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ABSTRACT 32 

Translating genome-wide association studies (GWAS) of complex disease into mechanistic 33 

insight requires a comprehensive understanding of risk variant effects on disease-relevant cell 34 

types. To uncover cell type-specific mechanisms of type 1 diabetes (T1D) risk, we combined 35 

genetic association mapping and single cell epigenomics. We performed the largest to-date 36 

GWAS of T1D in 489,679 samples imputed into 59.2M variants, which identified 74 novel 37 

association signals including several large-effect rare variants. Fine-mapping of 141 total signals 38 

substantially improved resolution of causal variant credible sets, which primarily mapped to non-39 

coding sequence. To annotate cell type-specific regulatory mechanisms of T1D risk variants, we 40 

mapped 448,142 candidate cis-regulatory elements (cCREs) in pancreas and peripheral blood 41 

mononuclear cell types using snATAC-seq of 131,554 nuclei. T1D risk variants were enriched in 42 

cCREs active in CD4+ T cells as well as several additional cell types including pancreatic exocrine 43 

acinar and ductal cells. High-probability T1D risk variants at multiple signals mapped to exocrine-44 

specific cCREs including novel loci near CEL, GP2 and CFTR. At the CFTR locus, the likely 45 

causal variant rs7795896 mapped in a ductal-specific distal cCRE which regulated CFTR and the 46 

risk allele reduced transcription factor binding, enhancer activity and CFTR expression in ductal 47 

cells. These findings support a role for the exocrine pancreas in T1D pathogenesis and highlight 48 

the power of combining large-scale GWAS and single cell epigenomics to provide insight into the 49 

cellular origins of complex disease.  50 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2021.01.13.426472doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.13.426472
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

INTRODUCTION 51 

Type 1 diabetes (T1D) is a complex autoimmune disease characterized by the loss of insulin-52 

producing pancreatic beta cells and subsequent hyperglycemia1, where the triggers of 53 

autoimmunity and disease onset remain poorly understood. T1D has a strong genetic component, 54 

most prominently at the major histocompatibility complex (MHC) locus but including 60 additional 55 

risk loci identified in genome-wide and targeted array association studies2–6.  T1D associated 56 

variants at risk loci are largely non-coding, and intersection of T1D associated variants with 57 

epigenomic data has identified an enrichment of risk variants within lymphoid enhancers2. 58 

However, due to limited sample sizes, incomplete variant coverage, and the limited cell type 59 

resolution of existing epigenomic maps, the causal variants and cellular mechanisms of action of 60 

T1D risk loci are largely unresolved.  61 

 62 

RESULTS 63 

Comprehensive discovery and fine mapping of T1D risk signals 64 

To discover novel risk loci and improve fine mapping of causal variants for T1D, we performed a 65 

genome-wide association study (GWAS) of 18,803 T1D cases and 470,876 controls of European 66 

ancestry from 9 country-of-origin and array-matched cohorts (Supplemental Table 1). After 67 

applying uniform quality-control measures (Supplemental Figure 1), where we removed low-68 

quality genotypes, individuals of non-European ancestry, or controls with other autoimmune 69 

diseases, we imputed genotypes into the TOPMed r2 panel and tested for T1D association7. 70 

Through meta-analysis, we combined association results for 59,244,856 variants across cohorts 71 

and observed 80 loci reaching genome-wide significance (P<5×10-8), including 30 loci previously 72 

unreported in T1D risk (Figure 1a, Supplemental Figure 2, Supplemental Table 2). Previous 73 

studies have identified independent association signals at multiple T1D loci2, and we reasoned 74 

that our increased sample size would uncover additional independent signals. Through iterative 75 

conditional analyses, we discovered 52 secondary signals at locus-wide significance (P<1×10-5), 76 

of which 44 were previously unknown (Supplemental Figure 3, Supplemental Table 2). Over 77 

40% (36/89) of loci contained more than one independent signal; for example, the known BACH2 78 

locus and novel BCL11A locus each had three signals (Figure 1b), and at the IL2RA locus we 79 

identified six independent signals, three of which were novel (Supplemental Figure 3). 80 

The TOPMed r2 panel enables more accurate imputation of rare variants over previous reference 81 

panels, and in our study, we identified five novel T1D-associated variants with minor allele 82 
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frequency (MAF) less than 0.005 and large effects on disease risk (Supplemental Table 2, 83 

Supplemental Figure 4). Among these rare variants, rs541856133 (MAF=.0015, OR=2.97) 84 

mapped to a non-coding region directly upstream of CEL, which has been implicated previously 85 

as the cause of maturity-onset diabetes of the young with pancreatic exocrine dysfunction 86 

(MODY8)8. We also identified a novel protein-coding protective variant at IFIH1 (p.Asn160Asp, 87 

rs75671397, MAF=.002, OR=0.32), which was conditionally independent of the known protein-88 

coding variant signals in this gene. The three additional rare T1D risk variants mapped to non-89 

coding regions at the 16q23 (rs138099003, MAF=.0015, OR=2.29), SH2B3 (rs762349492, 90 

MAF=.0018, OR=1.99), and TOX (rs192456638, MAF=.0045, OR=1.80) loci (Supplemental 91 

Table 2, Supplemental Figure 4).  92 

We next sought to fine map causal variants of T1D signals using a Bayesian approach9. In total 93 

we considered 141 signals including 89 primary and 52 conditional signals at known and novel 94 

loci excluding the MHC locus due to complex LD structure (Figure 1c). We defined linkage 95 

disequilibrium (LD)-based credible sets for the 141 signals, using new index variants at known 96 

loci where applicable. For each signal, we then used approximate Bayes factors9 to calculate the 97 

posterior probability of association (PPA) for each variant and defined credible sets of variants 98 

that summed up to 99% cumulative PPA (Supplemental Table 3). Compared to previous 99 

efforts2,10, our fine-mapping resolution was drastically improved based on two complementary 100 

measures: 1) fewer number of credible set variants per signal (median 24 variants) and 2) a 101 

greater number of variants with high causal probabilities (Figure 1d). At nearly half of all T1D 102 

signals (49%; 69/141) the credible set contained 20 or fewer variants, and 25% (35/141) 103 

contained a single variant explaining the majority of the posterior probability (>50% PPA). Among 104 

credible set variants, 23 variants with PPA>1% were nonsynonymous changes, including several 105 

at novel loci p.Arg471Cys in AIRE (PPA=.99), p.Val11Ile in BATF3 (PPA=.081), p.Ala91Val in 106 

PRF1 (PPA=0.038), and p.Val131Phe in CD3G (PPA=.028) (Supplemental Table 4).  107 

Given our comprehensive genome-wide T1D genetic association and fine-mapping data, we used 108 

these data to derive insight into disease pathophysiology. We therefore broadly characterized 109 

relationships between T1D and other complex traits and diseases by performing genome-wide 110 

genetic correlation analyses using LD score regression. As expected, T1D had significant 111 

(FDR<.10) positive correlations with autoimmune diseases including rheumatoid arthritis (rg=0.43, 112 

FDR=7.34×10-5), systemic lupus erythematosus (rg=0.36, FDR=2.52×10-7), celiac disease 113 

(rg=0.28, FDR=1.11×10-3), and autoimmune vitiligo (rg=0.30, FDR=2.02×10-5), as well as a 114 

negative correlation with ulcerative colitis (rg=-0.17, FDR=2.94×10-3) (Supplemental Figure 5). 115 
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Among other traits, we observed significant positive correlations with metabolic traits and 116 

diseases such as fasting proinsulin (rg=0.18, FDR=8.91×10-2) and fasting insulin level, (rg=0.18, 117 

FDR=6.85×10-3), coronary artery disease (rg=0.12, FDR=6.85×10-3) and type 2 diabetes (rg=0.10, 118 

FDR=4.39×10-3), and positive correlations with pancreatic diseases such as pancreatic cancer 119 

(rg=0.25, FDR=7.40×10-2) and chronic pancreatitis (rg=0.13, FDR=3.84×10-1), although the latter 120 

estimate was not significant. These results demonstrate relationships between genetic effects on 121 

T1D risk and a diversity of traits including autoimmune, pancreatic and metabolic disease.  122 

Defining cell type-specific cis-regulatory programs in T1D-relevant tissues 123 

The large majority of T1D risk signals map to non-coding regions and likely affect gene 124 

regulation2. In order to annotate gene regulatory programs affected by T1D risk variants, we 125 

generated a reference map of cell type-specific accessible chromatin using single nucleus ATAC-126 

seq (snATAC-seq) assays of T1D-relevant tissues including peripheral mononuclear blood cells 127 

(PBMC), purified pancreatic islets, and whole pancreas tissue from non-diabetic donors 128 

