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Genome-wide association studies (GWASs) have identified many SNPs underlying variations in plasma-lipid levels. We explore whether

additional loci associated with plasma-lipid phenotypes, such as high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein

cholesterol (LDL-C), total cholesterol (TC), and triglycerides (TGs), can be identified by a dense gene-centric approach. Ourmeta-analysis

of 32 studies in 66,240 individuals of European ancestry was based on the custom ~50,000 SNP genotyping array (the ITMAT-Broad-

CARe array) covering ~2,000 candidate genes. SNP-lipid associations were replicated either in a cohort comprising an additional

24,736 samples or within the Global Lipid Genetic Consortium. We identified four, six, ten, and four unreported SNPs in established

lipid genes for HDL-C, LDL-C, TC, and TGs, respectively. We also identified several lipid-related SNPs in previously unreported genes:

DGAT2, HCAR2, GPIHBP1, PPARG, and FTO for HDL-C; SOCS3, APOH, SPTY2D1, BRCA2, and VLDLR for LDL-C; SOCS3, UGT1A1,

BRCA2, UBE3B, FCGR2A, CHUK, and INSIG2 for TC; and SERPINF2, C4B, GCK, GATA4, INSR, and LPAL2 for TGs. The proportion of

explained phenotypic variance in the subset of studies providing individual-level data was 9.9% for HDL-C, 9.5% for LDL-C, 10.3%

for TC, and 8.0% for TGs. This large meta-analysis of lipid phenotypes with the use of a dense gene-centric approach identified multiple

SNPs not previously described in established lipid genes and several previously unknown loci. The explained phenotypic variance from

this approach was comparable to that from a meta-analysis of GWAS data, suggesting that a focused genotyping approach can further

increase the understanding of heritability of plasma lipids.
Introduction

Cardiovascular disease (CVD) is one of the leading causes

of disability and death worldwide.1 Atherosclerosis is the

major underlying pathological process of CVD and is

highly prevalent in western societies. Atherogenesis has

numerous genetic and environmental risk factors,2 and

abnormalities of plasma lipids and lipoproteins account

for ~50% of the population attributable risk of developing

CVD.3,4 Plasma-lipid and lipoprotein levels are themselves

highly heritable—estimates range from 40%–60% for

total cholesterol (TC), low-density lipoprotein cholesterol

(LDL-C), high-density lipoprotein cholesterol (HDL-C),

and triglycerides (TGs).5

In a large-scale meta-analysis of genome-wide associa-

tion studies (GWASs), it was shown that plasma-lipid levels

are affected by common genetic variants in 95 loci, of

which 59 were previously unreported.6 All together, varia-

tion at these loci explains 10%–12% of the total variance

and 25%–30% of the genetic variability in plasma-lipid

phenotypes.6 This means that although a portion of the

genetic contribution to variation in plasma lipids and lipo-

proteins has been characterized, there is still variance that

remains unattributed.7

To further identify genetic associations underlying

variation in plasma-lipid phenotypes, we performed a large

meta-analysis of 32 studies comprising 66,240 individuals

of European ancestry by using the candidate-gene ITMAT-

Broad-CARe (IBC) array (Illumina), also known as the

CardioChip or the Human CVD BeadArray. The IBC array

was designed to capture genetic diversity by using ~50,000

SNPs across ~2,000 candidate-gene regions primarily
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The American
related to cardiovascular, inflammatory, and metabolic

phenotypes.8 Prior reports using this array have confirmed

previously established associations and identified unre-

ported associations between SNPs and several pheno-

types and disease outcomes, including coronary artery

disease,9,10 plasma lipids,11,12 blood pressure,13,14 cardio-

myopathy,15 type 2 diabetes (T2D),16,17 and height.18 The

majority of loci on the IBC array are captured with amarker

density equal to or greater than that seen on genome-wide

arrays. Compared to the agnostic design of GWAS arrays,

gene-centric genotyping with this array might permit

a better identification of multiple functional polymor-

phisms, or their proxies, at each locus. Indeed, this

approach has the potential to capture a more detailed

genetic architecture in selected high-priority regions and

increase the total explained variance.

We sought to contribute to the current literature by

using a dense gene-centric approach with the IBC array

to identify lipid-trait-associated loci that have not been

discovered with more conventional approaches. A flow

diagram of the performed analyses is illustrated in Figure 1.
Material and Methods

Participating Studies
We analyzed individual-level phenotype and genotype data from

22,471 individuals of European descent in seven cohorts, and an

additional 25 cohorts contributed summary-level results for

43,769 individuals, yielding a total sample size of 66,240 (Table

S1A, available online). Five additional cohorts containing data

from a total of 25,282 individuals were used for replication

(Table S1B). Further replication was sought through the GWAS
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Quality control
• Genotype clustering
• Individuals removed with missing variables, age ≤ 21, call rates < 90%, 
gender mismatch, and duplicate discordance
• SNPs removed with call rates < 95%, HWE p < 10-7

• No MAF filter
• Removal of cryptic relatedness and calculation of principal components of 
ancestry (PCA)

Association testing
Gender- and fasting status-stratified linear regression performed for each 
lipid trait (HDL-C, LDL-C, TC, TG):
• model #1: PCA
• model #2: PCA, age, lipid medication correction
• model #3: PCA, age, lipid medication correction, T2D, smoking, BMI 

Performed within each of the
32 cohorts independently (n = 66,240)

Discovery meta-analyses
• Threshold for significance of known SNPs in discovery phase set on p < 2.4 x 10-6

• Threshold for replication of unreported SNPs set on p < 1 x 10-4

• Sex-specific, and test for heterogeneity between sexes
• Significant SNPs in discovery phase
• Per gender p < 1.8 x 10-3

Conditional analysis
Linear regression testing using model 1 plus genotype at lead SNP in each 
of the 146 trait-associated loci identified in meta-analyses with p < 1 x 10-4

Variation explained
SNPs associated with p < 10-4 in overall meta-analysis available for selection 
into model to assess total trait variation explained

Performed within 8
cohorts with individual-level IBC array 
genotype and phenotype data 
available (n = 22,471)

Replication of unreported SNPs
• 5 non-IBC array cohorts (n = 25,282) 
and
• Global Lipid Genetics Consortium
• Replication threshold of a Bonferroni
adjusted p < 0.05

Replication of variance explained in Whitehall II and BWHHS

Figure 1. Summary of the Design Used and the Number of Individuals Involved and p Value Thresholds Used in Each Step
meta-analysis described by the Global Lipids Genetics Consortium

(GLGC).6 In addition to the genotype data, we obtained data on

body mass index (BMI), age, gender, T2D status, smoking history,

and, where available, any treatment for dyslipidemia. Informed

consent for DNA analysis was received from each respective local

institutional and/or national ethical review board.

