitting
this paper. It contains the uplink SE for correlated Rayleigh fading
described by the one-ring model and MMSE estimation, while we
consider arbitrary spatial correlation and uses two types of channel
estimators. Moreover, they consider joint power control and LFSD
for max-min fairness, while we consider sum SE optimization, making
the papers complementary.

• An uplink per-user SE is derived as a function of
the second-layer decoding weights. A closed-form
expression is then obtained for correlated Rayleigh
fading and a system that uses MRC in the first
decoding layer and an arbitrary choice of LSFD in
the second layer. The second-layer decoding weights
that maximize the SE follows in closed form.

• An uplink sum SE optimization problem with power
constraints is formulated. Because it is non-convex
and NP-hard, we propose an alternating optimization
approach that converges to a local optimum with
polynomial complexity.

• Numerical results demonstrate the effectiveness of
two-layer decoding for Massive MIMO communication
systems with correlated Rayleigh fading.

The rest of this paper is organized as follows: Multi-cell
Massive MIMO with two-layer decoding is presented in
Section II. An SE for the uplink together with the optimal
LSFD design is presented in Section III. A maximization
problem for the sum SE is formulated and a solution is
proposed in Section IV. Numerical results in Section V
demonstrate the performance of the proposed system.
Section VI states the major conclusions of the paper.

Reproducible research: All the simulation results
can be reproduced using the Matlab code and
data files available at: https://github.com/emilbjornson/
large-scale-fading-decoding

Notation: Lower and upper case bold letters are used
for vectors and matrices. The expectation of the random
variable X is denoted by E{X} and the Euclidean norm
of the vector x by ‖x‖. The transpose and Hermitian
transpose of a matrix M are written as MT and MH,
respectively. The L × L-dimensional diagonal matrix
with the diagonal elements d1, d2, . . . , dL is denoted
diag(d1, d2, . . . , dL). Re(·) and Im(·) are the real and
imaginary parts of a complex number. ∇g(x)|x0

denotes the
gradient of a multivariate function g at x = x0. Finally,
CN (0,R) is a vector of circularly symmetric, complex,
jointly Gaussian distributed random variables with zero
mean and correlation matrix R.

II. System Model
We consider a network with L cells. Each cell consists

of a BS equipped with M antennas that serves K single-
antenna users.2 The M -dimensional channel vector in the
uplink between user k in cell l and BS l′ is denoted by
hl′

l,k ∈ C
M . We consider the standard block-fading model,

where the channels are static within a coherence block of
size τc channel uses and assume one independent realization
in each block, according to a stationary ergodic random
process. Each channel follows a correlated Rayleigh fading
model:

hl′

l,k ∼ CN
(
0,Rl′

l,k

)
, (3)

2In the uplink, the considered network consists of multiple inter-
fering single-input multiple-output (SIMO) channels. Such a setup
has been referred to as multiuser MIMO in the information theoretic-
literature for decades, which is why we adopt this terminology in the
paper.
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where Rl′

l,k ∈ C
M×M is the spatial correlation matrix of

the channel. The BSs know the channel statistics, but have
no prior knowledge of the channel realizations, which need
to be estimated in every coherence block.

A. Channel Estimation
As in conventional Massive MIMO [8], the channels are

estimated by letting the users transmit τp-symbol long
pilots in a dedicated part of the coherence block, called the
pilot phase. All the cells share a common set of τp = K
mutually orthogonal pilots {φφφ1, . . . ,φφφK}, where the pilot
φφφk ∈ C

τp spans τp symbols. Such orthogonal pilots are
disjointly distributed among the K users in each cell:

φφφH

kφφφk′ =

{
τp k = k′,

0 k 6= k′.
(4)

Without loss of generality, we assume that all the users in
different cells, which share the same index, use the same
pilot and thereby cause pilot contamination to each other
[3].

During the pilot phase, at BS l, the signals received
in the pilot phase are collectively denoted by the M ×
τp-dimensional matrix Yl and it is given by

Yl =

L∑

l′=1

K∑

k=1

√
p̂l′,kh

l
l′,kφ

H

k +Nl, (5)

where p̂l′,k is the power of the pilot of user k in cell l′ and
Nl is a matrix of independent and identically distributed
noise terms, each distributed as CN (0, σ2).

An intermediate observation of the channel from user k
to BS l is obtained through correlation with the pilot of
user k in the following way:

ỹl,k = Ylφk = τp
√
p̂l,kh

l
l,k+

L∑

l′=1
l′ 6=l

τp
√
p̂l′,kh

l
l′,k+ ñl,k, (6)

where ñl,k , Nlφφφk ∼ CN (0, τpσ
2IM ) are independent over

l and k. The channel estimate and estimation error of the
MMSE estimation of hl

l,k is presented in the following
lemma.

Lemma 1. If BS l uses MMSE estimation based on the
observation in (6), the estimate of the channel between
user k in cell l and BS l is

ĥl
l,k =

√
p̂l,kR

l
l,kΨΨΨ

−1
l,k ỹl,k, (7)

where ΨΨΨl,k = E{ỹl,k(ỹl,k)
H}/τp is given by

ΨΨΨl,k ,

L∑

l′=1

τpp̂l′,kR
l
l′,k + σ2IM . (8)

The channel estimate is distributed as

ĥl
l,k ∼ CN

(
0, τpp̂l,kR

l
l,kΨΨΨ

−1
l,kR

l
l,k

)
, (9)

and the channel estimation error, ell,k , hl
l,k − ĥl

l,k, is
independently distributed as

ell,k ∼ CN
(
0,Rl

l,k − τpp̂l,kR
l
l,kΨΨΨ

−1
l,kR

l
l,k

)
. (10)

Proof. This lemma follows from adopting standard MMSE
estimation results from [16], [17, Section 3] to our system
model and notation.

Lemma 1 provides statistical information for the BS
to construct the decoding and precoding vectors for the
up- and downlink data transmission. However, to compute
the MMSE estimate, the inverse matrix of ΨΨΨl,k has to be
computed for every user, which can lead to a computational
complexity that might be infeasible when there are many
antennas. This motivates us to use the simpler estimation
technique called element-wise MMSE (EW-MMSE) [17].

To simplify the presentation, we make the standard
assumption that the correlation matrix Rl′

l,k has equal
diagonal elements, denoted by βl′

l,k. This assumption is
well motivated for elevated macro BSs that only observe
far-field scattering effects from every cell. However, EW-
MMSE estimation of the channel can also be done when
the diagonal elements are different. The generalization to
this case is straightforward. EW-MMSE estimation is given
in Lemma 2 together with the statistics of the estimates.

Lemma 2. If BS l uses EW-MMSE estimation and the
diagonal elements of the spatial correlation matrix of the
channel are equal, the channel estimate between user k in
cell l and BS l is

ĥl
l,k = ̺ll,kỹl,k, (11)

where

̺ll,k =

√
p̂l,kβ

l
l,k∑L

l′=1 τpp̂l′,kβl
l′,k + σ2

, (12)

and the channel estimate and estimation error of hl
l,k are

distributed as

ĥl
l,k ∼ CN

(
0, (̺ll,k)

2τpΨΨΨl,k

)
, (13)

ell,k ∼ CN
(
0,Rl

l,k − (̺ll,k)
2τpΨΨΨl,k

)
(14)

and are not independent.

Proof. The statistics of the estimate and estimation error
follow from straightforward computation of the correlation
matrices and the derivation is therefore omitted.

As compared to MMSE estimation, EW-MMSE estima-
tion simplifies the computations, since no inverse matrix
computation is involved. Moreover, each BS only needs to
know the diagonal of the spatial correlation matrices, which
are easier to acquire in practice than the full matrices.
We can also observe the relationship between two users
utilizing nonorthogonal pilots by a simple expression as
shown in Corollary 1.

Corollary 1. When the diagonal elements of the spatial
correlation matrix of the channel are equal, the two EW-
MMSE estimates ĥl

l,k and ĥl
l′′,k of the channels of users k

in cells l and l′′ that are computed at BS l are related as:

ĥl
l,k√

p̂l,kβl
l,k

=
ĥl
l′′,k√

p̂l′′,kβl
l′′,k

, (15)
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Fig. 1. Desired signals are detected by the two-layer decoding
technique.

where ĥl
l′′,k = ̺ll′′,kỹl,k with

̺ll′′,k =
√
p̂l′′,kβ

l
l′′,k/

(
L∑

l′=1

τpp̂l′,kβ
l
l′,k + σ2

)
. (16)

Corollary 1 mathematically shows that the channel
estimates of two users with the same pilot signal only
differ from each other by a scaling factor. Using EW-
MMSE estimation leads to severe pilot contamination that
cannot be mitigated by linear processing of the data signal
only, at least not with the approach in [8].