(Supplemental Table 5). To cluster cells obtained from these assays, we used a modified version 129 

of our previous pipeline11 that included rigorous quality control, removal of potential doublets, and 130 

removal of potential confounding effects between different donors, tissues, and technologies to 131 

group 131,554 chromatin accessibility profiles into 28 clusters (Figure 2a, Supplemental Figure 132 

6). We assigned cell type identity to each cluster using the chromatin accessibility profiles of gene 133 

bodies for known marker genes, and identified cells representing lymphoid, myeloid, endocrine, 134 

exocrine, endothelial, and stellate cell types (Figure 2a-b). Within lymphoid and myeloid cells, 135 

there were clusters representing both peripheral blood cells as well as tissue resident cells in the 136 

pancreas based on both marker gene accessibility and tissue-of-origin profiles (Figure 2a-b, 137 

Supplemental Figure 6). For example, we observed accessibility at C1QB marking pancreatic 138 

tissue-resident macrophages, at REG1A marking pancreatic acinar cells, and at CFTR marking 139 

pancreatic ductal cells (Figure 2b). We also observed distinct patterns of chromatin accessibility 140 

at marker genes between different clusters of the same cell type allowing us to further discriminate 141 

specific sub-types such as FOXP3 for regulatory T cells relative to other T cells and TCL1A for 142 

naïve B cells relative to memory B cells (Figure 2b).  143 

To characterize the regulatory programs of each cell type and cell state, we aggregated reads 144 

from cells within each cluster and called accessible chromatin sites representing candidate cis-145 

regulatory elements (cCREs). Across all 28 clusters, we identified a total of 448,142 cCREs and 146 

an average of 77,812 cCREs per cluster (Supplementary Data 1). To further define regulatory 147 

programs defining the identity of each cell type, we calculated the relative accessibility of each 148 
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cCRE across all clusters and identified 25,436 cell type-specific cCREs with accessibility patterns 149 

specific to a given cluster (Figure 2c, Supplementary Data 2). To confirm that cell type-specific 150 

cCREs regulated key processes involved in cellular identity, we identified gene ontology (GO) 151 

terms enriched for each set of cell type-specific cCREs using GREAT12. GO terms significantly 152 

enriched in cell type-specific cCREs represented highly specialized cellular processes, for 153 

example inflammatory response for pancreatic tissue-resident macrophages (P=6.09×10-12), 154 

extracellular matrix organization for activated stellate cells (P=1.47×10-41), transepithelial water 155 

transport for ductal cells (P=1.26×10-21) and digestion for acinar cells (P=1.18×10-11) (Figure 2c, 156 

Supplementary Table 6).  157 

We next decoded the regulatory logic underlying cCRE activity for each cell type. First, we 158 

identified candidate transcription factors (TFs) regulating cCRE activity by identifying sequence 159 

motifs enriched in accessible chromatin of each cell type using chromVAR13. There were 290 160 

motifs in JASPAR14 with evidence for variable enrichment across cell types (Supplementary 161 

Table 7). Enriched motifs included TF families with lineage-specific enrichment such as SPI in 162 

myeloid and B cells, ETS in T cells, and FOXA in pancreatic endocrine and exocrine cells15–17 163 

(Figure 2d). We also identified motifs enriched in specific cell types such as NR5A in acinar 164 

cells18, HNF1 in ductal cells19, and EBF in B cells20 (Figure 2d), as well as motifs for TF families 165 

enriched in specific states within a cell type, such as POU2 in memory B cells21, TCF7 in naïve 166 

CD4+ T cells22, and RUNX in adaptive NK cells23 (Figure 2d). Second, we defined cell type-167 

resolved links between distal cCREs and putative target gene promoters using co-accessibility 168 

across single cells with Cicero24. Considering all cell types, we observed a total of 1,028,428 links 169 

between distal cCREs and gene promoters (Supplemental Data 3), where 145,138 distinct distal 170 

cCREs were linked to at least one promoter. In many cases, co-accessible links were highly cell 171 

type-specific; for example, multiple distal cCREs were co-accessible with the AQP1 promoter in 172 

ductal cells and the CEL promoter in acinar cells, none of which were identified in other cell types 173 

(Figure 2e). Together these results identify candidate transcriptional regulators and target genes 174 

of distal cCREs in pancreatic and immune cell types. 175 

Annotating fine-mapped T1D risk variants with cell type-specific regulatory programs 176 

We reasoned that our cell type-resolved regulatory maps would enable deeper insight into 177 

pancreatic and blood cell types involved in T1D pathogenesis. We therefore determined 178 

enrichment of variants associated with T1D as well as other complex diseases25–42 and qualitative 179 

endophenotypes43–52 for cCREs using stratified LD score regression53. For T1D, the most 180 

significant enrichment was for variants in CD4+ T cell cCREs (naïve CD4+ T Z=4.54, 181 
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FDR=1.26×10-3; activated CD4+ T Z=3.83, FDR=5.88×10-3; regulatory T Z=3.26, FDR=1.35×10-182 

2) (Figure 3a). Notably, we did not observe evidence for enrichment in resident immune cells in 183 

the pancreas (pancreatic CD8+ T cell Z=0.46, FDR=0.93; pancreatic tissue-resident macrophage 184 

Z=-1.02, FDR=1.0). Outside of immune cell types, pancreatic ductal cell cCREs had the strongest 185 

T1D enrichment, although this estimate was not significant (ductal Z=0.46, FDR=0.93). Other 186 

immune-related diseases were also enriched within lymphocyte cCREs, although Crohn’s 187 

disease was also enriched for monocytes and conventional dendritic cell cCREs (Figure 3a). As 188 

expected, type 2 diabetes and glycemic traits were strongly enriched in pancreatic endocrine cell 189 

cCREs, but interestingly, glycemic traits such as glucose levels at 2 hours post-OGTT were also 190 

enriched in pancreatic acinar and ductal cell cCREs (Figure 3a). Together these results 191 

demonstrate that T1D associated variants are broadly enriched for CD4+ T cell cCREs, and 192 

highlight other complex traits and diseases enriched for pancreatic and immune cell type cCREs.  193 

Despite the strong enrichment of T1D-associated variants in CD4+ T cells, less than half of fine-194 

mapped T1D signals overlapped a CD4+ T cell cRE, suggesting that additional cell types 195 

contribute to T1D risk. In order to identify additional disease-relevant cell types, we used an 196 

orthogonal approach to test for enrichment of T1D variants within the subset of cCREs specific to 197 

each cell type (from Figure 2c; see Methods). As expected, T1D variants genome-wide were 198 

enriched in cCREs specific to CD4+ T cells (activated CD4+ T log enrich=4.14, 95% CI=0.97-199 

5.37) as well as pancreatic beta cells (log enrich=3.64, 95% CI=1.23-4.90) (Figure 3b). 200 

Interestingly, T1D variants were also enriched in cCREs specific to plasmacytoid dendritic cells 201 

(log enrich=4.08, 95% CI=2.09-5.16), classical monocytes (log enrich=4.04, 95% CI=2.74-4.92), 202 

and pancreatic acinar and ductal cells (ductal log enrich=3.43, 95% CI=1.07-4.71, acinar log 203 

enrich=2.74, 95% CI=0.66-4.02) (Figure 3b). We further enumerated the contribution of these 204 

cell types to T1D risk by determining the cumulative posterior probability (cPPA) of fine-mapped 205 

variants overlapping cell type-specific cCREs after removing variants overlapping a more 206 

probable cell type (see Methods). Among broad annotation categories, distal cCREs harbored 207 

the most cumulative risk (cPPA=24.3, Nvars=291), followed by coding exons (cPPA=7.98, N=34) 208 

and promoters (cPPA=6.63, N=55) (Figure 3c). When breaking down distal cCREs by cell type 209 

categories, CD4+ T cells had the most cumulative risk (cPPA=9.7, N=112), followed by exocrine 210 

cells (acinar and ductal; cPPA=6.2, N=51), monocytes (cPPA=3.1, N=54), and then endocrine 211 

cells (cPPA=2.3, N=33) (Figure 3c). 212 

Given insight into cell types contributing to T1D risk, we next annotated individual T1D signals in 213 

cCREs for these cell types. Over 75% (109/141) of T1D signals contained at least one fine-214 
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mapped variant (with PPA>.01) overlapping a cCRE, and at 83% (90/109) of these signals the 215 

cCRE was further co-accessible with at least one gene promoter (Supplementary Table 8). For 216 

each T1D signal, we calculated the cPPA of fine-mapped variants overlapping cCREs for disease-217 

enriched cell types. At 58 T1D signals a fine-mapped variant overlapped a CD4+ T cell cCRE, 218 

and signals with the highest cPPA in CD4+ T cells included the CD2, IL2RA, PRF1 and IKZF4 219 

loci (Figure 3d). We also identified T1D signals with high cPPA in pancreatic acinar and ductal 220 