Lipid Phenotype Definitions and Correction for the

Use of Lipid-Lowering Drugs
Lipid measurements from blood samples collected at baseline or

first measurement of each study were used for analysis. We

restricted the analyses to those individuals older than 21 years

because lipid levels are unstable prior to this age.19 Lipid samples

were categorized as ‘‘known fasting,’’ ‘‘nonfasting,’’ or ‘‘unde-

fined.’’ We converted concentrations from mg/dl to mmol/l by

dividing by 38.67 for TC, LDL-C, and HDL-C measurements and
826 The American Journal of Human Genetics 91, 823–838, Novemb
by dividing by 88.57 for TG measurements. With the exception

of the PROCARDIS study, where direct LDL-C assay was used

(CHOD/PAP assay in an Olympus AU543020), LDL-C concentra-

tion was calculated according to Friedewald’s formula (LDL-C ¼
TC – HDL-C – kTGs), where k is 0.45 for mmol/l (or 0.20 if TGs

were measured in mg/dl). LDL-C was treated as a missing value

if TG values were > 4.51 mmol/l (>400 mg/dl).21 Prior to analysis,

TG levels were transformed with the natural logarithm (ln) for

normalizing its distribution.

For individuals receiving lipid-lowering therapy, we multiplied

recorded lipid values by a constant: TC was multiplied by 1.271;

LDL-C was multiplied by 1.352; HDL-C was multiplied by 0.949,

and TGs were multiplied by 1.210 prior to transformation. The

multiplicative correction factors were based on analysis of repeat-

edly measured lipid levels, including levels measured before

and after lipid-lowering treatment, in the Whitehall II (WHII)
er 2, 2012



study22 as follows. The expected difference between two data-

collection time points 5 years apart for each lipid phenotype was

estimated among WHII study participants who were not on

lipid-lowering therapy. Themean difference between the expected

and observed values for those receiving medication at the latter,

but not the former, collection phase was calculated and used as

the respective correction factor. The correction factors used here

are comparable to published estimates for the effects of statins

on lipid values from treatment trials.23

Genotyping and Quality Control
Genotyping was performed with the gene-centric IBC array (Illu-

mina HumanCVD).8 We used genotyping data from the first two

versions of the IBC array. Version 1 of the array captures 45,238

SNPs, and version 2 contains an additional 3,989 SNPs, composing

a total of 49,227 SNPs. These were clustered into genotypes with

Illumina BeadStudio software. Quality-control filters were applied

within each cohort at the sample and SNP levels. The filter require-

ments for the meta-analysis, as sent to each study, required the

removal of individuals with a call rate < 90%, gender mismatch,

or duplicate discordance. SNPs with call rates < 95% or Hardy-

Weinberg equilibrium (HWE) deviation at chi-square p < 10�7

were also removed. To take advantage of the rare variants captured

on the array and the large number of samples available, we did

not perform any filtering on variants with a low minor allele

frequency (MAF) at this stage.

Evaluation of Cryptic Relatedness
Only founders within cohorts with recorded family structure were

included in the analysis; the exceptions were the GRAPHIC, HAPI,

and PROCARDIS studies, in which family structure was main-

tained but adjusted for in the association analysis. To ensure

removal of cryptic relatedness and duplicate samples, we esti-

mated pi-hat, a measure of identity by descent (IBD), from the

pairwise identity by state (IBS) by using PLINK.24 PLINK is

a computationally efficient open-source analysis toolset for

genetic data and is able to perform a series of basic, large-scale

analyses. For each set of duplicates or monozygotic twins, and

for those with a pairwise pi-hat > 0.3, the sample with the highest

genotyping call rate was retained for analysis.

Evaluation of Population Stratification
For the primary analysis, only individuals of European ancestry

were included. Self-reported ethnicity was verified bymultidimen-

sional-scaling analysis of IBS distances as implemented in PLINK;

HapMap panels were used as reference standards. After SNPs in

pairwise linkage disequilibrium (LD) (r2 > 0.3) were removed,

EIGENSTRAT software was used for computing principal com-

ponents on the subset of nonexcluded individuals for use as

covariates in the regression analyses. EIGENSTRAT, part of the

EIGENSOFT package, corrects for variation in the frequency across

ancestral populations through the use of principal components,

minimizing potential false-positive signals due to population

structure while increasing its power to detect true associa-

tions.25,26 Analysis in participants of non-European ancestry is

reported in an accompanying paper (C.C.E., unpublished data).

Thresholds for Declaration of Statistical Significance
When LD was accounted for, it was previously calculated that

genotyping with the IBC array generates ~20,500 independent

tests for individuals of European descent.27 For maintaining the
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conventional 5% false-positive rate, the appropriate multiple-

testing-corrected threshold for statistical significance was set at

p ¼ 2.4 3 10�6 for the primary analysis.16,18 When the indi-

vidual-level data were used in the analysis, as in the conditional

analysis and variable selection, or when replication was available,

we used a more permissive p value threshold of p < 1 3 10�4. To

maintain our statistical power of ~80% for a SNP with an effect

size R2 of 0.05% during the gender-specific analysis, we used a

gender-specific threshold of p < 1.8 3 10�3. Because the SNPs

included in the gender-specific analysis were previously considered

significant in the primary main-effect analysis, this choice had

little effect on false positives. The GWAS threshold of p < 5 3

10�8 was referenced as a comparison to common GWAS practice.

Genomic control estimates reflected by lambda (l), a method

for quantifying and adjusting population stratification from pop-

ulation-based samples,28 were derived for each study before the

meta-analysis. To avoid the problem of l estimate inflation due

to the high proportion of positive variants (based on the selection

criteria of the included SNPs and loci), we excluded the upper

10% of the most statistically significant signals during the estima-

tion of l.29 METAL used the option to adjust each study with its

corresponding l before the meta-analysis.