B. Uplink Data Transmission
During the data phase, it is assumed that user k in cell l′

sends a zero-mean symbol sl′,k with variance E{|sl′,k|2} =
1. The received signal at BS l is then

yl =

L∑

l′=1

K∑

k=1

√
pl′,kh

l
l′,ksl′,k + nl, (17)

where pl′,k denotes the transmit power of user k in cell l′.
Based on the signals in (17), the BSs decode the symbols
with the two-layers-decoding technique that is illustrated
in Fig. 1. The general idea of a two-layer decoding system is
that each BS decodes the desired signals from its coverage
area in the first layer. A central station is then collecting
the decoded signals of all users that used the same pilot
and jointly processes these signals in the second layer
to suppress inter-cell interference using LSFD vectors. In
detail, an estimate of the symbol from user k in cell l is
obtained by local linear decoding in the first layer as

s̃l,k = vH

l,kyl =

L∑

l′=1

K∑

k′=1

√
pl′,k′vH

l,kh
l
l′,k′sl′,k′ + vH

l,knl,

(18)
where vl,k is the linear decoding vector. The symbol
estimate s̃l,k generally contains interference and, in Massive
MIMO, the pilot contamination from all the users with
the same pilot sequence is particularly large. To mitigate
the pilot contamination, all the symbol estimates of the
contaminating users are collected in a vector

s̃k , [s̃1,k, s̃2,k, . . . , s̃L,k]
T ∈ C

L. (19)

After the local decoding, a second layer of centralized
decoding is performed on this vector using the LSFD
vector al,k , [a1l,k, a

2
l,k, . . . , a

L
l,k]

T ∈ C
L, where al

′

l,k is the
LSFD weight. The final estimate of the data symbol from
user k in cell l is then given by

ŝl,k = aHl,ks̃k =

L∑

l′=1

(al
′

l,k)
∗s̃l′,k. (20)

In the next section, we use the decoded signals ŝl,k
together with the asymptotic channel properties [17,
Section 2.5] to derive a closed-from expression of an uplink
SE.

III. Uplink Performance Analysis
This section first derives a general SE expression for each

user k in each cell l and a closed-form expression when
using MRC. These expressions are then used to obtain the
LSFD vectors that maximize the SE. The use-and-then-
forget capacity bounding technique [6, Chapter 2.3.4], [8,
Section 4.3] allows us to compute a lower bound on the
uplink ergodic capacity (i.e., an achievable SE). We first
rewrite (20) as

ŝl,k =

L∑

l′=1

(al
′

l,k)
∗
E{vH

l′,kh
l′

l,k}
√
pl,ksl,k

+

L∑

l′=1

(al
′

l,k)
∗

L∑

l′′=1
l′′ 6=l

E{vH

l′,kh
l′

l′′,k}
√
pl′′,ksl′′,k

+

L∑

l′=1

(al
′

l,k)
∗

L∑

l′′=1

(
vH

l′,kh
l′

l′′,k − E{vH

l′,kh
l′

l′′,k}
)√

pl′′,ksl′′,k

+

L∑

l′=1

(al
′

l,k)
∗

L∑

l′′=1

K∑

k′=1
k′ 6=k

√
pl′′,k′vH

l′,kh
l′

l′′,k′sl′′,k′

+

L∑

l′=1

(al
′

l,k)
∗vH

l′,knl′ , (21)

then by considering the first part of (21) as the desired
signal from user k in cell l while the remaining is effective
Gaussian noise, a lower bound on the uplink ergodic
capacity is shown in Lemma 3.
Lemma 3. A lower bound on the uplink ergodic capacity
is

Rl,k = max
{al′

l,k
}

(
1− τp

τc

)
log2 (1 + SINRl,k) , (22)

where the effective SINR, denoted by SINRl,k, is
SINRl,k = E{|DSl,k|2}/Dl,k, (23)

where Dl,k is given by

Dl,k = E{|PCl,k|2}+ E{|BUl,k|2}

+

L∑

l′=1

K∑

k′=1
k′ 6=k

E{|NIl′,k′ |2}+ E{|ANl,k|2}. (24)
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Here DSl,k, PCl,k, BUl,k, NIl′,k′ , and ANl,k stand for the
desired signal, the pilot contamination, the beamforming
gain uncertainty, the non-coherent interference, and the
additive noise, respectively, whose expectations are defined
as

E{|DSl,k|2} , pl,k

∣∣∣∣∣

L∑

l′=1

(al
′

l,k)
∗
E{vH

l′,kh
l′

l,k}
∣∣∣∣∣

2

, (25)

E{|PCl,k|2} ,

L∑

l′′=1
l′′ 6=l

pl′′,k

∣∣∣∣∣

L∑

l′=1

(al
′

l,k)
∗
E{vH

l′,kh
l′

l′′,k}
∣∣∣∣∣

2

, (26)

E{|BUl,k|2} ,

L∑

l′=1

pl′,kE

{∣∣∣∣∣

L∑

l′′=1

(al
′′

l,k)
∗

(
vH

l′′,kh
l′′

l′,k−

E{vH

l′′,kh
l′′

l′,k}
)∣∣∣∣∣

2}
, (27)

E{|NIl′,k′ |2} , pl′,k′E





∣∣∣∣∣

L∑

l′′=1

(al
′′

l,k)
∗vH

l′′,kh
l′′

l′,k′

∣∣∣∣∣

2


 , (28)

E{|ANl,k|2} , E





∣∣∣∣∣

L∑

l′=1

(al
′

l,k)
∗(ĥl′

l′,k)
Hnl′

∣∣∣∣∣

2


 . (29)

Note that the lower bound on the uplink ergodic capacity
in Lemma 3 can be applied to any linear decoding method
and any LSFD design.

To maximize the SE of user k in cell l is equivalent
to selecting the LSFD vector that maximizes a Rayleigh
quotient as shown in the proof of the following theorem.
This is the first main contribution of this paper.

Theorem 1. For a given set of pilot and data power
coefficients, the SE of user k in cell l is

Rl,k =

(
1− τp

τc

)
log2


1 + pl,kb

H

l,k

(
4∑

i=1

C
(i)
l,k

)−1

bl,k


 ,

(30)
where the matrices C

(1)
l,k ,C

(2)
l,k ,C

(3)
l,k ,C

(4)
l,k ∈ C

L×L and the
vector bl,k are defined as

C
(1)
l,k ,

L∑

l′=1
l′ 6=l

pl′,kbl′,kb
H

l′,k, (31)

C
(2)
l,k ,

L∑

l′=1

pl′,kE
{
b̃l′,kb̃

H

l′,k

}
, (32)

C
(3)
l,k , diag




L∑

l′=1

K∑

k′=1
k′ 6=k

pl′,k′E

{∣∣vH

1,kh
1
l′,k′

∣∣2
}
, . . . ,

L∑

l′=1

K∑

k′=1
k′ 6=k

pl′,k′E

{∣∣vH

L,kh
L
l′,k′

∣∣2
}

 , (33)

C
(4)
l,k , diag

(
σ2

E
{
‖v1,k‖2

}
, . . . , σ2

E
{
‖vL,k‖2

})
, (34)

and the vectors bl′,k, b̃l′,k ∈ C
L, ∀l′ = 1, . . . , L, are defined

as

bl′,k ,
[
E{vH

1,kh
1
l′,k}, . . . ,E{vH

L,kh
L
l′,k}

]T
, (35)

b̃l′,k ,
[
vH

1,kh
1
l′,k, . . . ,v

H

L,kh
L
l′,k

]T − bl′,k. (36)

In order to attain this SE, the LSFD vector is formulated
as

al,k =

(
4∑

i=1

C
(i)
l,k

)−1

bl,k, ∀l, k. (37)

Proof. The proof is available in Appendix B.

We stress that the LSFD vector in (37) is designed to
maximize the SE in (30) for every user in the network for a
given data and pilot power and a given first-layer decoder.
Note that Theorem 1 can be applied to practical correlated
Rayleigh fading channels with either MMSE or EW-MMSE
estimation and any conceivable choice of first-layer decoder.
This stands in contrast to the previous work [14], [18] that
only considered uncorrelated Rayleigh fading channels,
which are unlikely to occur in practice, and particular
linear combining methods that were selected to obtained
closed-form expressions. Theorem 1 explicitly reveals the
influence that mutual interference and noise have on the SE
when utilizing the optimal LFSD vector given in (37): C(1)

l,k

determines the amount of remaining pilot contamination
from the (L− 1) users using the same pilot sequence as
user k in cell l. The beamforming gain uncertainty is
represented by C

(2)
l,k , while C

(3)
l,k is the noncoherent mutual

interference from the remaining users and C
(4)
l,k represent

the additive noise.
The following theorem states a closed-form expression

of the SE for the case of MRC, i.e., vl,k = ĥl
l,k. This is

the second main contribution of this paper.