(exocrine) cCREs and monocyte cCREs, many of which were cell type-specific (Figure 3d). For 221 

example, three variants at the GP2 locus accounted for .951 of the PPA and mapped in an acinar-222 

specific cCRE co-accessible with the promoter of GP2, which encodes the major membrane 223 

glycoprotein of pancreatic zymogen granules (Figure 3e). Similarly, rs72802342 at the BCAR1 224 

locus (PPA=.30) mapped in an acinar-specific cCRE co-accessible with the CTRB1 and CTRB2 225 

promoters (Figure 3f). We observed similar predicted mechanisms in acinar cells at the RNLS 226 

and COBL loci, as well as the novel CEL locus, where rs541856133 (PPA=.99) mapped in a 227 

region of broad acinar-specific accessibility although not in a cCRE directly (Supplementary 228 

Figure 7a-c). At CTLA4, variant rs3087243 (PPA=.99) mapped in an acinar-specific cCRE, 229 

although the region around the variant was also broadly accessible in regulatory T cells, in line 230 

with the specialized function of CTLA4 in regulatory T cells54 (Supplementary Figure 7d). 231 

Exocrine cCREs harboring T1D risk variants at these loci were also largely specific relative to 232 

previous studies of accessible chromatin from stimulated immune cells55 and cytokine-stimulated 233 

islets56 except for CTLA4 which mapped in a stimulated immune site (Supplemental Table 8). 234 

Risk variant at novel T1D locus has pancreatic ductal cell-specific effects on CFTR  235 

As another example of an exocrine-specific T1D signal, at the CFTR locus fine-mapped variant 236 

rs7795896 (PPA=0.60) mapped in a distal cCRE highly specific to pancreatic ductal cells 237 

upstream of the CFTR gene (Figure 4a).  Furthermore, the cCRE harboring rs7795896 had ductal 238 

cell-specific co-accessibility with the CFTR promoter in addition to several other genes (Figure 239 

4a). Recessive mutations in CFTR cause cystic fibrosis (CF) which is often comorbid with exocrine 240 

pancreas insufficiency and CF-related diabetes (CFRD)57. Furthermore, carriers of CFTR 241 

mutations often develop chronic pancreatitis58. As CFTR has not been previously implicated in 242 

T1D, we sought to validate the mechanism of this locus. First, we determined whether rs7795896 243 

had allele-specific activity using luciferase reporter and gel shift assays in Capan-1 cells, an 244 

established model of ductal cell function59. We observed both significantly reduced enhancer 245 

activity (P=3.35×10-2, Figure 4b) and reduced protein binding for the T1D risk allele (Figure 4c). 246 

The variant mapped in a predicted sequence motif for the ductal cell-specific transcription factor 247 
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HNF1B (Supplemental Table 6) and overlapped a HNF1B ChIP-seq site previously identified in 248 

ductal cell models (Supplemental Figure 8).  249 

To determine whether the enhancer harboring rs7795896 regulated the expression of CFTR in 250 

ductal cells, we used CRISPR interference (CRISPRi) to repress the activity of the enhancer 251 

(CFTREnh) in Capan-1 cells using two independent guide RNAs. As positive and negative controls, 252 

we inactivated the CFTR promoter (CFTRProm) and used a non-targeting guide RNA, respectively. 253 

RNA-seq analysis revealed a significant reduction in CFTR expression after enhancer inactivation 254 

(CFTREnh log2(FC)=-0.40, P=2.41x10-3), whereas expression of other genes co-accessible with 255 

the enhancer was unchanged (Figure 4d), identifying CFTR as a target gene of this enhancer. 256 

We next determined whether risk variants affected CFTR expression directly using pancreas 257 

eQTL data from GTEx60. Out of 13 genes tested by GTEx for association with these variants, only 258 

CFTR had evidence for an eQTL (P=4.31×10-4), and this eQTL was statistically colocalized with 259 

the T1D signal (PPshared=91.4%) (Figure 4e). The T1D risk allele C was also associated with 260 

decreased CFTR expression, consistent with effects on enhancer activity and TF binding. To 261 

evaluate whether the CFTR eQTL signal in whole pancreas tissue was driven by ductal cells, we 262 

used MuSiC61 to estimate cell type proportions in each GTEx pancreas RNA-seq sample (Figure 263 

4f, Supplemental Figure 9). We then re-calculated eQTL association including estimated cell 264 

type proportion for each sample as an interaction term in the model, and only ductal cells had 265 

significant association (P=2.37×10-4) (Figure 4g).  266 

As CFTR has been implicated in risk of pancreatic cancer62 and pancreatitis63, we finally asked 267 

whether rs7795896 was significantly associated with these phenotypes in the UK biobank64, 268 

FinnGen, and other GWAS28–31. The T1D risk allele (C) was associated with increased risk of 269 

pancreatitis (chronic pancreatitis OR=1.15, P=3.18×10-3; acute pancreatitis OR=1.07, P=1.15×10-270 

2), pancreatic cancer (OR=1.10, P=7.85×10-2), and other pancreatic diseases which includes 271 

pancreatitis and pancreatic cysts (OR=1.13, P=4.72×10-5) (Figure 4h). In contrast, rs7795896 did 272 

not show evidence for association with other autoimmune diseases (all P>.05), supporting that it 273 

likely does not affect intrinsic immune cell function. Together our findings support a model in which 274 

non-coding variants regulating the activity of genes such as CFTR in the exocrine pancreas 275 

contribute to risk of T1D as well as pancreatic disease (Figure 4i). 276 

 277 

DISCUSSION 278 

Population-based association studies of complex disease are a powerful tool for genetic discovery 279 

and, when coupled with cell type-resolved epigenome maps, can help reveal the cellular origins 280 
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of disease. Our results represent the largest genome-wide study of T1D genetics to date, more 281 

than doubling the set of known risk signals, and provide a comprehensive resource for 282 

interrogating T1D risk mechanisms. Integration of these data with cell type-specific accessible 283 

chromatin maps both confirmed the prominent role of CD4+ T cells and implicated additional cell 284 

types in disease risk notably pancreatic acinar and ductal cells. T1D risk variants mapped to 285 

genes with specialized function in acinar and ductal cells such as CFTR, GP2 and CEL, none of 286 

which have been previously implicated in T1D. Observational studies have reported exocrine 287 

pancreas abnormalities in T1D at disease onset65 as well as in autoantibody positive individuals66 288 

and first-degree relatives of T1D67, but it was unknown whether this was contributing causally to 289 

disease68,69. Studies in zebrafish, mice and humans have demonstrated that reduced CFTR leads 290 

to CFRD via intra-islet inflammation and immune infiltration rather than intrinsic defects of beta 291 

cell function, and immune infiltration in the exocrine pancreas has been suggested to contribute 292 

to T1D pathogenesis70–72. We therefore hypothesize a causal role for gene regulation in exocrine 293 

cells in T1D, potentially mediated through immune infiltration and inflammation, which may 294 

provide novel avenues for therapeutic discovery in T1D. 295 

 296 

METHODS 297 

Genotype quality control and imputation 298 

We compiled individual-level genotype data and summary statistics of 18,803 T1D cases and 299 

470,876 controls of European ancestry from public sources (Supplementary Table 1), where 300 

T1D case cohorts were matched to population control cohorts based on genotyping array 301 

(Affymetrix, Illumina Infinium, Illumina Omni, and Immunochip) and country of origin where 302 

possible (US, British, and Ireland). For the GENIE-UK cohort, because we were unable to find a 303 

matched country of origin control cohort, we used individuals of British ancestry (defined by 304 

individuals within 1.5 interquartile range of CEU/GBR subpopulations on the first 4 PCs from PCA 305 

with European 1000 Genomes Project samples) from the University of Michigan Health and 306 

Retirement study (HRS). For non-UK Biobank cohorts, we first applied individual and variant 307 

exclusion lists (where available) to remove low quality, duplicate, or non-European ancestry 308 

samples and failed genotype calls for each cohort. For control cohorts, we also used phenotype 309 

files (where available) to remove individuals with type 2 diabetes or autoimmune diseases.  310 

We then applied a uniform processing pipeline and used PLINK73 to remove variants based on (i) 311 

low frequency (MAF<1%), (ii) missing genotypes (missing>5%), (iii) violation of Hardy-Weinberg 312 

equilibrium (HWE p<1×10-5
 in control cohorts and HWE p<1×10-10 in case cohorts), (iv) substantial 313 
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differences in allele frequency compared to the Haplotype Reference Consortium r1.1 reference 314 

panel74, and (v) allele ambiguity (AT/GC variants with MAF>40%). We further removed individuals 315 

based on (i) missing genotypes (missing>5%), (ii) sex mismatch with phenotype records 316 