Association Testing
Association analysis was performed with an additive genetic

model with one degree of freedom for all cohorts. We performed

gender-stratified analysis within each study for the following

three models: model 1 corrected only for population stratifica-

tion to filter out any artificial association related to population

differences; model 2 corrected for population stratification, age,

and lipid-lowering medication, by using the correction factors

described above because those two extra variables are believed to

affect the relationship between the traits and the genotypes tested;

and model 3 corrected for population stratification, age, T2D,

smoking, BMI, and lipid-lowering medication as described earlier

to further control for additional variables able to influence the

observed associations. The main results and conditional analysis

were reported on the basis of model 1. Variable selection used

signals from all three models, and these were maintained for the

section of explained variance. All three models were also con-

sidered in our scan for previously unreported signals and the

replication of previously published associations. The three models

were also used as means for understanding the associations

observed when additional factors were controlled. Meta-analysis

was performed with METAL,30 and the results were verified with

MANTEL31 and the Metafor package in R.32 METAL was run with

the option of using the p values for the meta-analysis and took

into account sample size and direction of effect, whereas MANTEL

used the classical approach of meta-analysis with a fixed-effects

model31 and Metafor used a random-effects scheme with the

Hunter-Schmidt estimator.33 Reported p values are based on

METAL unless otherwise stated. The use of the probability-combi-

nation option in METAL does not include the meta-analysis of

beta coefficients, although it is able to overcome the problems of

differences in phenotype distribution and gender between the

studies combined.30 Metafor used a random-effects model that

considered differences between studies as part of the heteroge-

neity adjusted in the model;34 therefore, given the number of

available studies and the difference between them, the beta

coefficients from Metafor were considered as the most accurate

estimations of the underlying ‘‘true’’ effects of the SNPs, and

they are presented throughout.
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After the main analysis, we tested for gender-specific signals of

association by performing the meta-analysis separately for males

and females and combining their results. Only SNPs deemed

statistically significant in the overall analysis were compared

between genders for evidence of heterogeneity of effect. Heteroge-

neity of the meta-analysis was assessed with the I2 statistic,

which describes what percentage of total variation in the study

estimates is due to the differences between studies. The statistical

significance of the heterogeneity was tested by the chi-square

heterogeneity statistic.35 The criteria for selection of SNPs were:

a heterogeneity p value < 0.05 between males and females and

a gender-specific p value < 1.8 3 10�3. When SNPs were in LD

(r2 > 0.3), only the strongest associated SNP was presented.
Conditional Analysis
Loci harboring significant evidence of association with p< 10�4 in

model 1 were examined for additional signals with conditional

analyses in PLINK24 in data from seven European-ancestry cohorts

for which individual-level genotype data were available. A term

was added to the regression model including the lead SNP as a

covariate, and SNPs within the same genomic region (within

1 Mb of the lead SNP) were evaluated for significance. A locus-

specific Bonferroni correction, based on the number of tests

performed, was then applied for determining the significance of

independent signals.16 For loci harboringmore than one indepen-

dent signal, we continued the process until no unreported SNP

associations were found.
Variable Selection and Explained Variance
We used variable selection to identify the most informative

SNPs to estimate the total phenotypic variance in the lipid

phenotype after age and gender adjustment. To avoid removing

individuals with missing data from the analysis, we performed

variable selection in the individual-level data after imputation of

any missing genotypes by using fastPHASE, a package for haplo-

typic reconstruction and estimation of missing genotypes.36 All

SNPs with lipid associations at p < 1.0 3 10�4 for any of the

meta-analysis algorithms were included in the selection proce-

dure. The previously reported GWAS SNPs for each lipid pheno-

type were obtained from both the National Human Genome

Research Institute (NHGRI) Catalog of Published GWASs37 and

the GLGC publication.6 All HumanCVD Beadarray SNPs within

500 kb of the reported SNPs were identified with the SNAP38

web tool, and SNPs with the highest LD for each single reported

polymorphism were forced into the model. The stepwise selec-

tion scheme with the Akaike’s Information Criterion (AIC)39 was

implemented in R separately for each chromosome.

Given that the SNP selection was performed in the available

individual-level data, including information on previously re-

ported polymorphisms, an estimate of association in the same

sample might lead to overestimation of the true effect. Therefore,

unbiased estimates of the true variance explainedwere obtained in

the WHII study and British Women Heart and Health Study

(BWHHS), which did not contribute individual-level data. The

ratio of phenotypic variance explained by our results, which

took into account the number of SNPs used and the number of

observations, was further compared to that estimated with only

the previously reported SNPs. For comparison with previous

GWASs, we also estimated the explained variance by using the

top SNP at each locus plus the independent SNPs in the region

as identified through conditional analysis.
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Replication of Previously Undescribed Signals

and Previously Unreported Signals
We report two categories of associations—previously unreported

SNPs at established loci and SNPs at previously undescribed

loci—by using the less stringent statistical threshold of p < 1 3

10�4. Loci were designated novel if they had not been reported

in the NHGRI GWAS database or in the GLGC study,6 and novel

SNPs were those that were not reported in the GLGC study6

and that were in LD (r2 % 0.3) with any of the GLGC lead SNPs.

Loci within 500 kb of reported signals were not considered novel.

To attain the final list of novel SNPs, we checked for LD between

SNPs within the list itself. In groups of SNPs in LD (r2 % 0.3),

the SNP with the lowest p value was reported.
Replication
Independent replication was then sought for all previously unre-

ported associations. Look ups were performed in five additional

cohorts containing data from a total of 25,282 individuals. Char-

acteristics and methodological details for cohorts (referred to

as the ‘‘25K cohort’’) are listed in Table S1B. Additional replication

was sought through the GLGC GWASmeta-analysis.6 A signal was

considered successfully replicated when its Bonferroni-adjusted

p value in the replication sample was lower than 0.05 and when

its estimate was directionally consistent with the discovery

meta-analysis. Five of the studies (the Cooperative Health

Research in the Region of Augsburg Study, the Atherosclerosis

Risk in Communities Study, the University of Pennsylvania

Catheterization Study, the Cardiovascular Health Study, and

the British Genetics of Hypertension Study) used for this meta-

analysis had previously contributed data to the GLGC. These

studies were thus removed from themeta-analysis of the discovery

with both replication studies.
Results

Characteristics of Study Samples

A total of 49,227 SNPs were tested in a meta-analysis of

32 cohorts of 66,240 individuals of European ancestry

(Table S1A). The ratio of the observed to the null median

test statistic, l, was %1.1 for all studies, except for the

GRAPHIC (the Genetic Regulation of Arterial Pressure of

Humans in the Community) study, the HAPI (Heredity

and Phenotype Intervention) heart study, and PROCARDIS

(the Precocious Coronary Artery Disease Study), where

related individuals were included. The GRAPHIC study

had a l of 1.2 for all phenotypes considered, and it

decreased to ~1.06 when rare variants (MAF < 0.1%)

were excluded from the data. Both the HAPI study and

PROCARDIS had l values of ~1.10 and 1.12 for LDL-C

and TC, respectively, but these again decreased to % 1.1

when rare variants (MAF < 0.1%) were excluded.
Meta-analysis

We observed 598, 491, 575, and 609 statistically significant

(p < 2.4 3 10�6) associations for HDL-C, LDL-C, TC, and

TGs, respectively, by using model 1 in METAL (Table S2).