Theorem 2. When MRC is used, the SE in (22) of user k
in cell l is given by

Rl,k =

(
1− τp

τc

)
log2 (1 + SINRl,k) , (38)

where the SINR value is given in (39). The values bl′′l′,k, c
l′,k′

l′′,k ,
and dl′,k are different depending on the channel estimation
technique. MMSE estimation results in

bl
′′

l′,k =
√
τpp̂l′,kp̂l′′,ktr

(
ΨΨΨ−1

l′′,kR
l′′

l′′,kR
l′′

l′,k

)
, (40)

cl
′,k′

l′′,k = p̂l′′,ktr
(
Rl′′

l′′,kΨΨΨ
−1
l′′,kR

l′′

l′′,kR
l′′

l′,k′

)
, (41)

dl′,k = σ2p̂l′,ktr
(
ΨΨΨ−1

l′,kR
l′

l′,kR
l′

l′,k

)
, (42)

whereas EW-MMSE results in

bl
′′

l′,k =
√
τp̺

l′′

l′′,k̺
l′′

l′,ktr (ΨΨΨl′′,k) , (43)

cl
′,k′

l′′,k = (̺l
′′

l′′,k)
2tr
(
Rl′′

l′,k′ΨΨΨl′′,k

)
, (44)

dl′,k = (̺l
′

l′,k)
2σ2tr (ΨΨΨl′,k) . (45)

Proof. The proofs consist of computing the moments of
complex Gaussian distributions. They are available in
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SINRl,k =
pl,k

∣∣∣
∑L

l′=1(a
l′

l,k)
∗bl

′

l,k

∣∣∣
2

∑L
l′=1
l′ 6=l

pl′,k

∣∣∣
∑L

l′′=1(a
l′′

l,k)
∗bl

′′

l′,k

∣∣∣
2

+
∑L

l′=1

∑K
k′=1

∑L
l′′=1 pl′,k′ |al′′l,k|2c

l′,k′

l′′,k +
∑L

l′=1 |al
′

l,k|2dl′,k
. (39)

Appendix C and Appendix D for MMSE and EW-MMSE
estimation, respectively.

Theorem 2 describes the exact impact of the spatial
correlation of the channel on the system performance
through the coefficients bl

′′

l′,k, c
l′,k′

l′′,k , and dl′,k. It is seen that
the numerator of (39) grows as the square of the number
of antennas, M2, since the trace in (40) is the sum of M
terms. This gain comes from the coherent combination
of the signals from the M antennas. It can also be seen
from Theorem 2 that the pilot contamination in (20)
combines coherently, i.e., its variance—the first term in
the denominator that contains bl

′′

l,k—grows as M2. The
other terms in the denominator represent the impact of
non-coherent interference and Gaussian noise, respectively.
These two terms only grow as M . Since the interference
terms contain products of correlation matrices of different
users, the interference is smaller between users that have
very different spatial correlation characteristics [17].

The following corollary gives the optimal LSFD vector
al,k that maximizes the SE of every user in the network
for a given set of pilot and data powers, which is expected
to work well when each BS is equipped with a practical
number of antennas.

Corollary 2. For a given set of data and pilot powers, by
using MRC and LSFD, the SE in Theorem 2 is given in
the closed form as

Rl,k =

(
1− τp

τc

)
log2

(
1 + pl,kb

H

l,kC
−1
l,kbl,k

)
(46)

where Cl,k ∈ C
L×L and bl,k ∈ C

L are defined as

Cl,k ,

L∑

l′=1
l′ 6=l

pl′,kbl′,kb
H

l′,k + diag

(
L∑

l′=1

K∑

k′=1

pl′,k′cl
′,k′

1,k + d1,k,

. . . ,

L∑

l′=1

K∑

k′=1

pl′,k′cl
′,k′

L,k + dL,k

)
, (47)

bl′,k , [b1l′,k, . . . , b
L
l′,k]

T. (48)

The SE in (46) is obtained by using LSFD vector defined
as

al,k = C−1
l,kbl,k. (49)

Even though Corollary 2 is a special case of Theorem 1
when MRC is used, its contributions are two-fold: The
LSFD vector al,k is computed in the closed form which
is independent of the small-scale fading, so it is easy to
compute and store. Moreover, this LSFD vector is the
generalization of the vector given in [14] to the larger class
of correlated Rayleigh fading channels.

IV. Data Power Control and LFSD Design for Sum SE
Optimization

In this section, how to choose the powers {pl,k} (power
control) and the LSFD vector to maximize the sum SE
is investigated. The sum SE maximization problem for
a multi-cell Massive MIMO system is first formulated
based on results from previous sections. Next, an iterative
algorithm based on solving a series of convex optimization
problems is proposed to efficiently find a stationary point.

A. Problem Formulation
We consider sum SE maximization:

maximize
{pl,k≥0},{al,k}

L∑

l=1

K∑

k=1

Rl,k

subject to pl,k ≤ Pmax,l,k ∀l, k.
(50)

Using the rate (38) in (50), and removing the constant
pre-log factor, we obtain the equivalent formulation

maximize
{pl,k≥0},{al,k}

L∑

l=1

K∑

k=1

log2 (1 + SINRl,k)

subject to pl,k ≤ Pmax,l,k ∀l, k.
(51)

This can be shown to be a non-convex and NP-hard
problem using the same methodology as in [19], even if
the fine details will be different since that paper considers
small-scale multi-user MIMO systems with perfect channel
knowledge. Therefore, the global optimum is difficult to
find in general. Nevertheless, solving the ergodic sum
SE maximization (51) for a Massive MIMO system is
more practical than maximizing the instantaneous SEs
for a small-scale MIMO network and a given realization
of the small-scale fading [20], [21]. In contrast, the sum
SE maximization in (51) only depends on the large-scale
fading coefficients, which simplifies matters and allows the
solution to be used for a long period of time. Another key
difference from prior work is that we jointly optimize the
data powers and LSFD vectors.

Instead of seeking the global optimum to (51), which has
an exponential computational complexity, we will use the
weighted MMSE method [22], [23] to obtain a stationary
point to (51) in polynomial time. This is a standard method
to break down a sum SE problem into subproblems that
can be solved sequentially. We stress that the resulting
subproblems and algorithms are different for every problem
that the method is applied to, thus our solution is a novel
contribution. To this end, we first formulate the weighted
MMSE problem from (51) as shown in Theorem 3.
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Theorem 3. The optimization problem

minimize
{pl,k≥0},{al,k},
{wl,k≥0},{ul,k}

L∑

l=1

K∑

k=1

wl,kel,k − ln(wl,k)

subject to pl,k ≤ Pmax,l,k , ∀l, k,

(52)

where el,k is defined as

el,k , |ul,k|2



L∑

l′=1

pl′,k

∣∣∣∣∣

L∑

l′′=1

(al
′′

l,k)
∗bl

′′

l′,k

∣∣∣∣∣

2

+
L∑

l′=1

K∑

k′=1

L∑

l′′=1

pl′,k′ |al′′l,k|2cl
′,k′

l′′,k +
L∑

l′=1

|al′l,k|2dl′,k
)

− 2
√
pl,kRe

(
ul,k

(
L∑

l′=1

(al
′

l,k)
∗bl

′

l,k

))
+ 1, (53)

is equivalent to the sum SE optimization problem (51) in
the sense that (51) and (52) have the same global optimal
power solution {pl,k}, ∀l, k, and the same LSFD elements
{al′l,k}, ∀l, k, l′.
Proof. The proof is available in Appendix E.

B. Iterative Algorithm
We now find a stationary point to (52) by decomposing

it into a sequence of subproblems, each having a closed-
form solution. By changing variable as ρl,k =

√
pl,k, the

optimization problem (52) is equivalent to

minimize
{ρl,k≥0},{al,k},
{wl,k≥0},{ul,k}

L∑

l=1

K∑

k=1

wl,kel,k − ln(wl,k)

subject to ρ2l,k ≤ Pmax,l,k , ∀l, k,

(54)

where el,k is

el,k = |ul,k|2



L∑

l′=1

ρ2l′,k

∣∣∣∣∣

L∑

l′′=1

(al
′′

l,k)
∗bl

′′

l′,k

∣∣∣∣∣

2

+

L∑

l′=1

K∑

k′=1

L∑

l′′=1

ρ2l′,k′ |al′′l,k|2cl
′,k′

l′′,k +

L∑

l′=1

|al′l,k|2dl′,k
)

− 2ρl,kRe

(
ul,k

(
L∑

l′=1

(al
′

l,k)
∗bl

′

l,k

))
+ 1. (55)

As a third main contribution of this paper, the following
theorem provides an algorithm that relies on alternating
optimization to find a stationary point to (54).