(hetchrX>.2 for females and hetchrX<.8 for males), (iii) cryptic relatedness through identity-by-317 

descent (IBD>.2), and (iv) non-European ancestry through PCA with 1000 Genomes Project75 (>3 318 

interquartile range from 25th and 75th percentiles of European 1KGP samples on the first 4 PCs) 319 

(Supplementary Figure 1). For the affected sib-pair (ASP) cohort genotyped on the Immunochip, 320 

we retained only one T1D sample from each family selected at random. For the GRID case and 321 

1958 Birth control cohorts genotyped on the Immunochip, a portion of the cases overlapped the 322 

T1DGC or 1958 Birth cohorts genotyped on a genome-wide array. We thus used sample IDs from 323 

the phenotype files to remove these samples from the GRID and 1958 Birth cohorts and verified 324 

that no samples were duplicated between the Immunochip and genome-wide array datasets by 325 

checking IBD values. We combined data for matched case and control cohorts based on 326 

genotyping array and country of origin for imputation. We used the TOPMed Imputation Server76,77 327 

to impute genotypes into the TOPMed r2 panel7 and removed variants based on low imputation 328 

quality (R2<.3). Following imputation, we implemented post-imputation filters to remove variants 329 

based on potential genotyping or imputation artifacts based on empirical R2
 (genotyped variants 330 

with empirical R2<.5 and all imputed variants in at least low LD (r2>.3) with them).  331 

For the UK Biobank cohort, we downloaded imputed genotype data from the UK Biobank v3 332 

release which were imputed using a combination of the HRC and UK10K + 1000 Genomes 333 

reference panels. We used phenotype data to remove individuals of non-European descent. We 334 

then used a combination of ICD10 codes to define 1,458 T1D cases (T1D diagnosis and insulin 335 

treatment within a year of diagnosis, no T2D diagnosis). We defined controls as 362,257 336 

individuals without diabetes (no T1D, T2D, or gestational diabetes diagnosis) or other 337 

autoimmune diseases (systemic lupus erythematosus, rheumatoid arthritis, juvenile arthritis, 338 

Sjögren syndrome, alopecia areata, multiple sclerosis, autoimmune thyroiditis, vitiligo, celiac 339 

disease, primary biliary cirrhosis, psoriasis, or ulcerative colitis). We removed variants with low 340 

imputation quality (R2<.3). 341 

For the FinnGen cohort, we downloaded GWAS summary statistics for type 1 diabetes 342 

(E4_DM1_STRICT) from FinnGen freeze 2. This phenotype definition excluded individuals with 343 

type 2 diabetes from both cases and controls. 344 
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Association testing, meta-analysis, and detection of conditional signals 345 

We tested low-frequency and common variants (MAF>.001%) for association to T1D with firth 346 

bias reduced logistic regression using EPACTS (https://genome.sph.umich.edu/wiki/EPACTS) for 347 

non-UK Biobank cohorts or SAIGE64 for the UK Biobank, using genotype dosages adjusted for 348 

sex and the first four ancestry PCs. We then combined association results across matched 349 

cohorts through inverse-variance weighted meta-analysis. We used the liftOver utility to convert 350 

GRCh38/hg38 into GRCh37/hg19 coordinates for all cohorts except for the UK biobank. We 351 

removed variants that were unable to be converted, were duplicated after coordinate conversion, 352 

or were located on different chromosomes after conversion. In total, our association data 353 

contained summary statistics for 59,244,856 variants. To evaluate the extent to which genomic 354 

inflation was driven by the polygenic nature of T1D or population stratification, we used LD score 355 

regression to compare the LDSC intercept to lambda genomic control (GC). We observed an 356 

intercept of 1.08 (SE=.03) compared to a lambda GC of 1.21, suggesting that the majority of the 357 

observed inflation was driven by polygenicity rather than population stratification.  358 

We used a threshold of P<5×10-8 to define genome-wide significance for primary signals, and we 359 

defined novel loci as those statistically independent (r2<.01) from reported index variants from 360 

previous T1D association studies. For all cohorts except for FinnGen, we performed exact 361 

conditional analyses on lead index variants to identify conditionally independent signals and used 362 

a locus-wide threshold of P<1×10-5 to define significance. For genomic regions with multiple 363 

known signals within close proximity, we conditioned on index variants from both signals. We 364 

iterated through this process for each locus until there were no remaining significant signals at 365 

the locus-wide threshold.  366 

Fine mapping of distinct association signals 367 

We constructed LD-based genetic credible sets of variants for 141 signals at 89 known and novel 368 

loci excluding the MHC locus for complex LD structure and ICOSLG, for which we were unable 369 

to find imputed proxy variants in our dataset. For the main signals at known loci, we defined 370 

credible set variants by taking all variants in at least low LD (r2>.1) with newly identified index 371 

variants within a 5 Mb window. For both novel and conditional signals, we used the most 372 

significant variant at the signal and the same credible set definition. We used effect size and 373 

standard error estimates to calculate approximate Bayes factors9 (ABF) for each variant; at 374 

signals with multiple distinct association signals, we derived values from the corresponding 375 

conditional analysis. We then calculated the posterior probability of association (PPA) for each 376 

variant by dividing its ABF by the sum of ABF for all variants in the signal’s credible set. To derive 377 
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99% credible sets for each signal, we sorted variants for each signal by descending PPA and 378 

retained variants that added up to a cumulative PPA>0.99. To verify that variant coverage across 379 

different imputation panels did not affect fine mapping, we calculated the effective sample size for 380 

all credible set variants. There were only 9 credible set variants in total with <50% of the maximum 381 

effective sample size, all of which had PPA<.01, and we did not further filter these variants. 382 

GWAS correlation analyses 383 

We used LD score regression (version 1.0.1) to estimate genome-wide genetic correlations 384 

between T1D and immune diseases25–31,41,42, other diseases32–40,64,78,79, and non-disease traits43–385 

50,80–88, using European subsets of GWAS where applicable. For acute pancreatitis, chronic 386 

pancreatitis, and pancreatic cancer, we used inverse variance weighted meta-analysis to combine 387 

SAIGE analysis results from the UK biobank64 (PheCodes 577.1, 577.2, and 157) and FinnGen 388 

(K11_ACUTPANC, K11_CHRONPANC, C3_PANCREAS_EXALLC). We used pre-computed 389 

European 1000 Genomes LD scores to calculate correlation estimates (rg) and standard errors. 390 

We then corrected p-values for multiple tests using FDR correction, considering traits with FDR<.1 391 

as significant. We also performed genetic correlation analyses using a version of the T1D meta-392 

analysis excluding the Immunochip cohorts and observed highly similar results.   393 

Generation of snATAC-seq libraries 394 

Combinatorial indexing single cell ATAC-seq (snATAC-seq/sci-ATAC-seq). snATAC-seq was 395 

performed as described previously89,90 with several modifications as described below. For the islet 396 

samples, approximately 3,000 islet equivalents (IEQ, roughly 1,000 cells each) were resuspended 397 

in 1 mL nuclei permeabilization buffer (10mM Tris-HCL (pH 7.5), 10mM NaCl, 3mM MgCl2, 0.1% 398 

Tween-20 (Sigma), 0.1% IGEPAL-CA630 (Sigma) and 0.01% Digitonin (Promega) in water) and 399 

homogenized using 1mL glass dounce homogenizer with a tight-fitting pestle for 15 strokes. 400 

Homogenized islets were incubated for 10 min at 4°C and filtered with 30 µm filter (CellTrics). For 401 

the pancreas samples, frozen tissue was pulverized with a mortar and pestle while frozen and 402 

immersed in liquid nitrogen. Approximately 22 mg of pulverized tissue was then transferred to an 403 

Eppendorf tube and resuspended in 1 mL of cold permeabilization buffer for 10 minutes on a 404 

rotator at 4°C. Permeabilized sample was filtered with a 30µm filter (CellTrics), and the filter was 405 

washed with 300 µL of permeabilization buffer to increase nuclei recovery. 406 

Once permeabilized and filtered, nuclei were pelleted with a swinging bucket centrifuge (500 x g, 407 

5 min, 4°C; 5920R, Eppendorf) and resuspended in 500 µL high salt tagmentation buffer (36.3 mM 408 

Tris-acetate (pH = 7.8), 72.6 mM potassium-acetate, 11 mM Mg-acetate, 17.6% DMF) and 409 

counted using a hemocytometer. Concentration was adjusted to 4500 nuclei/9 µl, and 4,500 nuclei 410 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2021.01.13.426472doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.13.426472
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

were dispensed into each well of a 96-well plate. Glycerol was added to the leftover nuclei 411 

suspension for a final concentration of 25 % and nuclei were stored at -80°C. For tagmentation, 412 