After we excluded SNPs present in fewer than 80% of

the studies and filtered associations with a meta-analysis
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Figure 2. Manhattan Plots for HDL-C, LDL-C, TC, and TG Data from the IBC Lipid Meta-analysis Show p Values Based on Those Ob-
tained from the METAL Meta-analysis
I2 value for heterogeneity > 35%, the number of statisti-

cally significant SNPs was reduced to 276 for HDL-C, 158

for LDL-C, 269 for TC, and 242 for TGs (Table S3). Of the

2,273 statistically significant associations before filtering,

1,094 were with SNPs of MAF < 1%, and 1,088 of these

had an I2 value > 35% (Table S2). In total, given that

several SNPs were associated with more than one pheno-

type and that SNPs were clustered tightly at certain loci,

we identified 549 study-wide significant SNPs in and

around 114 different genes. Figure S1 shows the overlap

of the identified signals between traits; Manhattan plots

for each phenotype are shown in Figure 2.

We also analyzed the data by using MANTEL and the

Metafor package in R. Although each algorithm used a

slightly different method for the meta-analysis, 98%

and 95% of the top 100 signals for all phenotypes were

also significant in Metafor and MANTEL, respectively.

Of the 945 filtered significant associations observed in

METAL, 78% were also significant in Metafor and 80%

were significant in MANTEL (Table S3). The differences

in the results between the three packages were mainly

observed in associations with SNPs of low frequency,

of high heterogeneity, or with minor statistical-sig-
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nificance differences, which were close to our cutoff

thresholds.

The meta-analysis of plasma-lipid levels, corrected for

lipid-lowering medication and adjusted for age (model 2)

or for BMI, T2D, and current smoking status (model 3)

gave similar results. A summary of the differences (in terms

of gene loci identified) between the three models is

shown in Figure 3. For the four phenotypes, the Pearson

correlation coefficients of the test statistics varied between

0.86 and 0.92 (for models 1 and 2) and between 0.85 and

0.89 (for models 1 and 3). The correlation between models

2 and 3 was 0.94–0.97.

Conditional Analysis

Because of the dense gene-centric nature of the IBC array,

SNPs showing association unsurprisingly formed tight

clusters. Using a p < 10�4 threshold, we examined 39

loci for HDL-C, 34 loci for LDL-C, 41 loci for TC, and 32

loci for TGs. Conditioning on the SNP with the strongest

p value, we identified independent signals for four

traits (Table S4). Although four independent signals were

observed in the LPL (MIM 609708) locus and three signals

were observed in the BUD13-APOA5 (MIM 606368) cluster
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Figure 3. Venn Diagram per Phenotype for the Comparison of the Three Models Used
Model 1 corrects only for population stratification; model 2 corrects for population stratification, age, and lipid medication; and
model 3 corrects for population stratification, age, T2D, smoking, BMI, and lipid medication. Only signals with p < 2.4 3 10�6 are
included.
for HDL and TGs, only two SNPs (rs268 and rs3289) in the

LPL locus were overlapping between the phenotypes.

Gender-Specific Analysis

Of the 66,240 individuals included in the meta-analysis,

31,513 were males and 34,727 were females. The data

were analyzed with stratification by gender in each cohort,

and the first-stage meta-analysis included both genders.

We also tested each gender separately, and the results

were compared for concordance between genders. All of

the SNPs showing heterogeneity of effect between males

and females had the same direction of effect with the

overall analysis, but one gender showed a significantly

weaker association than the other. Gender-specific differ-

ences were found for the individual lipid traits (14 SNPs

for HDL-C, 9 SNPs for LDL-C, 14 SNPs for TGs, and

9 SNPs for TC [Table S5]).

Explained Variance

Variable selection used all unfiltered signals, including

1,156 SNPs for HDL-C, 1,063 SNPs for LDL-C, 1,173 SNPs

for TC, and 1,139 SNPs for TGs, identified as significant
830 The American Journal of Human Genetics 91, 823–838, Novemb
at the p < 10�4 threshold from any of the three meta-

analysis algorithms. Additionally, previously reported

SNPs were forced into the model and included 41 SNPs

for HDL-C, 25 SNPs for LDL-C, 22 SNPs for TC, and 35

SNPs for TGs. On the basis of the AIC evaluation, 71

SNPs in HDL-C, 79 SNPs in LDL-C, 120 SNPs in TC, and

75 SNPs in TGs appear to carry additional information

beyond the previously reported SNPs. All SNPs, including

the previously reported SNPs that were forced into the

model, that were retained after variable selection are

described in Table S6.

Using the list of SNPs identified by variable selection, we

estimated the percentage of explained phenotypic vari-

ance in the subset of studies providing individual-level

data. After adjustment for age and gender, the identified

SNPs explained 9.9% (with 112 SNPs) of the variance in

HDL-C, 9.5% (with 104 SNPs) of the variance in LDL-C,

10.3% (with 142 SNPs) of the variance in TC, and 8.0%

(with 110 SNPs) of the variance in TGs. Using data

derived from previously reported lipid-associated SNPs

available in the IBC array, we observed much lower

percentages: 6.3% for HDL-C, 4.8% for LDL-C, 4.1% for
er 2, 2012



TC, and 5.5% for TGs. For comparison, using the common

approach of including only the top signal from each locus

plus any independent SNP after conditional analysis, we

were able to explain 7.9% of the HDL-C variance, 8.4%

of the LDL-C variance, 8.2% of the TC variance, and

6.3% of the TG phenotypic variance.

To avoid overestimation resulting from using the same

data sets for SNP selection and testing, we also estimated

the variance explained in theWHII study and the BWHHS,

which did not contribute individual-level data used in the

variable selection. For the WHII study, the AIC-selected

SNPs explained 11.5% of the variations in HDL-C, 15.6%

of the variations in LDL-C, 13.2% of the variations in

TC, and 9.8% of the variations in TGs, whereas the previ-

ously reported SNPs explained 7.9%, 8.2%, 6.7%, and

7.4% of the phenotypic variance in HDL-C, LDL-C, TC,

and TGs, respectively. The corresponding estimates for

the BWHHS were 8.2% for HDL-C, 10.7% for LDL-C,

8.1% for TC, and 8.2% for TGs when all the selected

SNPs were included in the analysis and 6.0% for HDL-C,

4.2% for LDL-C, 2.6% for TC, and 5.7 for TGs when only

the previously reported SNPs were considered. The esti-

mated explained variance, approximate to the heritability

due to additive genetic effects, was 10.9% (males) and

12.2% (females) for HDL-C, 12.8% (males) and 11.53%

(females) for LDL-C, 12.7% (males) and 12.6% (females)

for TC, and 10.7% (males) and 8.6% (females) for TGs

(Table S7).