Theorem 4. A stationary point to (54) is ob-
tained by iteratively updating {al,k, ul,k, wl,k, ρl,k}. Let
an−1
l,k , un−1

l,k , wn−1
l,k , ρn−1

l,k the values after iteration n− 1. At
iteration n, the optimization parameters are updated in
the following way:
• ul,k is updated as

u
(n)
l,k =

ρ
(n−1)
l,k

L∑
l′=1

a
l′,(n−1)
l,k (bl

′

l,k)
∗

ũ
(n−1)
l,k

, (56)

where the value ũ
(n−1)
l,k is defined in (57).

• wl,k is updated as

w
(n)
l,k =

(
e
(n)
l,k

)−1

, (58)

where e
(n)
l,k is defined as

e
(n)
l,k = |u(n)

l,k |2ũ
(n−1)
l,k

− 2ρ
(n−1)
l,k Re

(
u
(n)
l,k

(
L∑

l′=1

(a
l′,(n−1)
l,k )∗bl

′

l,k

))
+ 1. (59)

• al,k is updated as

a
(n)
l,k =

ũ
∗,(n)
l,k

L∑
l′=1

(a
l′,(n−1)
l,k )∗bl

′

l,k

(
C̃

(n−1)
l,k

)−1

bl,k, (60)

where C̃
(n−1)
l,k is computed as in (61).

• ρl,k is updated as in (62).
If we denote the stationary point to (54) that is attained by
the above iterative algorithm as n → ∞ by uopt

l,k , wopt
l,k , aoptl,k ,

and ρoptl,k , for all l, k, then the solution {aoptl,k }, {(ρ
opt
l,k )

2}, is
also a stationary point to the problem (51).

Proof. The proof is available in Appendix F.

The iterative algorithm is summarized in Algorithm 1.
With initial data power values in the feasible set, the
related LSFD vectors are computed by using Corollary 2.3
After that, the iterative algorithm in Theorem 4 is used
to obtain a stationary point to the sum SE optimization
problem (50). Algorithm 1 can be terminated when the
variation between two consecutive iterations are small. In
particular, for a given ǫ ≥ 0, the stopping criterion can,
for instance, be defined as

∣∣∣∣∣

L∑

l=1

K∑

k=1

R
(n)
l,k −

L∑

l=1

K∑

k=1

R
(n−1)
l,k

∣∣∣∣∣ ≤ ǫ. (63)

Because all the update states in Algorithm 1 are in closed
form, for an initial point in the feasible set we can compute
the exact number of arithmetic operations needed to
obtain a given ǫ-accuracy. For simplicity, let us only count
complex multiplications, divisions, and logarithms, which
are the main operations. Then, the number of arithmetic
operations that Algorithm 1 requires is

N
(
11L3K2 + 6L3K +

L4K + 53L2K

3

+ 3L2K2 + 16LK + 2
)
, (64)

where N is the number of iterations to reach the stationary
point. We obtain (64) by assuming that a Cholesky
decomposition is used to compute matrix inversion in
(60).

3We observe faster convergence with a hierarchical initialization
of ρ

(0)
l,k

, ∀l, k, than with an all-equal initialization. In simulations,
we initialize ρ

(0)
l,k

, ∀l, k, as uniformly distributed over the range
[

0,
√

Pmax,l,k

]

.
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ũ
(n−1)
l,k =

L∑

l′=1

(ρ
(n−1)
l′,k )2

∣∣∣∣∣

L∑

l′′=1

(a
l′′,(n−1)
l,k )∗bl

′′

l′,k

∣∣∣∣∣

2

+

L∑

l′=1

K∑

k′=1

L∑

l′′=1

(ρ
(n−1)
l′,k′ )2|al

′′,(n−1)
l,k |2cl

′,k′

l′′,k +

L∑

l′=1

|al
′,(n−1)
l,k |2dl′,k. (57)

C̃
(n−1)
l,k =

L∑

l′=1

(ρ
(n−1)
l′,k )2bl′,kb

H

l′,k + diag

(
L∑

l′=1

K∑

k′=1

(ρ
(n−1)
l′,k′ )2cl

′,k′

1,k + d1,k, . . . ,

L∑

l′=1

K∑

k′=1

(ρ
(n−1)
l′,k′ )2cl

′,k′

L,k + dL,k

)
. (61)

ρ
(n)
l,k = min




w
(n)
l,k Re

(
u
(n)
l,k

∑L
l′=1(a

l′,(n)
l,k )∗bl

′

l,k

)

∑L
l′=1 w

(n)
l′,k|u

(n)
l′,k|2

∣∣∣
∑L

l′′=1(a
l′′,(n)
l′,k )∗bl

′′

l,k

∣∣∣
2

+
∑L

l′=1

∑K
k′=1 w

(n)
l′,k′ |u(n)

l′,k′ |2
∑L

l′′=1 |a
l′′,(n)
l′,k′ |2cl,kl′′,k′

,
√
Pmax,l,k


 .

(62)

Algorithm 1 Alternating optimization approach for (54)
Input: Maximum data powers Pmax,l,k, ∀l, k; Large-
scale fading coefficients βl′

l,k, ∀, l, k, l′. Initial coefficients
ρ
(0)
l,k , ∀l, k. Set up n = 1 and compute a

(0)
l,k , ∀l, k, using

Corollary 2.
1. Iteration n:
1.1. Update u

(n)
l,k using (56) where ũ

(n−1)
l,k is computed

as in (57).
1.2. Update w

(n)
l,k using (58) where e

(n)
l,k is computed as

in (59).
1.3. Update a(n)l,k by using (60) where C(n−1)

l,k is computed
as in (61) and bl,k as in (48).

1.4. Update ρ
(n)
l,k by using (62).

2. If Stopping criterion (63) is satisfied → Stop. Other-
wise, go to Step 3.

3. Store the currently best solution: ρ(n)l,k and a
(n)
l,k , ∀l, k.

Set n = n+ 1, then go to Step 1.
Output: The optimal solutions: ρoptl,k = ρ

(n)
l,k ,a

opt
l,k =

a
(n)
l,k ∀l, k.

C. Sum SE Optimization Without Using LFSD

For completeness, we also study a multi-cell Massive
MIMO system that only uses one-layer decoding. This
scenario is considered as a benchmark to investigate the
improvements of our proposed joint data power control
and LSFD design in the previous section. Mathematically,
this is a special case of the above analysis, in which the
elements of the LSFD vector al,k, ∀l, k are defined as

al
′

l,k =

{
1, for l′ = l,

0, for l′ 6= l.
(65)

With the LSFD vector fixed, the SE for each user in the
network is a function only of the data power coefficients and
it saturates when the number of BS antennas is increased
without bound. The SE can, thus, only be improve through
data power control. For this communication scenario, the

problem (54) becomes

minimize
{ρl,k≥0},{wl,k≥0},{ul,k}

L∑

l=1

K∑

k=1

wl,kel,k − ln(wl,k)

subject to ρ2l,k ≤ Pmax,l,k , ∀l, k,
(66)

where el,k is defined as

el,k ,|ul,k|2
(

L∑

l′=1

ρ2l′,k|bll′,k|2 +
L∑

l′=1

K∑

k′=1

ρ2l′,k′c
l′,k′

l,k + dl,k

)

− 2ρl,kRe
(
ul,kb

l
l,k

)
+ 1.

(67)
The alternating optimization approach in Algorithm 1

can also be applied to the problem in (66) to obtain a
stationary point as shown in the following corollary.

Corollary 3. A stationary point to (66) is obtained by
iteratively updating {ul,k, wl,k, ρl,k}. At iteration n, these
optimization parameters are updated as

• ul,k is updated as

u
(n)
l,k =

ρ
(n−1)
l,k (bll,k)

∗

ũ
(n−1)
l,k

, (68)

where ũ
(n−1)
l,k is computed as

ũ
(n−1)
l,k =

L∑

l′=1

(ρ
(n−1)
l′,k )2|bll′,k|2

+

L∑

l′=1

K∑

k′=1

(ρ
(n−1)
l′,k′ )2cl

′,k′

l,k + dl,k. (69)

• wl,k is updated as:

w
(n)
l,k =

(
e
(n)
l,k

)−1

, (70)

where e
(n)
l,k is computed as

e
(n)
l,k = |u(n)

l,k |2ũ
(n−1)
l,k − 2ρ

(n−1)
l,k Re

(
u
(n)
l,k b

l
l,k

)
+1. (71)

• ρl,k is updated as

ρ
(n)
l,k = min

(
ρ̃
(n)
l,k ,

√
Pmax,l,k

)
, (72)
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where

ρ̃
(n)
l,k ,

w
(n)
l,k Re

(
u
(n)
l,k b

l
l,k

)

L∑
l′=1

w
(n)
l′,k|u

(n)
l′,k|2

∣∣∣bl′l,k
∣∣∣
2

+
L∑

l′=1

K∑
k′=1

w
(n)
l′,k′ |u(n)

l′,k′ |2cl,kl′,k′

.