1 µL barcoded Tn5 transposomes90 were added using a BenchSmart™ 96 (Mettler Toledo), 413 

mixed five times and incubated for 60 min at 37°C with shaking (500 rpm). To inhibit the Tn5 414 

reaction, 10 µL of 40 mM EDTA were added to each well with a BenchSmart™ 96 (Mettler Toledo) 415 

and the plate was incubated at 37°C for 15 min with shaking (500 rpm). Next, 20 µL 2 x sort buffer 416 

(2 % BSA, 2 mM EDTA in PBS) were added using a BenchSmart™ 96 (Mettler Toledo). All wells 417 

were combined into a FACS tube and stained with 3 µM Draq7 (Cell Signaling). Using a SH800 418 

(Sony), 20 nuclei were sorted per well into eight 96-well plates (total of 768 wells) containing 419 

10.5 µL EB (25 pmol primer i7, 25 pmol primer i5, 200 ng BSA (Sigma))90. Preparation of sort 420 

plates and all downstream pipetting steps were performed on a Biomek i7 Automated Workstation 421 

(Beckman Coulter). After addition of 1 µL 0.2% SDS, samples were incubated at 55 °C for 7 min 422 

with shaking (500 rpm). We added 1 µL 12.5% Triton-X to each well to quench the SDS and 423 

12.5 µL NEBNext High-Fidelity 2× PCR Master Mix (NEB). Samples were PCR-amplified (72 °C 424 

5 min, 98 °C 30 s, (98 °C 10 s, 63 °C 30 s, 72 °C 60 s) × 12 cycles, held at 12 °C). After PCR, all 425 

wells were combined. Libraries were purified according to the MinElute PCR Purification Kit 426 

manual (Qiagen) using a vacuum manifold (QIAvac 24 plus, Qiagen) and size selection was 427 

performed with SPRI Beads (Beckmann Coulter, 0.55x and 1.5x). Libraries were purified one 428 

more time with SPRI Beads (Beckmann Coulter, 1.5x). Libraries were quantified using a Qubit 429 

fluorimeter (Life technologies) and the nucleosomal pattern was verified using a TapeStation 430 

(High Sensitivity D1000, Agilent). The library was sequenced on a HiSeq2500 sequencer 431 

(Illumina) using custom sequencing primers, 25% spike-in library and following read lengths: 50 432 

+ 43 + 40 + 50 (Read1 + Index1 + Index2 + Read2).  433 

Droplet-based 10X single cell ATAC-seq (scATAC-seq). 10X scATAC-seq protocol from 10x 434 

Genomics was followed: Chromium SingleCell ATAC ReagentKits UserGuide (CG000209, Rev 435 

A). Cryopreserved PBMC samples were thawed in 37°C water bath for 2 min and followed ‘PBMC 436 

thawing protocol’ in the UserGuide. After thawing cells, the pellets were resuspended again in 1 437 

mL chilled PBS (with 0.04% PBS) and filtered with 50 μm CellTrics (04-0042-2317, Sysmex). The 438 

cells were centrifuged (300g, 5 min, 4°C) and permeabilized with 100 μl of chilled lysis buffer 439 

(10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% Tween-20, 0.1% IGEPAL-CA630, 440 

0.01% digitonin and 1% BSA). The samples were incubated on ice for 3 min and resuspended 441 

with 1mL chilled wash buffer (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% Tween-442 

20 and 1% BSA). After centrifugation (500g, 5 min, 4°C), the pellets were resuspended in 100 µL 443 

of chilled Nuclei buffer (2000153, 10x Genomics). The nuclei concentration was adjusted between 444 
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3,000 to 7,000 per μl and 15,300 nuclei which targets 10,000 nuclei was used for the experiment. 445 

For pancreas tissue (pulverized as described above), approximately 31.7 mg of pulverized tissue 446 

was transferred to a LoBind tube (Eppendorf) and resuspended in 1 mL of cold permeabilization 447 

buffer (10mM Tris-HCL (pH 7.5), 10mM NaCl, 3mM MgCl2, 0.1% Tween-20 (Sigma), 0.1% 448 

IGEPAL-CA630 (Sigma), 0.01% Digitonin (Promega) and 1% BSA (Proliant 7500804) in water) 449 

for 10 min on a rotator at 4°C. Permeabilized nuclei were filtered with 30 µm filter (CellTrics). 450 

Filtered nuclei were pelleted with a swinging bucket centrifuge (500 x g, 5 min, 4°C; 5920R, 451 

Eppendorf) and resuspended in 1 mL Wash buffer (10mM Tris-HCL (pH 7.5), 10mM NaCl, 3mM 452 

MgCl2, 0.1% Tween-20, and 1% BSA (Proliant 7500804) in molecular biology-grade water). Nuclei 453 

wash was repeated once. Next, washed nuclei were resuspended in 30 µL of 1X Nuclei Buffer 454 

(10X Genomics). Nuclei were counted using a hemocytometer, and finally the nuclei 455 

concentration was adjusted to 3,000 nuclei/µl. 15,360 nuclei were used as input for tagmentation. 456 

 457 

Nuclei were diluted to 5 μl with 1X Nuclei buffer (10x Genomics) and, mixed with ATAC buffer 458 

(10x Genomics) and ATAC enzyme (10x Genomics) for tagmentation (60 min, 37°C). Single cell 459 

ATAC-seq libraries were generated using the (Chromium Chip E Single Cell ATAC kit (10x 460 

Genomics, 1000086) and indexes (Chromium i7 Multiplex Kit N, Set A, 10x Genomics, 1000084) 461 

following manufacturer instructions. Final libraries were quantified using a Qubit fluorimeter (Life 462 

technologies) and the nucleosomal pattern was verified using a TapeStation (High Sensitivity 463 

D1000, Agilent). Libraries were sequenced on a NextSeq 500 and HiSeq4000 sequencer 464 

(Illumina) with following read lengths: 50 + 8 + 16 + 50 (Read1 + Index1 + Index2 + Read2). 465 

 466 

Single cell chromatin accessibility data processing 467 

Prior to read alignment, we used trim_galore (version 0.4.4) to remove adapter sequences from 468 

reads using default parameters. We aligned reads to the hg19 reference genome using bwa 469 

mem91 (version 0.7.17; parameters: ‘-M -C’) and removed low mapping quality (MAPQ<30), 470 

secondary, unmapped, and mitochondrial reads using samtools92. To remove duplicate 471 

sequences on a per-barcode level, we used the MarkDuplicates tool from picard (parameters: 472 

‘BARCODE_TAG’). For each tissue and snATAC-seq technology, we used log-transformed read 473 

depth distributions from each experiment to determine a threshold separating real cell barcodes 474 

from background noise. We used 500 total reads (passing all filters) as the cutoff for combinatorial 475 

barcoding snATAC and between 2,300 and 4,000 total reads, as well as at least 0.3 fraction of 476 

reads in peaks for 10x snATAC-seq experiments (Supplemental Figure 5a). 477 

 478 
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Single cell chromatin accessibility clustering 479 

We identified snATAC-seq clusters using a previously described pipeline with a few modifications. 480 

For each experiment, we first constructed a counts matrix consisting of read counts in 5 kb 481 

windows for each cell. Using scanpy93, we normalized cells to a uniform read depth and log-482 

transformed counts. We extracted highly variable (hv) windows (parameters: ‘min_mean=.01, 483 

min_disp=.25’) and regressed out the total log-transformed read depth within hv windows (usable 484 

counts). We then merged datasets from the same tissue and performed PCA to extract the top 485 

50 PCs. We used Harmony94 to correct the PCs for batch effects across experiments, using 486 

categorical covariates such as donor-of-origin (all tissues), biological sex (PBMCs), and snATAC-487 

seq assay technology (pancreas). We used the corrected components to construct a 30 nearest 488 

neighbor graph using the cosine metric, which we used for UMAP dimensionality reduction 489 

(parameters: ‘min_dist=.3’) and clustering with the Leiden algorithm95 (parameters: 490 

‘resolution=1.5’).  491 

Prior to combining cells across all tissues, we performed iterative clustering to identify and remove 492 

cells with aberrant quality metrics. First, we identified and remove clusters of cells with lower 493 

quality metrics (islets: 948, pancreas: 2,588, PBMCs: 5,268 cells removed total), including lower 494 

usable counts or fraction of reads in peaks. Next, after removing the low-quality cells and 495 

repeating the previous clustering steps, we sub-clustered the resulting main clusters at high 496 

resolution (parameters: ‘resolution=3.0’) to identify sub-clusters containing potential doublets 497 

