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Contributions  

• Introduce a new feature learning and extraction 

procedure based on a factor model, Spike-and-Slab 

Sparse Coding (S3C). 

• Overcome two major scaling challenges. 

1) Scale inference in the spike-and-slab coding model to 
work for the large problem sizes required for object 
recognition.  

2) Use the enhanced regularization properties of spike-
and-slab sparse coding to scale object recognition 
techniques to work with large numbers of classes and 
small amounts of labeled data. 
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The Spike-and-Slab Sparse Coding Model 

1. Latent binary spike variables  

2. Latent real-valued slab variables,  

3. Real-valued D-dimensional visible vector 

: the logistic sigmoid function   : a set of biases on the spike variables 

: governs the linear dependence of s on h. 

: governs the linear dependence of v on s. 

and are diagonal precision matrices. 

: the element-wise product of h and s. 

The columns of W have unit norm. 

The state of a hidden unit is best understood as 
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Comparison to Sparse Coding 

1. One can derive the S3C model from sparse coding by 
replacing the factorial Cauchy or Laplace prior with a 
spike-and-slab prior. 

2. One drawback of sparse coding is that the latent 
variables are not merely encouraged to be sparse; 
they are encouraged to remain close to 0, even when 
they are active. S3C uses b and s.   

3. Another drawback of sparse coding is that the factors 
are not actually sparse in the generative distribution.  

4. Sparse coding is also difficult to integrate into a deep 
generative model of data such as natural images. 
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Comparison to Restricted Boltzmann Machines 

• Energy based model: 
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A variant of the  

S3C moves from an 

undirected ssRBM 

model to the directed 

graphical model. 

Effects: 

1. Partition function 

2. Posterior 

3. Prior 



Review of RBM(1)  
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A restricted Boltzmann machine (RBM) is a generative stochastic 

neural network that can learn a probability distribution over its 

set of inputs. 

Diagram of a restricted Boltzmann 

machine with three visible units and 

four hidden units (no bias units). 

RBMs are a variant of Boltzmann machines, 

with the restriction that their neurons 

must form a bipartite graph: they have 

input units, corresponding to features of 

their inputs, hidden units that are trained, 

and each connection in an RBM must 

connect a visible unit to a hidden unit.  

RBMs have found applications in 

dimensionality reduction, classification, 

collaborative filtering and topic modeling. 

They can be trained in either supervised or 

unsupervised ways, depending on the task. 



8 

A joint conguration, (v; h) of the visible and hidden units has an energy 

given by: 

Review of RBM(2)  

The network assigns a probability to every possible pair of a visible and a 

hidden vector via this energy function: 

The probability that the network assigns to a visible vector, 

Geoffrey Hinton (2010). A Practical Guide to Training Restricted Boltzmann Machines. UTML TR 2010–003, University 

of Toronto. 

http://www.cs.toronto.edu/~hinton/absps/guideTR.pdf�


Effects: from Undirected Modeling 

to Directed Modeling 

1. Partition function 
 The partition function becomes tractable. 

2. Posterior 
 RBMs have a factorial posterior, but S3C and sparse coding 

have a complicated posterior due to the “explaining away” 
effect. 

 Being able to selectively activate a small set of features that 
cooperate to explain the input likely provides S3C a major 
advantage in discriminative capability. 

3. Prior 
     S3C introduces a factorial prior.  

 This probably makes it a poor generative model, but this is not 
a problem for the purpose of feature discovery. 
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Variational EM for S3C 

• A variant of the EM algorithm 

1) E-step, compute a variational approximation to the posterior rather than 

the posterior itself. 

2) M-step, a closed-form solution.  

   Online learning with small gradient steps on the M-step objective worked 

better in practice. 
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The goal of the variational E-step is to maximize the energy functional with 

respect to a distribution Q over the unobserved variables. 

Selecting Q that minimizes the KL divergence: 

            is drawn from a restricted family of distributions.  

This family can be chosen to ensure that Q is tractable. 



Parallel Updates to All Units (1) 
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1) Start each iteration by partially minimizing the KL divergence with respect to 

The terms of the KL divergence that depend on    make up a quadratic 

function so this can be minimized via conjugate gradient descent. 

Implement conjugate gradient descent efficiently by using the R-operator to 

perform Hessian vector products rather than computing the entire Hessian 

explicitly. 

Pearlmutter, B. A. (1994). Fast exact multiplication by the Hessian. Neural Computation, 6(1), 147–160. 

This step is guaranteed to improve the KL divergence on each iteration. 

This approach is not guaranteed to decrease the KL divergence on each iteration 

but it is a widely applied approach. 

2) Next update     in parallel, shrinking the update by a damping coefficient.  



Parallel Updates to All Units (2) 
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In practice faster convergence, reaching equally good solutions. 

Replace the conjugate gradient update to     with a more heuristic approach. 

Use a parallel damped update on     much like     .   

An additional heuristic modication to the update rule which is made necessary 

by the unbounded nature of    . 

Clip the update to     so that if            has the opposite sign from   , its magnitude 

is at most    . 

This prevents a case where multiple mutually inhibitory s units inhibit each other 

so strongly that rather than being driven to 0 they change sign and actually 

increase in magnitude. This case is a failure mode of the parallel updates that can 

result in    amplifying without bound if clipping is not used. 



13 



14 



15 



Performance Results 

16 



17 



18 



19 

Classification Results 



• CIFAR-100 
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Classification Results 

The CIFAR-10 and CIFAR-100 are labeled subsets of the 80 million tiny images dataset. They were 

collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton.  

The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. 

There are 50000 training images and 10000 test images. 

The CIFAR-100 has 100 classes containing 600 images each. There are 500 training images and 100 testing 

images per class. The 100 classes in the CIFAR-100 are grouped into 20 superclasses. Each image comes 

with a "fine" label (the class to which it belongs) and a "coarse" label (the superclass to which it belongs). 

 



Transfer Learning Challenge 

NIPS 2011 Workshop on Challenges in Learning Hierarchical Models.  

Dataset:  32x32 color images, including 100,000 unlabeled examples, 

50,000 labeled examples of 100 object classes not present in the 

test set, and 120 labeled examples of 10 object classes present in 

the test set.  

Results: A test set accuracy of 48.6 %. This approach disregards the 

50,000 labels and treats this transfer learning problem as a semi-

supervised learning problem. 

Experimented with some transfer learning techniques but the transfer-

free approach performed best on leave-one-out cross-validation on 

the 120 example training set, so we chose to enter the transfer-free 

technique in the challenge. 
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