(73)

After initializing the data power coefficients to a point
in the feasible set, Corollary 3 provides closed-form
expressions to update each variable in the optimization (66)
iteratively. This benchmark only treats the data powers
as optimization variables, so it is a simplification of
Algorithm 1.

V. Numerical Results
To demonstrate the effectiveness of the proposed algo-

rithms, we consider a wrapped-around cellular network
with four cells as illustrated in Fig. 2. The distance between
user k in cell l′ and BS l is denoted by dll′,k. The users
in each cell are uniformly distributed over the cell area
that is at least 35 m away from the BS, i.e. dll′,k ≥ 35 m.
Monte-Carlo simulations are done over 300 random sets of
user locations, for almost figures, but Fig. 10 is obtained
by 3000 random sets of user locations which the moments
of complex Gaussian distributions are computed by 1000
random realizations of small-scale fading,

We model the system parameters and large-scale fading
similar to the 3GPP LTE specifications [24]. The system
uses 20MHz of bandwidth, the noise variance is −96 dBm,
and the noise figure is 5dB. The large-scale fading
coefficient βl′

l,k in decibel is computed as
[
βl′

l,k

]

dB
= −148.1− 37.6 log10

(
dl

′

l,k/1 km
)
+ zl

′

l,k, (74)

where the decibel value of the shadow fading, zl
′

l,k, has
a Gaussian distribution with zero mean and standard
derivation 7. The spatial correlation matrix of the channel
from user k in cell l to BS l′ is described by the exponential
correlation model, which models a uniform linear array
[25]:

Rl′

l,k = βl′

l,k




1 rl
′,∗
l,k · · · (rl

′,∗
l,k )M−1

rl
′

l,k 1 · · · (rl
′,∗
l,k )M−2

...
... . . . ...

(rl
′

l,k)
M−1 (rl

′

l,k)
M−2 · · · 1



,

(75)
where the correlation coefficient rl

′

l,k = ςejθ
l′

l,k , the cor-
relation magnitude ς is in the range [0, 1] and the user
incidence angle to the array boresight is θl

′

l,k.
We assume that the power is fixed to 200mW for each

pilot symbol and it is also the maximum power that
each user can allocate to a data symbol, i.e., Pmax,l,k =
200mW. Extensive numerical results will be presented from
the following methods with either MMSE or EW-MMSE
estimation:
(i) Single-layer decoding system with fixed data power:

Each BS uses MRC for data decoding for the users

in the own cell, and all users transmit data symbols
with the same power 200mW.

(ii) Single-layer decoding system with data power control:
This benchmark is similar to (i), but the data powers
are optimized using the weighted MMSE algorithm
in Corollary 3.

(iii) Two-layer decoding system with fixed data power and
LSFD vectors: The network deploys the two-layer
decoding as shown in Fig. 1, using MRC and LSFD.
The data symbols have fixed power 200mW and the
LSFD vectors are computed using Corollary 2.

(iv) Two-layer decoding system with fixed data power and
approximate LSFD vectors: This benchmark is similar
to (iii), but the LSFD vectors are computed using
only the diagonal elements of the channel correlation
matrices. This allows us to study how inaccurate LSFD
vectors degrade sum SE.

(v) Two-layer decoding system with optimized data power
and LSFD vectors: This benchmark is similar to (iii),
but the data powers and LSFD vectors are computed
using the weighted MMSE algorithm as in Theorem 4.

(vi) Two-layer decoding system with optimized data power
and approximate LSFD vectors: This benchmark is
similar to (v), but the LSFD vectors are computed
by Corollary 2 based on only the diagonal coefficients
of the channel correlation matrices.

A. Convergence
Fig. 3 shows the convergence of the proposed methods

for sum SE optimization in Theorem 4 and Corollary 3 for
both MMSE and EW-MMSE estimation. From the initial
data powers, in the feasible set, updating the optimization
variables gives improved sum SE in every iteration. For
a system that uses MMSE estimation and LSFD, the sum
SE per cell is about 22.2% better at the stationary point
than at the initial point. The corresponding improvement
for the system that uses EW-MMSE estimation is about
24.7%. By using MMSE estimation, the two-layer decoding
system gives 2.4% better sum SE than a system with single-
layer decoding. The corresponding gain for EW-MMSE
estimation is up to 7.5%. Besides, MMSE estimation gives
an SE that is up to 12.1% higher than EW-MMSE. The
proposed optimization methods need around 100 iterations
to converge, but the complexity is low since every update
in the algorithm consists of evaluating a closed-form
expression.

The approximation in (vi) of the channel correlation
matrix as diagonal breaks the convergence statement in
Theorem 4, so it is not included in Fig. 3. Hereafter, when
we consider (vi) for comparison, we select the highest sum
SE among 500 iterations.

B. Impact of Spatial Correlation
Figs. 4 and 5 show the sum SE per cell as a function

of the channel correlation magnitude ς for a multi-cell
Massive MIMO system using either MMSE or EW-MMSE
estimation. First, we observe the large gains in sum SE
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Fig. 2. A wrapped-around cellular network used for simulation. Fig. 3. Convergence of the proposed sum SE optimization with
M = 200, K = 5, and ς = 0.8.

Fig. 4. Sum SE per cell [b/s/Hz] versus different correlation
magnitudes. The network uses MMSE estimation, M = 200, and
K = 5.

Fig. 5. Sum SE per cell [b/s/Hz] versus different correlation
magnitudes. The network uses EW-MMSE estimation, M = 200,
and K = 5.

attained by using LSFD detection. With MMSE estimation,
the sum SE increases with up to 7.5% in the case of
equally fixed data powers, while that gain is about 7.9%
for jointly optimizing data powers and LSFD vectors. The
same maximum gains are observed when using EW-MMSE
estimation, since these gains occur when ς = 0 (in which
case MMSE and EW-MMSE coincide). The performance
of EW-MMSE estimation is worse than that of MMSE
when the correlation magnitude is increased, because EW-
MMSE does not use the knowledge of the spatial correlation
to improve the estimation quality. For example, MMSE
estimation obtains 6.68% and 9.91% higher SE than EW-
MMSE with and without data power control, respectively.
The advantage of EW-MMSE is the reduced computational
complexity.

Interestingly, Figs. 4 and 5 indicate that it is suf-
ficient to use only the large-scale fading coefficients
when constructing the LSFD vectors in many scenarios.
Specifically, in the system with EW-MMSE estimation,
the approximate LSFD vectors yield almost the same
sum SE as the optimal ones. Meanwhile, in the case of
MMSE estimation, the loss from the approximation of

LSFD vectors, which are only based on the diagonal values
of channel correlation matrices, grows up to 6.7% when
having a correlation magnitude of 0.8. In comparison to
MMSE, increasing the spatial correlation does not improve
the performance of the approximate LFSD vectors when
using EW-MMSE estimation, since it does not utilize the
spatial correlation in the estimation phase. Consequently,
MMSE and EW-MMSE perform almost equally with the
maximum difference 0.71%.

Moreover, the performance is greatly improved when the
data powers are optimized. The gain varies from 17.9% to
20.7%. The gap becomes larger as the channel correlation
magnitude increases. This shows the importance of doing
joint data power control and LSFD optimization in Massive
MIMO systems with spatially correlated channels.

C. Impact of Number of Antennas and Users
Figs. 6 and 7 show the sum SE per cell as a function

of the number of BS antennas with MMSE and EW-
MMSE estimation, respectively. Two-layer decoding gives
improvements in all the cases. In case of MMSE estimation,
by increasing the number of BS antennas from 100 to 300,
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Fig. 6. Sum SE per cell [b/s/Hz] versus different number of BS
antennas. The network uses MMSE estimation, K = 5, and ς = 0.5.

Fig. 7. Sum SE per cell [b/s/Hz] versus different number of BS
antennas. The network uses EW-MMSE estimation, K = 5, and
ς = 0.5.

Fig. 8. Sum SE per cell [b/s/Hz] versus different number of users
per cell. The network uses MMSE estimation, M = 200, and ς = 0.5.