(islets: 886, pancreas: 4,495, PBMCs: 5,844 cells removed total). We noted that these sub-498 

clusters tended to have higher average usable counts, promoter usage, and accessibility at more 499 

than one marker gene promoter. After removing 20,029 low-quality or potential doublet cells, we 500 

performed one final round of clustering using experiments from all tissues, including tissue-of-501 

origin as another covariate. We further removed 672 cells mapping to improbable cluster 502 

assignments (islet or pancreatic cells in PBMC clusters or vice versa). After all filters, we ended 503 

up with 131,554 cells mapping to 28 distinct clusters with consistent representation across 504 

samples from the same tissue (Supplemental Figure 5b). We cataloged known marker genes 505 

for each cell type and assessed gene accessibility (sum of read counts across each gene body) 506 

to assign labels to each cluster.  507 

 508 

Single cell chromatin accessibility analyses 509 

We identified chromatin accessibility peaks with MACS296 by calling peaks on aggregated reads 510 

from each cluster. In brief, we extracted reads from all cells within a given cluster, shifted reads 511 

aligned to the positive strand by +4 bp and reads aligned to the negative strand by -5 bp, and 512 
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centered the reads. We then used MACS2 to call peaks (parameters: ‘--nomodel --keep-dup-all’) 513 

and removed peaks overlapping ENCODE blacklisted regions97. We then merged peaks from all 514 

28 clusters with bedtools98 to create a consistent set of 448,142 regulatory elements for 515 

subsequent analyses.  516 

To compare accessible chromatin profiles from snATAC-seq to those from bulk ATAC-seq on 517 

FACS purified cell types, we reprocessed published ATAC-seq data from sorted pancreatic99 and 518 

unstimulated immune cells55. We created pseudobulk profiles from the snATAC-seq data for each 519 

donor and cluster, retaining those that contained information from at least 50 cells. We then 520 

extracted read counts in the 448,142 merged peaks for all sorted and pseudobulk profiles. We 521 

used PCA to extract the top 20 principal components and used UMAP for dimensionality reduction 522 

and visualization (parameters: ‘min_dist=.5, n_neighbors=80’). 523 

To identify cluster-specific peaks, we used logistic regression models for each peak treating each 524 

cell as an individual data point. For each model, we used cluster assignment and covariates such 525 

as donor-of-origin and the log usable count as predictors and binary accessibility of the peak as 526 

the outcome to calculate t-statistics (t-stats) for specificity. For a given cluster, we defined cluster-527 

specific peaks by taking the top 1000 peaks with the highest t-stats, after first filtering out peaks 528 

which also had high t-stats for other clusters (peak t-stat>90th percentile of all t-stats for the given 529 

cluster in more than 2 other clusters). We then used GREAT12 to annotate peaks and summarize 530 

linked genes in the form of gene ontology terms for the set of cluster-specific peaks as compared 531 

to all merged peaks. 532 

We estimated TF motif enrichment z-scores for each cell using chromVAR13 (version 1.5.0) by 533 

following the steps outlined in the user manual. First, we constructed a sparse binary matrix 534 

encoding read overlap with merged peaks for each cell. For each merged peak, we estimated the 535 

GC content bias based on the hg19 human reference genome to obtain a set of matched 536 

background peaks. To ensure a motif enrichment value for each cell, we did not apply any 537 

additional filters based on total reads or the fraction of reads in peaks. Next, using 580 TF motifs 538 

within the JASPAR 2018 CORE vertebrate (non-redundant) set14, we computed GC bias-539 

corrected enrichment z-scores (chromVAR deviation scores) for each cell. To extract highly 540 

variable TF motifs, we computed the enrichment variability of each motif across all cells and used 541 

the median as the cutoff. For each cluster, we then computed the average TF motif enrichment 542 

z-score across all cells in the cluster. 543 
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We used Cicero24 (version 1.3.3) to calculate co-accessibility scores between pairs of peaks for 544 

each cluster. As in the single cell motif enrichment analysis, we started from a sparse binary 545 

matrix. For each cluster, we only retained merged peaks that overlapped peaks from the cluster. 546 

Within each cluster, we aggregated cells based on the 50 nearest neighbors and used cicero to 547 

calculate co-accessibility scores, using a 1 Mb window size and a distance constraint of 500 kb. 548 

We then defined promoters as ±500 bp from the TSS of protein coding transcripts to annotate co-549 

accessibility links between distal and promoter peaks.  550 

GWAS enrichment analyses 551 

We used LD score regression100 to calculate genome-wide enrichment z-scores for 32 diseases 552 

and traits including T1D. We obtained GWAS summary statistics for autoimmune and 553 

inflammatory diseases (immune-related)25–31,41,42, other diseases32–40, and quantitative 554 

endophenotypes43–52, and where necessary, we filled in variant IDs and alleles. Using the 555 

‘munge_sumstats.py’ script, we converted summary statistics to the standard format for LD score 556 

regression. For each cluster, we used overlap with chromatin accessibility peaks as a binary 557 

annotation for variants. We also created a background annotation using merged peaks across all 558 

clusters. Then, we computed annotation-specific LD scores by following the instructions for 559 

creating partitioned LD scores. We used stratified LD score regression53 to estimate enrichment 560 

coefficient z-scores for each annotation relative to the background, which we defined as merged 561 

peaks across all clusters combined with the annotations in the baseline-LD model (version 2.2). 562 

Based on the enrichment z-scores, we computed one-sided p-values to assess significance and 563 

corrected for multiple tests using the Benjamini-Hochberg procedure101. We also calculated 564 

GWAS enrichment z-scores for T1D using a version of the meta-analysis excluding the 565 

Immunochip cohorts and observed highly similar enrichment results.  We used fgwas to estimate 566 

enrichment within cell type-specific cCREs using 2000 variants per window.  567 

Annotating cell type mechanisms of variants at fine mapped signals 568 

We first annotated fine mapped variants with PPA>1% using broad genomic annotations. We 569 

defined “coding” as coding exons of protein coding genes, “promoter” as ±500 bp from the TSS 570 

of protein coding transcripts, and “distal” as peaks in any cell type that did not overlap promoter 571 

regions. We then assigned variants to each group without replacement, in the priority 572 

coding>promoter>distal. To then further breakdown distal variants, we assigned clusters to cell 573 

type groups (CD4 T cell: naïve CD4 T, activated CD4 T, regulatory T; CD8 T cell: naïve CD8 T, 574 

activated CD8 T, pancreatic CD8 T; NK cell: adaptive and cytotoxic NK; B cell: naïve and memory 575 

B; monocyte/ MΦ: classical and non-classical monocyte, pancreatic macrophage; dendritic: 576 
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conventional and plasmacytoid dendritic; other cell: megakaryocyte, endothelial, activated and 577 

quiescent stellate; exocrine: acinar and ductal; endocrine: alpha, beta, delta, and gamma) and 578 

created merged peak annotations for each group. We then assigned variants to each cell type 579 

group without replacement, prioritizing groups in order based on their cumulative PPA. 580 

Luciferase reporter assay 581 

To test for allelic differences in enhancer activity at rs7795896, we cloned human DNA sequences 582 

(Coriell) containing the reference or alternate allele upstream of the minimal promoter in the 583 

luciferase reporter vector pGL4.23 (Promega) in the forward direction using the restriction 584 

enzymes SacI and KpnI. We then created a construct containing the alternate allele using the 585 

NEB Q5 SDM kit (New England Biolabs). The primer sequences used were: 586 

 587 

Cloning FWD_P1 TAGCGGTACCTAATGGGAAATCATGCCAACC 588 

Cloning FWD_P2 AATAGAGCTCATGTGTGTGTGCTGGGATGT 589 

  590 

We grew Capan-1 cells (ATCC) to approximately 70% confluency in 6-well dishes according to 591 

ATCC culture recommendations. We co-transfected cells with either the experimental or empty 592 

vector and pRL-SV40. We then lysed cells 48 hours post transfection and assayed them using 593 

the Dual-Luciferase Reporter System (Promega). We normalized Firefly activity to Renilla activity 594 

and expressed normalized results as fold change compared to the luciferase activity of the empty 595 

vector. We used a two-sided t-test to compare the luciferase activity between the two alleles. 596 

 597 

Electrophoretic mobility shift assay 598 

We ordered 5’ biotinylated and unlabeled (cold) oligos with the reference and alternate alleles 599 

from Integrated DNA Technologies. We annealed oligos with an equivalent volume of equimolar 600 

complementary oligo in a binding buffer containing 10mM Tris pH 8.0, 50mM NaCl, and 1mM 601 

EDTA at 95ºC for 5 minutes and cooled them gradually to room temperature before further use. 602 

 603 

C oligo: (5’ biotin)CAATTAGATGTAACTCATTAACATTAGAAAAA 604 

T oligo: (5’ biotin)CAATTAGATGTAACTTATTAACATTAGAAAAA 605 

 606 

We carried out binding reactions using the LightShift Chemiluminescent EMSA kit (Thermo 607 