Confirmation of Previously Reported Signals

The IBC array covered 57 of the 95 loci reported in the

GLGC study6 and did not include two of the top 20

HDL-C loci (KLF14 [MIM 609393] and LILRA3 [MIM

604818]), two of the top 20 LDL-C loci (TOP1 [MIM

126420] and ST3GAL4 [MIM 104240]), any of the top 20

TC loci, and two of the top 20 TG loci (KLHL8 [MIM

611967] and FRMD5). Among the directly genotyped

SNPs in the IBC array, we were able to replicate the associ-

ation between HDL-C and 13 out of 18 SNPs, between

LDL-C and 11 of 21 SNPs, between TC and 16 of 26

SNPs, and between TGs and 9 of 18 SNPs, each at a

threshold of p < 10�4. Similarly, for the previously re-

ported loci, the lowest p value SNP in our results replicated

23 of 32 available HDL-C loci, 23 of 32 available LDL-C

loci, 30 of 43 available TC loci, and 21 of 29 TG loci. Out

of the 57 loci cited above, 31 had specifically the same

SNP genotyped by both the GLGC and the IBC array. For

those, thus, there was information on directions of effect

for both the GLGC and IBC array. In total, these represent

49 signals (given that one SNP can be significant for

more than one trait); 13 of those were significant for

HDL-C, 11 were significant for LDL-C, 16 were significant

for TC, and 9 were significant for TGs. Only one SNP,

rs12027135 from LDLRAP1 (MIM 605747), was found

with a non-statistically-significant effect and a direction

opposite of that from the GLGC study for two traits

(LDL-C and TC).
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In addition to the association reported in previous

studies, we also identified significant associations for

LCAT (MIM 606967), LRP1 (MIM 107770), LPA (MIM

152200), IRS1 (MIM 147545), and PCSK9 (MIM 607786)

loci at the GWAS p value cutoff of p < 5 3 10�8 (Table S8).
Previously Unreported Signals

Using a p < 1.0 3 10�4 threshold, we identified 48 signif-

icant SNP associations in novel and previously reported

genes for HDL-C, and 17 of these are in previously unre-

ported genes. For LDL-C, we identified 38 significantly

associated SNPs that were not previously reported in

either the NHGRI GWAS database or in the GLGC

study.6 Of these, 18 were located within genes without

any previously annotated effect on LDL-C. Similarly, for

TC we observed 47 SNPs not previously reported in estab-

lished genes and 15 SNPs in previously undescribed genes.

Finally, for TGs we observed 49 associations, including

signals in the 18 genes not previously reported. With

the array-wide significance level of p < 2.4 3 10�6, there

were 11, 5, 12, and 6 novel SNPs for HDL-C, LDL-C, TC,

and TGs, respectively. Several loci not previously reported

were observed with an array-wide significance of p <

2.4 3 10�6 (Table S9).
Replication

SNPs that showed a significant (p< 1.03 10�4) association

and that were not previously reported to be associated

with lipids were considered for replication in additional

studies. These were examined either in our own replication

sample of the 25K cohort or with the GLGC data. In total,

23 of the total 69 putative novel gene signals identified in

stage 1 were found to be significantly associated in the

replication stage. Three of these SNPs reached a GWAS

level of significance (p < 5 3 10�8) in the discovery phase

and two replicated (67%), nine more reached our array-

wide significance and five replicated (56%), and a further

57 surpassed the permissive 10�4 cutoff, at which sixteen

signals (28%) were replicated.

Of all the signals tested, 11 associations were replicated

for HDL-C, 11 were replicated for LDL-C, 17 were repli-

cated for TC, and 12 were replicated for TGs. These repli-

cated signals were in 21 gene regions not previously

reported as associated with the lipid phenotypes consid-

ered here. A total of 23 signals were replicated in the 25K

cohort and/or the GLGC study: five for HDL-C, five for

LDL-C, seven for TC, and six for TGs (Table S9). Together

with the results of the overall meta-analysis, details of

the lead SNPs replicated in each of the novel genes are

provided in Table 1.

Additionally, previously unreported SNPs in known

loci were also identified. Four SNPs were associated with

HDL-C, six were associated with LDL-C, ten were associ-

ated with TC, and four were associated with TGs. The

results for all SNPs and loci tested for replication are pre-

sented in Table S9.
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Table 1. Replicated Previously Unreported Genes

Gene Trait Model SNP Chr Position

Discovery

Allele 1 Allele 2 Freq 1
Number of
Individuals p Value Direction

PPARG HDL 3 rs12631819 3 12,317,861 T G 0.0285 53,187 1.72 3 10�5 �

GP1HBP1 HDL 2 rs7388248 8 144,376,728 C G 0.2878 54,144 3.30 3 10�7 þ

DGAT2 HDL 1 rs11236530 11 75,167,052 A C 0.4246 61,617 2.44 3 10�6 �

HCAR2 HDL 3 rs4759361 12 121,744,233 A T 0.1584 53,194 2.05 3 10�9 þ

FTO HDL 2 rs1421085 16 52,358,455 T C 0.6095 54,286 5.76 3 10�5 þ

VLDLR LDL 2 rs7024888 9 2,626,992 T C 0.9523 48,970 4.38 3 10�5 þ

SPTY2D1 LDL 1 rs11024739 11 18,602,419 A C 0.5514 55,610 3.09 3 10�7 þ

BRCA2 LDL 3 rs9534275 13 31,838,345 A C 0.5149 47,864 4.61 3 10�6 �

SOCS3 LDL 2 rs4082919 17 73,889,077 T G 0.5148 48,687 2.33 3 10�5 þ

APOH LDL 1 rs1801689 17 61,641,042 A C 0.9646 55,363 2.80 3 10�11 �

C4B TGs 1 rs389883 6 32,055,439 T G 0.6323 57,442 8.63 3 10�7 þ

LPAL2 TGs 3 rs3123629 6 160,826,076 A G 0.3445 47,279 3.76 3 10�5 þ

GCK TGs 3 rs2070971 7 44,164,108 T G 0.132 49,207 2.23 3 10�6 þ

GATA4 TGs 3 rs6983129 8 11,628,545 A C 0.4918 49,262 2.30 3 10�6 þ

SERPINF2 TGs 3 rs2070863 17 1,595,252 T C 0.2109 49,243 3.73 3 10�5 þ

INSR TGs 1 rs8112883 19 7,130,320 T G 0.3269 57,525 8.55 3 10�6 �

FCGR2A TC 3 rs1801274 1 159,746,369 A G 0.5016 53,200 2.25 3 10�5 þ

INSIG2 TC 3 rs12464355 2 118,566,320 A G 0.9263 53,171 6.26 3 10�5 þ

UGT1A1 TC 1 rs11563251 2 234,344,123 T C 0.0934 65,731 3.46 3 10�6 þ

CHUK TC 3 rs11597086 10 101,943,695 A C 0.5885 52,928 3.54 3 10�5 �

UBE3B TC 3 rs7298565 12 108,421,917 A G 0.5254 48,938 1.47 3 10�5 þ

BRCA2 TC 2 rs9534275 13 31,838,345 A C 0.5157 54,094 4.16 3 10�6 �

SOCS3 TC 2 rs4082919 17 73,889,077 T G 0.5159 54,065 1.22 3 10�5 þ

The following abbreviations are use: chr, chromosome; freq, frequency; het, heterogeneity; mult adj, multiple-variate-adjusted; GLGC, Global Lipids Genetics
Consortium; HDL, high-density lipoprotein; LDL, low-density lipoprotein; TGs, triglycerides; and TC, total cholesterol.
Discussion