Fig. 9. Sum SE per cell [b/s/Hz] versus different number of users
per cell. The network uses EW-MMSE estimation, M = 200, and
ς = 0.5.

the gain of using LSFD increases from 4.0% to 7.7% with
optimized data power, and from 3.8% to 6.8% with equal
data power. In case of EW-MMSE estimation and fixed
transmitted power level, LSFD increase the sum SE by
5.5% to 8.6% compared to using only MRC. Besides, by
optimizing the data powers, the gain from using LSFD is
between 5.5% and 9.4%. Among all considered scenarios,
MMSE estimation provides up to 4.6% higher sum SE
than EW-MMSE.

Figs. 8 and 9 show the sum SE per cell as a function of
the number of users per cell when using MMSE and EW-
MMSE estimation, respectively. The figures demonstrate
how the gain from power control increases with the number
of users. The gain grows from 5.2% for two users to 35.8%
for for ten users. The approximated version of LSFD
detection works properly in all tested scenarios, in the
sense that the maximum loss in SE is only up to 2.9%. In
these figures, MMSE provides up to 5% higher SE than
EW-MMSE.

10 15 20 25 30 35

Sum SE per cell [b/s/Hz]

0

0.2

0.4

0.6
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1

RZF
MRC

Fig. 10. CDF of sum SE per cell [b/s/Hz] for MRC and RZF. The
network uses M = 200,K = 5, ς = 0.5, and MMSE estimation.

D. Performance of Regularized Zero-Forcing

Fig. 10 compares the cumulative distribution function
(CDF) of the sum SE per cell when using either MRC
or RZF in the first layer. MMSE estimation is used for
channel estimation. An equal pilot and data power of 200
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mW is allocated to each transmitted symbol. We first
observe that RZF achieves much higher SE than MRC.
The performance gain is 67.2% and 76.6% with single-
layer and two-layer decoding, respectively. Because RZF
cancels non-coherent interference effectively at the first
layer, the second layer can improve the sum SE by 11.80%.
Meanwhile, the improvement is only 5.84% if MRC is used.

VI. Conclusion
This paper has investigated the performance of the

LSFD design in mitigating mutual interference for multi-
cell Massive MIMO systems with correlated Rayleigh fading.
This decoding design is deployed as a second decoding
layer to mitigate the interference that remains after
classical linear decoding. Numerical results demonstrate the
effectiveness of the LSFD in reducing pilot contamination
with the improvement of sum SE for each cell up to about
10% in the tested scenarios. We have also investigated
joint data power control and LSFD design, which efficiently
improves the sum SE of the network. Even though the sum
SE optimization is a non-convex and NP-hard problem,
we proposed an iterative approach to obtain a stationary
point with low computational complexity. Numerical results
showed improvements of sum SE for each cell up to more
than 20% with using the limited number of BS antennas.

Appendix A
Useful Lemma and Definition

Lemma 4 (Lemma 2 in [26]). Let a random vector be
distributed as u ∼ CN (0,ΛΛΛ) and consider an arbitrary,
deterministic matrix M. It holds that

E{|uHMu|2} = |tr(ΛΛΛM)|2 + tr(ΛΛΛMΛΛΛMH). (76)

Definition 1 (Stationary point, [27]). 4 Consider the
optimization problem

minimize
x∈X

g(x), (77)

where the feasible set X is convex and g(x) : Rn → R is
differentiable. A point y ∈ X is a stationary point to the
optimization problem (77) if the following property is true
for all x ∈ X :

(x− y)T∇g(x)|y ≥ 0. (78)

Note that a stationary point y of g(x) can be obtained by
solving the equation ∇g(x) = 0.

Appendix B
Proof of Theorem 1

The numerator of (23) is reformulated into

E{|DSl,k|2} = pl,k|aHl,kbl,k|2. (79)

4Definition 1 guarantees the existence of at least one stationary
point for any non-convex problem as long as the feasible set is convex.
The stationary point is even the global optimum if (77) is a convex
problem.

Meanwhile, the pilot contamination term in the denomi-
nator of (23) is rewritten as

E{|PCl,k|2} =

L∑

l′′=1
l′′ 6=l

pl′′,k

∣∣∣∣∣

L∑

l′=1

(al
′

l,k)
∗
E{vH

l′,kh
l′

l′′,k}
∣∣∣∣∣

2

=

L∑

l′′=1
l′′ 6=l

pl′′,ka
H

l,kbl′′,kb
H

l′′,kal,k

= aHl,kC
(1)
l,kal,k.

(80)

The beamforming gain uncertainty term in the denominator
of (23) is rewritten as

E{|BUl,k|2} = aHl,kC
(2)
l,kal,k. (81)

Similarly, the non-coherent interference term in the de-
nominator is computed as

L∑

l′=1

K∑

k′=1
k′ 6=k

E{|NIl′,k′ |2}

=

L∑

l′=1

K∑

k′=1
k′ 6=k

∣∣∣∣∣

L∑

l′′=1

(al
′′

l,k)
∗√pl′,k′vH

l′′,kh
l′′

l′,k′

∣∣∣∣∣

2

= aHl,kC
(3)
l,kal,k

(82)

and the additive noise term is computed as

E{|ANl,k|2} = E





∣∣∣∣∣

L∑

l′=1

(al
′

l,k)
∗vH

l′,knl′

∣∣∣∣∣

2




= aHl,kC
(4)
l,kal,k.

(83)

The lower-bound on the uplink capacity given in Lemma 3
is written as

Rl,k =

(
1− τp

τc

)
log2


1 +

pl,k|aHl,kbl,k|2

aHl,k

(
4∑

i=1

C
(i)
l,k

)
al,k


 . (84)

Since the SINR expression in (84) is a generalized
Rayleigh quotient with respect to al,k, we can apply [17,
Lemma B.10] to obtain the maximizing vector al,k as in
(37). Hence, using (37) in (84), maximizes the SE for both
MMSE and EW-MMSE estimation. The maximum SE is
given by (30) in the theorem.
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Appendix C
Proof of Theorem 2 in case of MMSE

Here the expectations in (23) are computed. The
numerator of (23), E{|DSl,k|2}, becomes

pl,k

∣∣∣∣∣

L∑

l′=1

(al
′

l,k)
∗
E

{√
p̂l′,k(R

l′

l′,kΨΨΨ
−1
l′,kyl′,k)

Hhl′

l,k

}∣∣∣∣∣

2

= pl,k

∣∣∣∣∣

L∑

l′=1

(al
′

l,k)
∗
√
p̂l′,ktr

(
ΨΨΨ−1

l′,kR
l′

l′,kE{hl′

l,ky
H

l′,k}
)∣∣∣∣∣

2

= pl,k

∣∣∣∣∣

L∑

l′=1

(al
′

l,k)
∗τp
√
p̂l′,kp̂l,ktr

(
ΨΨΨ−1

l′,kR
l′

l′,kR
l′

l,k

)∣∣∣∣∣

2

= τppl,k

∣∣∣∣∣

L∑

l′=1

(al
′

l,k)
∗bl

′

l,k

∣∣∣∣∣

2

,

(85)
The variance of the pilot contamination in the denominator
of (23) is computed as

L∑

l′′=1
l′′ 6=l

pl′′,k

∣∣∣∣∣

L∑

l′=1

(al
′

l,k)
∗τp
√

p̂l′,kp̂l′′,ktr
(
ΨΨΨ−1

l′,kR
l′

l′,kR
l′

l′′,k

)∣∣∣∣∣

2

= τp

L∑

l′′=1
l′′ 6=l

pl′′,k

∣∣∣∣∣

L∑

l′=1

(al
′

l,k)
∗bl

′

l′′,k

∣∣∣∣∣

2

.

(86)
The variance of the beamforming gain uncertainty,
E{|BUl,k|2}, is evaluated as

L∑

l′=1

pl′,k

L∑

l′′=1

|al′′l,k|2
(
E

{
|(ĥl′′

l′′,k)
Hhl′′

l′,k|2
}

︸ ︷︷ ︸
I1

−
∣∣∣E{(ĥl′′

l′′,k)
Hhl′′

l′,k}
∣∣∣
2

︸ ︷︷ ︸
I2

)
, (87)

where the expectation I1 is computed by applying the
property in Lemma 4 as

I1 =E

{
|(ĥl′′

l′′,k)
Hĥl′′

l′,k|2
}
+ E

{
|(ĥl′′

l′′,k)
Hel

′′

l′,k|2
}

=p̂l′′,kp̂l′,kE
{
|yH

l′′,kΨΨΨ
−1
l′′,kR

l′′

l′′,kR
l′′

l′,kΨΨΨ
−1
l′′,kyl′′,k|2

+tr
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E{el′′l′,k(el
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l′,k)
Hĥl′′

l′′,k(ĥ
l′′

l′′,k)
H}
)}

=τ2p p̂l′′,kp̂l′,k|tr(ΨΨΨ−1
l′′,kR

l′′

l′′,kR
l′′

l′,k)|2

+ τpp̂l′′,ktr(R
l′′

l′,kR
l′′

l′′,kΨΨΨ
−1
l′′,kR

l′′

l′′,k)

=τp

(
(bl

′′

l′,k)
2 + cl

′,k
l′′,k

)

(88)

and the expectation I2 is computed as

I2 =
∣∣∣E{(ĥl′′

l′′,k)
Hĥl′′

l′,k}
∣∣∣
2

= p̂l′′,kp̂l′,k

∣∣∣E{yH

l′′,kΨΨΨ
−1
l′′,kR

l′′

l′′,kR
l′′

l′,kΨΨΨ
−1
l′′,kyl′′,k}

∣∣∣
2

= τ2p p̂l′′,kp̂l′,k|tr(ΨΨΨ−1
l′′,kR

l′′

l′′,kR
l′′

l′,k)|2

= τp(b
l′′

l′,k)
2.