Fisher) according to manufacturer’s instructions with the following adjustments: 100 fmol of 608 

biotinylated probe per reaction and 20 pmol of non-biotinylated “cold” probe in competition 609 
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reactions. We used approximately 16 ug of nuclear protein extract from Capan-1 cells purified 610 

using NE-PER Nuclear and Cytoplasmic Extraction Reagents (Thermo Fisher) per binding 611 

reaction.  612 

 613 

CRISPR inactivation of enhancer element 614 

We maintained HEK293T cells in DMEM containing 100 units/mL penicillin and 100 mg/mL 615 

streptomycin sulfate supplemented with 10% fetal bovine serum (FBS). To generate CRISPRi 616 

expression vectors, we designed guide RNA sequences to target the enhancer containing 617 

rs7795896 or the CFTR promoter. These guides, as well as a non-targeting control, were placed 618 

downstream of the human U6 promoter in the pLV hU6-sgRNA hUbC-dCas9-KRAB-T2a-Puro 619 

backbone (Addgene, #71236). The guide RNA sequences were: 620 

rs7795896 enhancer guide 1 GTAGTTGGCTTCCTCAGTAAG 

rs7795896 enhancer guide 2 GAACAGTATGATTTACGTAA 

CFTR promoter GCGCCCGAGAGACCATGCAG 

Non-targeting control GTGACGTGCACCGCGGTGTG 

 621 

We generated high-titer lentiviral supernatants by co-transfection of the resulting plasmid and 622 

lentiviral packaging constructs into HEK293T cells. Specifically, we co-transfected CRISPRi 623 

vectors with the pCMV-R8.74 (Addgene, #22036) and pMD2.G (Addgene, #12259) expression 624 

plasmids into HEK293T cells using a 1mg/mL PEI solution (Polysciences). We collected lentiviral 625 

supernatants at 48 hours and 72 hours after transfection and concentrated lentiviruses by 626 

ultracentrifugation for 120 minutes at 19,500 rpm using a Beckman SW28 ultracentrifuge rotor at 627 

4°C. 628 

We obtained Capan-1 pancreatic ductal adenocarcinoma cell lines from ATCC and cultured them 629 

using Iscove’s Modified Dulbecco’s Media with 20% fetal bovine serum, 100 units/mL penicillin, 630 

and 100 mg/mL streptomycin sulfate. 24 hours prior to infection, we passaged cells into a 6-well 631 

plate at a density of 650,000 cells per well. The following day, we added fresh media containing 632 

5ug/mL polybrene and 5uL/mL concentrated CRISPRi lentivirus to each well. We incubated the 633 

cells at 37ºC for 30 minutes and then spun them in a centrifuge for 1 hour at 30ºC at 950 × g. 6 634 

hours later, we replaced viral media with fresh base culture media and left the cells to recover. 635 

After 48 hours, we replaced media daily with the addition of 2ug/mL puromycin for a further 72 636 
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hours. We then harvested infected cells and isolated RNA using the RNeasy® Micro Kit (Qiagen) 637 

according to the manufacturer instructions.  638 

Differential analysis of CRISPR inactivation experiments 639 

We used STAR (version 2.7.3a) to map reads to the hg19 genome using ENCODE standard 640 

options (parameters: ‘--outFilterType BySJout --outFilterMultimapNmax 20 --alignSJoverhangMin 641 

8 --alignSJDBoverhangMin 1 --outFilterMismatchNmax 999 --outFilterMismatchNoverReadLmax 642 

0.04 --alignIntronMin 20 --alignIntronMax 1000000 --alignMatesGapMax 1000000’). We then 643 

used featureCounts (version 1.6.4) to count the number of uniquely mapped reads mapping to 644 

genes in GENCODE v19 (parameters: ‘-Q 30 -p -B -s 2 --ignoreDup'). We used DESeq2 to 645 

evaluate differential mRNA expression between either the CFTR enhancer (pooled data from both 646 

guides), or promoter inactivation versus the non-targeting guide.  647 

Colocalization and deconvolution of the pancreas CFTR eQTL  648 

We obtained GTEx consortium release v760 eQTL summary statistics for pancreas tissue from 649 

220 samples and used effect size and standard error estimates to calculate Bayes factors9 for 650 

each variant. Where a T1D-associated variant had evidence for a pancreas eQTL, we considered 651 

all variants in a 500kb window around the T1D GWAS index variant, and used the coloc102 652 

package to calculate the probability that the variants driving T1D association and eQTL signals 653 

were shared. We considered signals as colocalized based on the probability that they were shared 654 

(PPshared>.9).  655 

We downloaded and re-processed a published pancreas single cell RNA-seq dataset103 of 12 islet 656 

donors. After re-processing and generating a counts matrix with the 10x Genomics cellranger 657 

(version 3.0.0) pipeline, we first used scanpy93 and filtered out 1) cells with <500 genes expressed, 658 

2) cells with >20% mitochondrial reads, or 3) genes expressed in <3 cells. To ensure clustering 659 

would not be affected by read depth, we normalized the total counts per cell to 10k and 660 

subsequently log-normalized the resulting counts. We identified highly variable genes (hvgs) 661 

based on mean expression and dispersion with (parameters: ‘min_mean=.005, max_mean=6, 662 

min_disp=.1’). We then extracted counts for hvgs and regressed out the total read count within 663 

the hvgs. After dimensionality reduction with PCA, we used harmony94 with default parameters to 664 

correct for batch effects due to donor. We used the top 30 corrected PCs for graph-based 665 

clustering with the leiden algorithm95 (parameters: ‘resolution=1.25’) and visualization on reduced 666 

dimensions with UMAP104 (parameters: ‘min_dist=.3’). To assign cell types to each cluster, we 667 

used well-established marker genes from literature and labelled 18,279 cells. 668 
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We used MuSiC61 to estimate the proportions of major pancreatic cell types (acinar, duct, stellate, 669 

alpha, beta, delta, gamma) in each pancreas sample from the GTEx v7 release. As input, we 670 

used raw count matrices of the islet scRNA-seq and GTEx v7 pancreas samples and cell type 671 

labels from the analysis of the former dataset. For each cell type, we used the proportion as an 672 

interaction term and constructed linear models of CFTR expression (TMM normalized) as a 673 

function of the interaction between genotype dosage and cell type proportion, accounting for 674 

covariates used by GTEx including sex, sequencing platform, 3 genotype PCs, and 28 inferred 675 

PCs from the expression data. From the original 30 inferred PCs, we excluded inferred PCs 2 and 676 

3 because they were highly correlated (Spearman’s ρ>.7) with acinar cell proportion. 677 

Phenotype associations at CFTR variant 678 

We tested for association of the T1D index variant rs7795896 at CFTR to pancreatic and 679 

autoimmune disease phenotypes.  For acute pancreatitis, chronic pancreatitis, and pancreatic 680 

cancer, we used inverse variance weighted meta-analysis to combine SAIGE analysis results 681 

from the UK biobank64 (PheCodes 577.1, 577.2, and 157) and FinnGen (K11_ACUTPANC, 682 

K11_CHRONPANC, C3_PANCREAS_EXALLC).  As mutations that cause cystic fibrosis (CF) 683 

map to this locus, which are risk factors for pancreatitis and pancreatic cancer, we determined 684 

the impact of the most common CF mutation F508del/rs199826652 on the association results for 685 

rs7795896.  For T1D, we tested for association of rs7795896 conditional on F508del/rs199826652 686 

in all cohorts except for FinnGen and observed no evidence for a difference in T1D association.  687 

For pancreatitis and pancreatic cancer, we identified F508del/rs199826652 carriers in UK 688 

Biobank and repeated the association analysis for these phenotypes in UK biobank data after 689 

removing these individuals and observed no evidence of a change in the effect of rs7795896.   690 

 691 

CODE AVAILABILITY 692 

Code used for processing snATAC-seq datasets and clustering cells is available at 693 

https://github.com/kjgaulton/pipelines/tree/master/T1D_snATAC_pipeline. 694 

 695 

DATA AVAILABILITY 696 

Summary statistics and fine mapping credible sets for T1D GWAS will be available in the GWAS 697 

catalog and in the T1D Knowledge Portal (http://t1d.hugeamp.org). Raw data files for snATAC-698 

seq will be deposited to GEO, and processed data files for snATAC-seq will be available through 699 

the Diabetes Epigenome Atlas (https://www.diabetesepigenome.org/). 700 
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analyses. M.S. supervised experiments related to enhancer function and contributed to data 829 

interpretation. S.Heller and A.K. contributed to interpretation of experimental data.  830 

 831 

FIGURE LEGENDS 832 

Figure 1. Genome-wide association and fine mapping identifies novel signals for T1D risk. 833 

(a) Manhattan plot showing genome-wide T1D association p-values (-log10 transformed). Novel 834 

loci are colored in red and labeled based on the nearest gene, and index variants have larger 835 

radii and are circled. The dotted line indicates genome-wide significance (P=5×10-8). (b) Locus 836 

plots showing independent association signals at the known BACH2 locus (left) and the novel 837 