To explore association with HDL-C, LDL-C, TC, and TG

levels, we used a large-scale locus-centric approach to test

49,227 SNPs carefully prioritized for CVD-related loci in

32 studies with a combined discovery sample size of up

to 66,240 individuals of European ancestry. Using an addi-

tional sample of 25,282 individuals and the available data

derived from the GLGC study,6 we identified 21 additional

loci that have not been associated with lipid levels before

and were able to confirm a number of the previously re-

ported associations. We also observed in multiple loci

gender-specific differences that were identifiable at the

level of explained variance. Finally, although the array

covers a smaller proportion of the genome, our heritability

estimates were comparable to current GWAS estimates.

Recently, gene-based arrays (such as the IBC array) and

the ‘‘Metabochip,’’ ‘‘Immunochip,’’ and ‘‘exome-chip’’

arrays with content derived from GWASs, next-generation
832 The American Journal of Human Genetics 91, 823–838, Novemb
sequencing, and other plausible sources (such as func-

tional studies) are becoming increasingly popular and

offer significant value to individual investigators and con-

sortia.40–42 They allow the flexibility of incorporating

index SNPs, as well as denser probe coverage for finer

mapping, across a large number of loci, permitting selec-

tive coverage for a range of prioritized findings. The

GLGC study6 provides the most current analysis of the

entire genome for common polymorphisms that underpin

circulating concentrations of HDL-C, LDL-C, TC, and TGs.

Working under the hypothesis that any individual SNP

tested is unlikely to have a true effect on the particular

phenotype of interest, the GLGC was able to identify

SNPs explaining 0.05% of the phenotypic variance with

94.75% power, whereas in our data the same SNPs had

85.07% power to explain the same proportion of the

phenotypic variance. This might in part explain our

inability to replicate the entire set of SNPs identified in

the GLGC study. Nevertheless, these differences in power
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25K Replication GLGC Replication

Overall
Meta-analysis

Het
p Value

Number of
Individuals p Value Direction

Het
p Value

Mult Adj
p Value

GLGC
p Value Direction

GLGC Mult
Adj p Value

0.2150 10,567 2.42 3 10�1 þ 0.6780 1.00 2.27 3 10�4 � 1.64 3 10�2 8.35 3 10�6

0.7494 14,374 1.42 3 10�2 þ 0.5845 1.00 4.03 3 10�4 þ 2.90 3 10�2 2.93 3 10�9

0.6566 24,732 3.80 3 10�5 � 0.3281 2.74 3 10�3 4.92 3 10�3 � 3.54 3 10�1 1.40 3 10�9

0.8481 13,902 6.24 3 10�1 þ 0.2468 1.00 1.00 3 10�6 þ 7.23 3 10�5 2.50 3 10�12

0.1952 14,373 1.08 3 10�1 þ 0.8410 1.00 3.31 3 10�5 þ 2.38 3 10�3 2.33 3 10�8

0.8693 2,998 1.66 3 10�1 þ 0.4035 1.00 4.95 3 10�5 þ 3.02 3 10�3 7.51 3 10�8

0.3205 24,393 7.49 3 10�1 þ 0.5482 1.00 4.14 3 10�6 þ 2.53 3 10�4 6.04 3 10�10

0.4505 13,886 8.26 3 10�1 þ 0.4184 1.00 2.48 3 10�7 � 1.51 3 10�5 5.67 3 10�9

0.5148 14,347 1.17 3 10�3 þ 0.1111 4.45 3 10�2 3.58 3 10�1 þ 1.00 4.46 3 10�4

0.6439 2,999 5.56 3 10�1 � 0.3226 1.00 2.10 3 10�5 � 1.28 3 10�3 9.41 3 10�14

0.9931 14,638 3.81 3 10�2 þ 0.9599 1.00 3.95 3 10�15 þ 2.85 3 10�13 9.90 3 10�19

0.5835 13,935 5.23 3 10�1 þ 0.5929 1.00 1.20 3 10�6 þ 8.60 3 10�5 4.40 3 10�8

0.2751 13,900 1.18 3 10�2 þ 0.8145 8.46 3 10�1 3.08 3 10�4 þ 2.22 3 10�2 2.25 3 10�7

0.9860 13,940 2.02 3 10�1 þ 0.2548 1.00 7.54 3 10�6 þ 5.43 3 10�4 2.62 3 10�8

0.6577 13,903 4.41 3 10�4 þ 0.3132 3.18 3 10�2 5.95 3 10�3 þ 4.28 3 10�1 2.41 3 10�5

0.2601 14,635 4.61 3 10�1 � 0.8751 1.00 2.85 3 10�5 � 2.05 3 10�3 4.76 3 10�6

0.9812 13,976 2.54 3 10�3 þ 0.5643 2.04 3 10�1 1.58 3 10�4 þ 1.26 3 10�2 3.67 3 10�8

0.6811 13,851 7.66 3 10�3 þ 0.4101 6.13 3 10�1 8.69 3 10�5 þ 6.96 3 10�3 1.19 3 10�8

0.0242 14,678 2.56 3 10�1 þ 0.0790 1.00 1.50 3 10�6 þ 1.20 3 10�4 2.50 3 10�9

0.4075 13,998 2.05 3 10�1 � 0.3244 1.00 5.81 3 10�5 � 4.65 3 10�3 2.99 3 10�9

0.8893 13,997 7.93 3 10�1 þ 0.3195 1.00 1.25 3 10�4 þ 1.00 3 10�2 1.98 3 10�6

0.6331 14,407 3.59 3 10�1 þ 0.3510 1.00 2.47 3 10�5 � 1.98 3 10�3 5.39 3 10�7

0.7658 14,415 1.61 3 10�4 þ 0.0394 1.29 3 10�2 9.56 3 10�3 þ 7.65 3 10�1 8.91 3 10�7
do not take into account the fact that, compared to those

in the GWAS, the SNPs tested here were more likely to

be associated with the phenotypes tested because of the

selection of SNPs derived from available information

concerning a putative role in lipid metabolism. This is

apparent from the extreme quantile-quantile plots seen

in hypothesis-driven arrays compared to typical GWASs.