(89)

Combining (87), (88), and (89), we obtain the variance of
the beamforming gain uncertainty as

L∑

l′′=1

L∑

l′=1

pl′′,kτpp̂l′,k|al
′

l,k|2tr(Rl′

l′′,kR
l′

l′,kΨΨΨ
−1
l′,kR

l′

l′,k)

=

L∑

l′′=1

L∑

l′=1

τppl′′,k|al
′

l,k|2cl
′′,k
l′,k . (90)

The variance of the non-coherent interference term,∑L
l′=1

∑K
k′=1
k′ 6=k

E{|NIl′,k′ |2}, is computed based on the inde-
pendent channel properties
L∑

l′=1

K∑

k′=1
k′ 6=k

pl′,k′

L∑
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′′

l,k|2tr
(
Rl′′

l′,k′R
l′′
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l′′,kR

l′′

l′′,k

)

=

L∑
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k′=1
k′ 6=k
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τppl′,k′ |al′′l,k|2cl
′,k′

l′′,k .

(91)
The last expectation in the denominator is computed as

E{|AN|2l,k} =
L∑

l′=1

|al′l,k|2E{|(ĥl′

l′,k)
Hnl′ |2}

=

L∑

l′=1

|al′l,k|2σ2τpp̂l′,ktr
(
Rl′

l′,kΨΨΨ
−1
l′,kR

l′

l′,k

)

=
L∑

l′=1

τp|al
′

l,k|2dl′,k.

(92)

Using (85), (86), (90), (91), and (92) in (22), we obtain the
closed-form expression for the SE as shown in Theorem 2.

Appendix D
Proof of Theorem 2 in Case of EW-MMSE

The main steps to prove the results for the case of EW-
MMSE are similar to that of MMSE, but the distributions
of the estimate and estimation errors are different (and
not independent). However, we can use the relationship
in Corollary 1 between the channels of the users sending
non-orthogonal pilot signals to perform the derivation. The
main steps of the proof are summarized as follows: The
numerator of (23) is computed based on the relationship
between the estimates of the channels to BS l and users k
in cells l′ and l as stated in Corollary 1:
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2

.

(93)
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Similarly, we use the relationship between the channel
estimates of users k in cells l′ and l′′ to compute the
variance of the pilot contamination term in the denominator
of (23) as

L∑

l′′=1
l′′ 6=l
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(94)

The variance of the beam uncertainty term in the denomi-
nator of (23) is computed as
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By using the relationship between the two channel
estimates ĥl′′

l′′,k and ĥl′′

l′,k in Corollary 1, (95) is equal
to
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By performing MMSE estimation separately for every
element of a channel vector, it is straightforward to
prove that ĥl′′

l′′,k and hl′′

l′,k′ are independent since the
joint density function is the product of their respective
marginal densities. Consequently, the variance of the

non-coherent interference in the denominator of (23),∑L
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E{|NIl′,k′ |2}, is computed as
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The last expectation in the denominator of (22) is computed
by using the fact that the noise and the channel estimate
are independent, leading to

E{|ANl,k|2} =

L∑

l′=1

|al′l,k|2(̺l
′

l′,k)
2σ2tr (ΨΨΨl′,k)

=

L∑

l′=1

|al′l,k|2dl′,k.
(98)

Applying (93), (94), (96), (97), and (98) in (22), we
obtain the closed-form expression of the SE as shown
in Theorem 2.

Appendix E
Proof of Theorem 3

The whole system with the aggregate effect of channel
and decoding can be viewed as a SISO channel with
deterministic channel gain, whose SE is the equivalent
of (38), namely:
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where zl′,k′ ∼ CN (0, 1) and nl,k ∼ CN (0, 1). The desired
signal sl,k is decoded by using a beamforming coefficient
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ul,k ∈ C as
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√
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pl′,kul,k

(
L∑

l′′=1

(al
′′

l,k)
∗bl

′′

l′,k

)
sl′,k

+

L∑

l′=1

K∑

k′=1

ul,k

√√√√
L∑

l′′=1

pl′,k′ |al′′l,k|2c
l′,k′

l′′,kzl′,k′

+ ul,k

√√√√
L∑

l′=1

|al′l,k|2dl′,knl,k. (100)

We now compute the mean-square error as

el,k = E{|ŝl,k − sl,k|2} = E{|ul,kyl,k − sl,k|2}

=

∣∣∣∣∣
√
pl,kul,k

(
L∑

l′=1

(al
′

l,k)
∗bl

′

l,k

)
− 1

∣∣∣∣∣

2

+
L∑

l′=1
l′ 6=l

pl′,k|ul,k|2×

∣∣∣∣∣

L∑

l′′=1

(al
′′

l,k)
∗bl

′′

l′,k

∣∣∣∣∣

2

+

L∑

l′=1

K∑

k′=1

L∑

l′′=1

|ul,k|2pl′,k′ |al′′l,k|2cl
′,k′

l′′,k

+ |ul,k|2
L∑

l′=1

|al′l,k|2dl′,k.

(101)

After some algebra, we obtain el,k as shown in (53). The
optimal solution of ul,k is computed by equating the first
derivative of el,k with respect to ul,k to zero, leading to

u∗
l,k




L∑

l′=1

pl′,k

∣∣∣∣∣

L∑

l′′=1

(al
′′

l,k)
∗bl

′′

l′,k

∣∣∣∣∣

2

+
L∑

l′=1

K∑

k′=1

L∑

l′′=1

pl′,k′ |al′′l,k|2cl
′,k′

l′′,k

+

L∑

l′=1

|al′l,k|2dl′,k
)

−√
pl,k

L∑

l′=1

(al
′

l,k)
∗bl

′

l,k = 0. (102)

Therefore, the optimal solution uopt
l,k for a given set

{al,k, wl,k, ρl,k} is given in (103).
The optimal solution wopt

l,k is obtained by taking the first
derivative of the objective function of the optimization
problem (52) with respect to wl,k and equating to zero:

wopt
l,k = e−1

l,k . (104)

Using (103) and (104) in (52), we obtain the optimization
problem

minimize
{pl,k≥0},{al,k}

KL−
L∑

l=1

K∑

k=1

ln (1 + SINRl,k)

subject to pl,k ≤ Pmax,l,k , ∀l, k.
(105)

Since (105) is easily converted to (51), we have completed
the proof.

Appendix F
Proof of Theorem 4

For sake of simplicity, we omit the iteration index in
the proof. The optimal solution of ul,k and wl,k are easily
computed by (103) and (104) by noting that ρl,k =

√
pl,k.

We can find the optimal solution to al,k for a given set of
{ul,k, wl,k, ρl,k} from the optimization problem

minimize
{al,k}

L∑

l=1

K∑

k=1

wl,kẽl,k (106)

where ẽl,k in (106) depends on {al,k} and is defined as

ẽl,k = |ul,k|2



L∑

l′=1

ρ2l′,k

∣∣∣∣∣

L∑

l′′=1

(al
′′

l,k)
∗bl

′′

l′,k

∣∣∣∣∣

2

+

L∑

l′=1

K∑

k′=1

L∑

l′′=1

ρ2l′,k′ |al′′l,k|2cl
′,k′

l′′,k +

L∑

l′=1

|al′l,k|2dl′,k
)

− ρl,kul,k

(
L∑

l′=1

(al
′

l,k)
∗bl

′

l,k

)
− ρl,ku

∗
l,k

(
L∑

l′=1

al
′

l,k(b
l′

l,k)
∗

)
.