BCL11A locus (right). For conditional signals, the variants used for conditional analysis are 838 

indicated under the title in parentheses. Variants are colored (known=blue, novel=red) based on 839 

linkage disequilibrium (r2) with the index variant for each signal. The dotted line indicates the 840 

genome-wide significance threshold (P=5×10-8) for the main signal and the locus wide 841 

significance threshold (P=1×10-5) for the conditional signals. (c) Breakdown of 141 independent 842 

T1D risk signals after conditional fine-mapping analyses. Among these were 89 main signals at 843 

59 known loci (excluding the MHC region) and 30 novel loci, and 52 conditional signals including 844 

43 at known loci and 9 at novel loci. (d) Breakdown of the number of signals per locus (top), 845 

number of 99% credible set variants per signal from fine mapping (middle), and the number of 846 

variants with posterior probability of association >1% (bottom). 847 

Figure 2. Comprehensive reference map of 131,554 single cell chromatin accessibility 848 

profiles from T1D-relevant tissues. (a) Clustering of accessible chromatin profiles from 131,554 849 

cells from single cell experiments of peripheral blood mononuclear cells, whole pancreas tissue, 850 

and purified pancreatic islets. Cells are plotted on the first two UMAP components and colored 851 

based on cluster assignment. Clusters are grouped into categories of cell types, and the number 852 

of cells in each cluster are shown next to its corresponding label. (b) Dot plot (top) of relative gene 853 

accessibility (chromatin accessibility reads across gene bodies, averages for each cluster and 854 

scaled from 0-100 across columns/clusters) showing examples of marker genes used to identify 855 

cluster labels. Circle sizes are scaled according to the relative gene accessibility value. Genome 856 

browser tracks (bottom) showing aggregated chromatin accessibility profiles in a 50 kb window 857 

around selected marker genes. (c) Relative peak accessibility for 25,436 cluster-specific peaks 858 

across all 28 clusters (left), and enriched gene ontology terms with GREAT for peaks specific to 859 

pancreatic macrophages, activated stellate, ductal, and acinar cells (right). (d) Single cell motif 860 
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enrichment z-scores for TFs showing specificity for cell lineage (SPI – myeloid and B cells, ETS 861 

– T cells, FOXA – pancreatic), cell type (NR5A – acinar, HNF1 – ductal, EBF – B cells), and cell 862 

state (POU2 – memory B, TCF7 – naïve CD4 T, RUNX – adaptive NK) . The sequence logo for 863 

the enriched motif is displayed to the left of each UMAP plot. (e) Examples of cell type-specific 864 

co-accessibility between the promoter of AQP1 and distal sites in ductal cells (left, 865 

chr7:30,000,000-31,100,000, scale: 0-10 CPM) and the promoter of CEL and distal sites in acinar 866 

cells (right, chr9:135,800,000-136,000,000, scale: 0-10 CPM). 867 

Figure 3. Cell type-specific enrichment and mechanisms of T1D risk variants. (a) Relative 868 

LD score regression enrichment z-scores (enrichment relative to background genomic 869 

annotations including a merged set of all peaks) for autoimmune and inflammatory diseases (top), 870 

other diseases (middle), and non-disease quantitative endophenotypes (bottom) for cCREs active 871 

in pancreatic and blood cell types and states. ***FDR<.001 **FDR<.01 *FDR<.1. (b) T1D 872 

enrichment within cell type-specific cCREs. Labeled clusters have a positive enrichment estimate. 873 

Points represent log-transformed fgwas enrichment estimates and lines represent 95% 874 

confidence intervals. (c) Breakdown of cumulative fine mapping probability (PPA) (left) and fine 875 

mapped variants (right). Variants and their probabilities are assigned without replacement to 876 

annotations from top to bottom. Variants are first broken down by genomic annotations (top), and 877 

variants overlapping a distal peak are further broken down by cell type groups (bottom). CD4 T 878 

cell: naïve CD4 T + activated CD4 + regulatory T; exocrine: acinar + ductal; endocrine: GCGhigh 879 

alpha + GCGlow alpha + INShigh beta + INSlow beta + SSThigh delta + SSTlow delta + gamma; 880 

monocyte/MΦ: classical monocyte + non-classical monocyte + pancreatic macrophage; NK cell: 881 

cytotoxic NK + adaptive NK; B cell: naïve B + memory B; CD8 T cell: naïve CD8 T + activated 882 

CD8 T + pancreatic CD8 T; other cell: megakaryocytes + activated stellate + quiescent stellate + 883 

endothelial; dendritic: conventional dendritic + plasmacytoid dendritic. (d) Signals with the highest 884 

cumulative PPA for cell type groups with at least 2.5 cumulative PPA. (e) The GP2 signal contains 885 

3 variants (rs4238595, rs8060932, and rs8060932) in a distal peak upstream of the GP2 promoter 886 

(top, chr16:20,300,000-20,380,000). These variants are linked to GP2 through co-accessibility in 887 

acinar cells and account for the majority of the causal probability (cumulative PPA=.98) for the 888 

signal (middle). Genome browser tracks (bottom) show that chromatin accessibility at both the 889 

peak and the GP2 promoter is highly specific to acinar cells. (f) The top variant at the 890 

CTRB1/2/BCAR1 signal rs72802342 (middle) overlaps a distal peak co-accessible with the 891 

CTRB2 and CTRB1 promoters in acinar cells (top: chr16:75,220,000-75,260,000, hg19). Genome 892 

browser tracks (bottom, scale: 0-15) show that chromatin accessibility at the CTRB1 and CTRB2 893 
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promoters are highly specific to acinar cells. Fine mapped variants are colored based on linkage 894 

disequilibrium to the index variant. Variants contained in the 99% credible set are circled in black. 895 

Figure 4. Fine-mapped variant at the CFTR locus mediates T1D risk through distal 896 

regulation of CFTR in pancreatic ductal cells. (a) The CFTR locus contains a single fine-897 

mapped variant (rs7795896) in a distal cCRE linked to the promoter of CFTR and several other 898 

genes through co-accessibility (top; region shown: chr7:116,490,000-117,860,000). The cCRE is 899 

located approximately 33 kb upstream of the CFTR promoter. Zoomed-in view (chr7:117,040,000-900 

117,140,000, scale: 0-5 CPM) of fine mapped variants (middle) and genome browser tracks 901 

(bottom) at this locus show that the cCRE is highly specific to ductal cells. (b) Luciferase reporter 902 

assay in Capan-1 cells transfected with pGL4.23 minimal promoter plasmids containing 903 

rs7795896 in the forward orientation. Relative luciferase units represent Firefly:Renilla ratios 904 

normalized to control cells transfected with the empty vector. P-values are from a two-tailed 905 

Student’s t-test. (c) Electrophoretic mobility shift assay (EMSA) with nuclear extract from Capan-906 

1 cells using probes from both alleles of rs7795896. Bands with specific binding are labeled. (d) 907 

CRISPR interference-mediated inactivation of the distal site containing rs7795896 (CFTRiEnh; 2 908 

guide RNAs; 3 replicates; n=6 total) or the CFTR promoter (CFTRiProm; n=3 replicates) in CAPAN-909 

1 cells. Differential analysis of genes with promoters co-accessible with the peak show that CFTR 910 

expression is significantly reduced in both CFTRiProm and CFTRiEnh cells. Data are shown as 911 

transcripts per million (TPM). Error bars show 95% confidence interval and datapoints underlying 912 

each boxplot are shown. (e) Bayesian colocalization showing that the T1D risk signal (top) and 913 

CFTR pancreas eQTL from GTEx v7 (bottom) are likely driven by the same causal variant. 914 

Variants are colored based on the linkage disequilibrium to the index variant. Variants in the 99% 915 

credible set are circled in black. (f) Heatmap showing the average expression (normalized counts, 916 

scaled from 0-1 across cell types) of marker genes of different pancreatic cell types from single 917 

cell RNA-seq. CFTR expression is highly specific to ductal cells. (g) Deconvolution of the CFTR 918 

pancreas eQTL using in-silico cell type proportion estimation and re-analyses of GTEx pancreas 919 

data using interaction analyses shows that the eQTL signal only has a significant interaction with 920 

ductal cell proportion. (h) Forest plot showing association of pancreatic disease traits in a meta-921 

analysis of UK Biobank and FinnGen data for rs7795896 compared to association of autoimmune 922 

traits from large European GWAS. (i) Variants regulating genes with specialized function in the 923 

exocrine pancreas influence risk of type 1 diabetes. At the CFTR locus, a variant reducing ductal 924 

cell enhancer activity and CFTR expression increases risk of T1D and other pancreatic disease, 925 

and we hypothesize that these effects are mediated through inflammation and immune infiltration 926 

in the exocrine pancreas.   927 
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