Such candidate-loci arrays also allow ‘‘cosmopolitan

tagging’’ approaches to ensure that sufficient markers

across loci of interest for multiple ancestries are achieved.

Much of the lipid content of the 2,000 loci on the IBC array

was derived from pathway-based candidates.8 Fifty-seven

loci present on the IBC array were associated with lipid

traits in the GLGC study. Importantly, however, at the

time of array design, very few loci were shown to be

robustly associated with lipid phenotypes, showing the

clear utility of such candidate-loci approaches for gener-

ating putative candidates for validation in large numbers

of individuals. One shortcoming of hypothesis-driven
The American
genotyping arrays is limited coverage—38 out of the re-

ported 95 previously reported GLGC loci were not repre-

sented on the IBC array. Despite this, the great majority,

74 out of 80, of the strongest associations were covered

with greater density than before, highlighting the utility

of such approaches. Furthermore, aggregation of data sets

such as those presented here has clear utility for condi-

tional analyses—we show that 27 loci have more than

one independent signal for the examined lipid traits.

Our most significantly associated locus for HDL-C was

CETP (MIM 118470). CETP is a hydrophobic glycoprotein,

which, upon secretion by the liver, is bound mainly to

HDL particles in the plasma.43 CETP inhibitors have been

shown to significantly increase plasma HDL-C levels and

thereby mimic the hyperalphalipoproteinemia encoun-

tered in patients with CETP deficiency.44 For both LDL-C

and TC, LDLR (low density lipoprotein receptor [MIM

606945]) had the lowest p value. LDLR encodes the cell-

surface LDL receptor, which removes circulating LDL via
Journal of Human Genetics 91, 823–838, November 2, 2012 833



receptor-mediated endocytosis. More than 1,600 rare,

loss-of-function mutations in LDLR have been shown to

cause familial hypercholesterolemia.45–47 Finally, the locus

with the strongest association with TG levels was BUD13

(functional spliceosome-associated protein 71), which is

located at the same chromosome 11 locus that contains

the APOA1-C3-A4-A5-ZNF259 (MIM 107680) cluster.

In the GLGC GWAS meta-analysis, the top hit for TGs,

rs964184 in APOA1 (MIM 107680), lies within the

BUD13 promoter. BUD13 is a yeast homolog of an active

spliceosome, but little is known about its function in

humans. Two of the encoded apolipoproteins, apoA-V

and apoC-III, within the cluster influence the activity of

lipoprotein lipase (LPL) activity, which is central to hydro-

lysis of circulating TG-rich lipoproteins. Variants in these

genes have long been associated with clinical hypertrigly-

ceridemia.48,49

Two of our top signals, CETP and BUD13, show evidence

of gender-specific effects. A wide variety of phenotypes,

including CHD, demonstrate sexual dimorphism.50 Thus,

some of the strongest signals we found might be impor-

tant in one gender alone. An illustrative example is

CETP, for which SNPs rs17231506 and rs12720922 were

both differentially associated with HDL-C levels in

men and women. This relationship has been previously

suggested, and gender-specific differences in expression

levels of the gene product have been hypothesized.51

Other previously reported SNPs, also shown here to

have gender-interactions, include rs531819, rs17398765,

rs1367117 in APOB (MIM 107730),52 rs4953023 in

ABCG8 (MIM 605460),53–55 rs157580 in TOMM40 (MIM

608061), which is close to APOE (MIM 107741),56 and

rs12721109 in APOC4 (MIM 600745).57 In addition to

gender differences in association with individual SNPs,

we observed between-sex differences in trait heritability.

Of the four lipid phenotypes examined, LDL-C and TC

had minimal between-gender differences in heritability—

1.06% and 0.2%, respectively. Females showed higher

heritability for HDL-C (1.5% difference), and males

showed higher heritability for TGs (1.9% difference). Our

results, except those for TGs, are similar to those reported

byWeiss et al.5—LDL-C showed small narrow-sense herita-

bility differences, and females had higher narrow-sense

heritability of HDL-C than did males. In contrast to our

findings, Weiss and colleagues5 showed a stronger but

nonsignificant heritability in females compared to men

for TGs.

Of the 49,227 SNPs in the array, ~21% had a MAF < 1%,

whereas in the 2,273 unfiltered significant associations

observed, 48% had a MAF < 1%. After filtering, 0.06% of

the significant associations were SNPs of MAF < 1%.

Compared to their overall proportion on the array, the

higher proportion of rare SNPs passing the array-wide p

value threshold can be attributed, in part, to their high

heterogeneity. In themajority of cases, SNPs with genotyp-

ing errors show high levels of heterogeneity between

studies. This might suggest that current methods cannot
834 The American Journal of Human Genetics 91, 823–838, Novemb
easily genotype or call uncommon SNPs. A technical

note from Illumina58 reported that accurate calling of

rare variants is possible, although there is an increase in

the error rate for rare-allele homozygotes. It is also possible

that carriers of rare functional SNPs will have an extreme

phenotype, leading, in some cases, to exclusion from the

study or to a greater measurement bias in some studies

compared to others. At least some of the rare SNPs in our

results are known to have functional mutations with large

effects. APOB (MIM 107730) SNP rs5742904 has a p value

of 1.039 3 10�46 with LDL-C in our meta-analysis but

has an I2 of 96.6%. SNP rs5742904 is a known rare muta-

tion (c.10580G>A [p.Arg3527Gln]) (RefSeq accession

number NM_000384.2; ENSG00000084674) involved in

hypercholesterolaemia and early CHD.59,60 The mutation,

which has been shown to reduce the affinity for the LDL

cholesterol particle, where ApoB is the single protein

component for the receptor, is present in 5% of patients

with familial hypercholesterolaemia (MIM 143890) in

the UK.61 The identification of rare SNP associations

is a substantial challenge, and although we observed a

number of strong probable associations, high heteroge-

neity precludes any firm conclusions.

Our results point toward the existence of multiple inde-

pendent lipid-associated SNPs in several different loci.