(107)

By denoting f(al,k) =
∑L

l=1

∑K
k=1 wl,kẽl,k and using the

expression of ẽl,k in (107), we can write f(al,k) as

f(al,k) =

L∑

l=1

K∑

k=1

wl,k

(
|ul,k|2aHl,kC̃l,kal,k

−ul,kρl,ka
H

l,kbl,k − u∗
l,kρl,kb

H

l,kal,k
)
. (108)

Taking the first derivative of f(al,k) with respect to al,k,
we obtain

∇f = 2wl,k|ul,k|2C̃l,kal,k − 2wl,kul,kρl,kbl,k. (109)

Therefore, the solution is

a
opt
l,k =

ρl,k
u∗
l,k

C̃−1
l,kbl,k. (110)

After removing ρl,k in both the numerator and denominator
of the fraction in (110) and doing some algebra, the optimal
solution to al,k is expressed as in (60).

We now compute the optimal solution for ρl,k for a given
set of optimization variables {al,k, wl,k, ul,k}. In this case,
(54) simplifies to

minimize
{ρl,k≥0}

L∑

l=1

K∑

k=1

wl,kel,k

subject to ρ2l,k ≤ Pmax,l,k , ∀l, k.
(111)

The Lagrangian function of the optimization (111) is

L ({ρl,k}, {λl,k}) =
L∑

l=1

K∑

k=1

wl,kel,k+

L∑

l=1

K∑

k=1

λl,k

(
ρ2l,k − Pmax,l,k

)
, (112)
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uopt
l,k =

√
pl,k

∑L
l′=1 a

l′

l,k(b
l′

l,k)
∗

∑L
l′=1 pl′,k

∣∣∣
∑L

l′′=1(a
l′′

l,k)
∗bl

′′

l′,k

∣∣∣
2

+
∑L

l′=1

∑K
k′=1

∑L
l′′=1 pl′,k′ |al′′l,k|2c

l′,k′

l′′,k +
∑L

l′=1 |al
′

l,k|2dl′,k
. (103)

where λl,k ≥ 0 is the Lagrange multiplier associated
with ρ2l,k ≤ Pmax,l,k. Taking the first derivative of
L ({ρl,k}, {λl,k}) with respect to ρl,k, we obtain

∂L
∂ρl,k

= 2ρl,k

L∑

l′=1

wl′,k|ul′,k|2
∣∣∣∣∣

L∑

l′′=1

(al
′′

l′,k)
∗bl

′′

l,k

∣∣∣∣∣

2

+ 2ρl,k

L∑

l′=1

K∑

k′=1

wl′,k′ |ul′,k′ |2
L∑

l′′=1

|al′′l′,k′ |2cl,kl′′,k′

− wl,kul,k

(
L∑

l′=1

(al
′

l,k)
∗bl

′

l,k

)
− wl,ku

∗
l,k

(
L∑

l′=1

al
′

l,k(b
l′

l,k)
∗

)

+ 2λl,kρl,k. (113)

By equating the above derivative to zero, the stationary
point is obtained as shown in (114). The Lagrangian
multiplier λl,k must satisfy the complementary slackness
condition [28]

λl,k

(
ρ2l,k − Pmax,l,k

)
= 0. (115)

Therefore, we obtain the solution to ρl,k as

ρl,k =

{
min(ρ̃l,k,

√
Pmax,l,k), if λl,k = 0,√

Pmax,l,k, if λl,k 6= 0,
(116)

where ρ̃l,k is defined as in (117), which is obtained from
(114) by setting λl,k = 0. From (116), the optimal solution
to ρl,k is derived as shown in (62).

We now prove that Algorithm 1 converges to a station-
ary point, as defined in Definition 1. The optimization
problem (54) is first converted to the following equivalent
unconstrained problem:

minimize
{ρl,k≥0},{al,k},
{wl,k≥0},{ul,k}

g({ul,k}, {wl,k}, {al,k}, {ρl,k}) (118)

where the objective function g is defined as

g({ul,k}, {wl,k}, {al,k}, {ρl,k}) =
L∑

l=1

K∑

k=1

wl,kel,k − ln(wl,k) + λl,k

(
ρ2l,k − Pmax,l,k

)
.

(119)

Since in every iteration, each subproblem is convex and
has a unique optimal solution, the objective function of the
optimization problem (118) is monotonically decreasing
after iterations. Additionally, this function is lower bounded
by zero, so Algorithm 1 must converge to a limit point,
attained by a solution that we call {(uopt

l,k , w
opt
l,k ,aoptl,k , ρ

opt
l,k )}.

Note that g({ul,k}, {wl,k}, {al,k}, {ρl,k}) is convex in each
optimization variable, when the others variables are fixed,
and the optimal solution to each sub-problem is computed
from the first derivative of the cost function. By applying
the standard trick in [29, Remark 2.2] to decompose a

complex number into the real and imaginary parts, the
following properties are obtained:

(
Re(ul,k)−Re(uopt

l,k )
) ∂g

∂Re(ul,k)

∣∣∣∣
Re(uopt

l,k
)

≥ 0, (120)

(
Im(ul,k)− Im(uopt

l,k )
) ∂g

∂Im(ul,k)

∣∣∣∣
Im(uopt

l,k
)

≥ 0, (121)

(
wl,k − wopt

l,k

) ∂g

∂wl,k

∣∣∣∣
w

opt

l,k

≥ 0, (122)

(
Re(al,k)−Re(aoptl,k )

)T
∇g

∣∣∣∣
Re(aopt

l,k
)

≥ 0, (123)

(
Im(al,k)− Im(aoptl,k )

)T
∇g

∣∣∣∣
Im(aopt

l,k
)

≥ 0, (124)

(
ρl,k − ρoptl,k

) ∂g

∂ρl,k

∣∣∣∣
ρ
opt

l,k

≥ 0. (125)

These properties mean that the limit point is a stationary
point to (54).

We now prove that the optimal solution {aoptl,k }, {(ρoptl,k )
2}

forms a stationary point of (51). In fact, the optimization
problem (51) is equivalent to

maximize
{ρl,k≥0},{al,k}

h({al,k}, {ρl,k})

subject to ρ2l,k ≤ Pmax,l,k , ∀l, k.
(126)

where the objective function is

h({al,k}, {ρl,k}) ,
L∑

l=1

K∑

k=1

log2 (1 + SINRl,k) . (127)

Here, the SINR value has a similar expression as in (39),
but with pl,k = ρ2l,k. For given wl,k = wopt

l,k and ul,k = uopt
l,k ,

for all l, k, it is sufficient to prove the following equalities

∂g

∂ρl′,k′

=
1

log2(e)

∂h

∂ρl′,k′

+ 2λl′,k′ρl′,k′ , ∀l′, k′, (128)

∇g(al′,k′) =
1

log2(e)
∇h(al′,k′), ∀l′, k′. (129)

By using (103), (104), and the chain rule, (128) is proved
as

∂g

∂ρl′,k′

=

L∑

l=1

K∑

k=1

wopt
l,k

∂el,k
∂ρl′,k′

+ 2λl′,k′ρl′,k′

=
L∑

l=1

K∑

k=1

(eoptl,k )
−1

∂eoptl,k

∂ρl′,k′

+ 2λl′,k′ρl′,k′ ,

(130)
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ρl,k =
wl,kRe

(
ul,k

∑L
l′=1(a

l′

l,k)
∗bl

′

l,k

)

∑L
l′=1 wl′,k|ul′,k|2

∣∣∣
∑L

l′′=1(a
l′′

l′,k)
∗bl

′′

l,k

∣∣∣
2

+
∑L

l′=1

∑K
k′=1 wl′,k′ |ul′,k′ |2∑L

l′′=1 |al
′′

l′,k′ |2cl,kl′′,k′ + λl,k

. (114)

ρ̃l,k ,
wl,kRe

(
ul,k

∑L
l′′=1(a

l′′

l,k)
∗bl

′′

l,k

)

∑L
l′=1 wl′,k|ul′,k|2

∣∣∣
∑L

l′′=1(a
l′′

l′,k)
∗bl

′′

l,k

∣∣∣
2

+
∑L

l′=1

∑K
k′=1 wl′,k′ |ul′,k′ |2∑L

l′′=1 |al
′′

l′,k′ |2cl,kl′′,k′

. (117)

where eoptl,k = (1 + SINRl,k)
−1 is derived by using (103) in

(67) and some algebra. It leads to

∂g

∂ρl′,k′

=
L∑

l=1

K∑

k=1

(1 + SINRl,k)
∂ (1 + SINRl,k)

−1

∂ρl′,k′

+ 2λl′,k′ρl′,k′

=
L∑

l=1

K∑

k=1

(1 + SINRl,k)
−1 ∂SINRl,k

∂ρl′,k′

+ 2λl′,k′ρl′,k′

=
1

log2(e)

∂h

∂ρl′,k′

+ 2λl′,k′ρl′,k′ .

(131)
The proof of (129) is similar to how (128) just was proved.
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