One example is LPL (lipoprotein lipase), for which the

classical view of the primary functional importance of

the c.1421C>G (p.Ser447*) variant (rs328), which causes

a premature stop codon, has been modified by the find-

ings that several different polymorphisms at this locus

concurrently affect LPL expression.62,63 Interestingly,

all of our top signals—CETP, LDLR, and the BUD13

cluster—show evidence of the existence of more than

one functional SNP. Especially for the cluster around

BUD13, the risk allele rs9804646-T (MAF ¼ 0.08) is on

the same haplotype as the protective allele of the top

SNP (rs10750097) in the region, making the former iden-

tifiable only after conditional analysis. If this turns out to

be the rule for the genetic architecture of lipid loci, any

single identified signal at a locus will underestimate the

explained variance. Future clinical use in prediction of

lipid levels will require more sophisticated approaches

for fully capturing information, irrespective of the levels

of significance in discovery and replication studies. A

number of statistical and computational criteria for select-

ing the most relevant and informative SNPs are available.

Here, we used the AIC criterion as a balance between

being inclusive of the SNPs used and avoiding overfitting.

It is possible that the exclusive use of only the most signif-

icant, not the most informative, SNPs is partly responsible

for much of the ‘‘missing’’ heritability that cannot be ex-

plained by additional modest-effect common variants.64

The truly causal polymorphisms are not always included

within the genotyped SNPs, making heritability estimates

dependent on the LD between causal and observed

SNPs.65 Methods such as selection with AIC or the

approach used by Yang et al.,66 which account for the
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total information in the area, will recover some of this

missing information, as our results suggest. In addition,

use of stringent thresholds of statistical significance

will exclude polymorphisms explaining a very small

percentage of the variation, despite the potential impact

of a great number of such SNPs. Our own results and

the work by Yang and colleagues65 suggest that common

SNPs, which do not reach generally acceptable significant

levels, are likely to hold additional information. Rare vari-

ants still undiscovered might explain some of the

‘‘missing’’ heritability of plasma-lipid phenotypes,67 but

it is not clear how much extremely rare changes can

contribute to a population measure such as heritability.

Gene 3 gene and gene 3 environment interactions can

also play an important role, but statistical constraints

hinder their identification.67 Transgenerational epigenetic

alterations have also been suggested as possible sources

of heritability,68 but if they persist for many generations,

it is likely that they will acquire LD with a SNP already in

the analysis.69

For these same reasons, we were also less stringent

with our criteria in pursuing potentially novel signals for

downstream replication by using a p < 1 3 10�4 threshold

instead of our array-wide significance level of p < 2.4 3

10�6. To avoid any increase of false-positive signals, we

applied the stringent Bonferroni correction in our repli-

cation p values. We used a very specific definition to

declare novelty of a signal. Previously unreported loci

were defined as those not described in either the NHGRI

GWAS database or by the initial GLGC publication,6 and

previously unreported SNPs were defined as those that

were not reported in the GLGC study6 and that were in

LD (r2 < 0.3) with a lead GLGC SNP. This caused some

previously characterized SNPs and loci from candidate-

gene studies (these SNPs had not been replicated in any

GWAS) to be considered novel in our analysis. GATA4

(MIM 600576) is an example of such. Although its associ-

ation with TGs was missed by the GWAS, evidence in

mice, and recently in humans, reveals that the coded

protein is involved in TG absorption from the intestine

and underpins plasma TG levels.70

The most challenging aspect of evaluating large data

sets is that it is extremely difficult to find an ideal replica-

tion sample, which is bigger than the discovery set, in

such a large meta-analysis setting, where most large

studies have been exhausted. We used five previously re-

ported GWASs with and without imputed genotype

data. This resulted in an uneven replication in which

very few SNPs could be genotyped across the entire repli-

cation sample, and most were available only in a fraction

of the studies. Considering that we most likely overesti-

mated the true effect size of each SNP, in accordance

with the winner’s curse, the power to replicate our signals

in a smaller sample is markedly reduced. Nevertheless,

a small number of signals, notably DGAT2 (MIM

606983) for HDL-C, SOCS3 (MIM 604176) for TC and

LDL, and SERPINF2 (MIM 613168) for TGs, were repli-
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cated. The published GLGC data evaluated R 2.5 million

SNPs (both directly genotyped and imputed) in more

than 100,000 individuals and, as such, provided a much

more reliable replication set. On the basis of this repli-

cation, a further 21 previously unreported loci were

confirmed. Moreover, we were also able to identify three

SNPs that added additional information to what was

previously published. The rs753381 variant is a coding

nonsynonymous SNP in PLCG1 (MIM 172420) and is

considered in the GLGC study as part of the LDL-C

association with TOP1 (MIM 126420) (rs6029526). The

LD between rs753381 and the previously reported

rs6029526 is r2 ¼ 0.82, but phospholipase C, gamma 1

(PLCG1) was reported to affect cholesterol solubility in

bile.71 Therefore, we speculate that this variant might

influence serum-cholesterol levels through interference

with the cholesterol cycle and that the relevant locus for

the association with LDL-C is PLCG1 rather than TOP1.

SNP rs389883, in an intron of C4B (MIM 120820), is

significantly associated with TGs in both our data and

in the GLGC results, but it is not included in the

GLGC-reported signals. Similarly, TCF1 rs2244608, associ-

ated with LDL, is only included in the ethnic analysis, but

not in the main results of the GWAS meta-analysis.

Well-known genes for other metabolic phenotypes were

included in the replicated, previously unreported, signals;

one example is FTO (MIM 610966) for BMI. FTO is

believed to be involved in the regulation of food intake

and to affect lipolysis in adipose tissue,72 whereas in our

data, FTO is also associated with HDL-C, probably through

its association with BMI, as the loss of significance in

model 3 suggests (p ¼ 0.8805). BRCA2 (MIM 600185),

here associated with LDL-C, and BRCA1 are two of the

best known genes in which mutations are associated

with breast and ovarian cancers.73 The precise function

of BRCA2 (MIM 600185) is unclear, but its encoded

protein has been implicated in a variety of processes,

including DNA repair and recombination, cell-cycle

control, and transcription.74 Some of our other signals

are already clinically significant. For example, HCAR2

(MIM 609163), also known as niacin receptor 1, is an

important biomolecular target of niacin, which is a widely

prescribed drug for the treatment of dyslipidemia and

which acts primarily by inhibiting hepatic DGAT-2 (MIM

606983) and thus lowers secretion of TG-rich lipoproteins

and increases HDL-C levels.75,76

The evidence from the cumulative meta-analysis of our-

data, the replication studies, and the published GLGC

results suggest that further ‘‘true’’ signals might be found

with less stringent p value thresholds. Given the recent

deluge of available genetic data, we propose that a more

careful examination is required of common variants of

moderate and small effects. This might help explain

portions of missing heritability, elucidate the pathways

and mechanisms involved in lipid metabolism and CHD,

and identify potential loci in which rare SNPs with large

effects on the phenotype can be discovered.
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