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A B S T R A C T

Power imbalances from fluctuating renewable electricity generators are counteracted by often expensive flex-
ibility services. Heating, cooling, and air-conditioning (HVAC) of buildings, or domestic power-to-heat (P2H),
are end uses of electricity that allow flexible load patterns due to the inertia of an attached thermal storage while
meeting their quality constraints. Compared to smart appliances or electric vehicle charging, P2H exhibits large
and predictable capacities of demand response (DR), because buildings in many countries account for 30–40% of
the final energy demand, a large part of which is thermal. Yet, its practical flexibility potential remains largely
unknown: is DR from P2H a mature technology for mass usage; is it cost-efficient, socially attractive, and ready
to make key contributions to flexibility comparable to backup generators or battery storage? In the present
paper, we review recent international field studies that are paving the way from research to practice. These field
trials include real customers but have a broader research focus and a wider outreach than rolling out a new DR
tariff or program or a specific new technology for DR. Their experience mirrors the technology readiness beyond
revenue or policy studies, optimization frameworks or laboratory-scale micro-grids. We analyze the adequacy of
the pricing mechanisms deployed for incentivization and remuneration and review the coordination mechanisms
for balancing on different timescales including fast ancillary services. We conclude that current control and
information technology and economic and regulatory frameworks which have been field-tested do not yet meet
the flexibility challenges of smart grids with a very high share (> 50%) of intermittent renewable generation.

1. Introduction

1.1. Flexibility services (FS) and Power-to-Heat (P2H)

Decarbonizing the power sector is of particular importance to mi-
tigate anthropogenic climate change. Furthermore, as nuclear power
generation is being phased out in Germany by 2022, the bulk of nuclear
and fossil base load supply must be replaced by intermittent renewable
generation (i-RES, mostly wind and photovoltaics) in the coming dec-
ades of the energy transition [1–3]. Power output from i-RES is not
controllable and varies due to seasonal and daily weather influences,
which are partly predictable. Power imbalances (residual power) re-
maining due to uncertainties and forecast errors are resolved using
flexibility services (FS) [4,5], such as balancing services, contingency
reserve, and capacity reserve. The main FS providers [6] are 1) Flexible
generators, e.g. thermal backup plants (OCGT/CCGT gas turbines or

CHP units), flywheels, pumped hydro, and compressed air energy sto-
rage (CAES); 2) Battery storage (dedicated units or demand-driven
charging stations, e.g. for electric vehicles), and 3) Flexible demand in
the industrial and domestic sectors (residential, commercial, and public
buildings). FS are enabled through load management or demand re-
sponse (DR). Fig. 1 shows a schematic illustration of load management.

Buildings in most industrialized countries account for 30–40% of the
final energy demand, a very large part of which is thermal and stems
from HVAC [7]. The electricity share varies by technology from 5% to
10% for combustion heating including district heating (mostly due to
circulation pumps) to about 100% for electrical storage heating. HVAC
electricity often outweighs other electricity demand such as appliances
and lighting. The electricity share of HVAC demand is estimated to in-
crease to 20–30% due to the growing installation of heat pumps.

In the present review, all flexible HVAC demand is classified as
domestic power-to-heat (P2H). The generation or transfer of heat or
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cold in a thermal storage, e.g. a structural building mass, a hot water
tank or freezer compartment, is a final use of electricity which must
meet quality bounds of thermal safety or comfort within which the
thermal inertia allows flexible load patterns. P2H basically can provide
positive balancing power by reducing or delaying consumption and
negative power by boosting or pushing it forward in time2 [8]. This is
possible on different time scales as shown in3 [6,9]. DR from domestic
P2H can thus help to match electricity generation and residential en-
ergy demand.

1.2. Practical flexibility potential

Numerous studies on the theoretical [10–12], the technical
[8,13,14], and the economic potential [15,16] of domestic P2H for FS
according to a taxonomy by Grein and Pehnt [17] have delivered es-
timates of energy storage capacity, power deviation, and further para-
meters that differ widely by geographic and climatic conditions and by
their assumptions. To date, the practical flexibility potential of P2H
remains unknown: how much will be realizable considering accessi-
bility, cost-efficiency, and social acceptance? Which key drivers help
push the practical potential, and which obstacles prevent its full

Nomenclature

AHU Air-Handling Unit
AS HP Air-source Heat Pump
BAS Building Automation System
BEMS Building Energy Management System
BRP Balancing Responsible Party (EU electricity market parti-

cipant, associated with TSO)
CAES Compressed Air Energy Storage
CCGT Combined-Cycle Gas Turbine (OCGT: Open-cycle)
CHP Combined Heat and Power
CPP Critical-Peak Pricing of Electricity
DA Double-Auction (electricity market)
DHW Domestic Hot Water
DLC Direct Load Control
DP Dynamic Programming (Optimization)
DR Demand Response
DSM Demand-Side Management
DSO Distribution System Operator
DWD Dantzig-Wolfe Decomposition (optimization method)
ENTSO-e European Network of Transmission System Operators for

Electricity
EPEX European Power Exchange (wholesale short-term elec-

tricity market)
EWH Electric Water Heater
FERC Federal Energy Regulatory Commission (USA) for inter-

state transmission of electricity, gas, and oil
FS Flexibility Service
GHG Greenhouse Gas
GPRS General Packet Radio Service
GS HP Ground-source Heat Pump
HEMS Home Energy Management System
HH Household
HVAC Heating, Ventilation, and Air Conditioning
i-RES Intermittent renewable energy source (PV and Wind

power)
ICT Information and Communication Technology
IEA International Energy Agency
ISGAN International Smart Grid Action Network (cooperative

initiative within IEA)

LM Load management
LMP Locational marginal price
LR Lagrange relaxation (optimization method)
LV Low-voltage (distribution grid)
MAS Multi-Agent System (software architecture)
NSH Night storage heater (electric room heating)
OpenADROpen communication standard (USA) for market-based

automatic demand response
P2H Power-to-Heat (electrically operated heat or cold storage

used as controllable load)
PCM Phase Change Material
PCT Programmable Communicating Thermostat
PEV Power-Electric Vehicle
PLC Power-line communication
PM Power Matcher Software/PowerMatching
PNNL Pacific Northwest National Laboratory (USA)
PV Photovoltaics
RT Real-Time (load dispatch, in contrast to planning/sche-

duling)
RTP Real-Time electricity price/pricing
SAIDI System Average Interruption Duration Index (grid relia-

bility indicator)
SAIFI System Average Interruption Frequency Index (grid relia-

bility indicator)
SGCC State Grid Corporation of China (state-owned electric

utility monopoly)
SWA Smart Wet Appliances (washing machines, dryers, or

dishwashers with smart start function)
TC Transactive Control (dispatch of power resources by real-

time market)
TCL Thermostatically controlled load
TES Thermal energy storage
ToU Time-of-Use electricity price
TSO Transmission System Operator
UC Unit commitment
V2G Vehicle-to-Grid
VPP Virtual Power Plant
MINLP Mixed Integer Non- Linear Programming (optimization

with mixed decision variables)

Fig. 1. Illustration of load management (load shifting).

2Our sign convention follows the sign of residual power to be canceled, but is
not uniformly adopted. Domestic P2H includes so-called prosumer households
that can generate their own power, i.e. through rooftop PV or micro-CHP plant.
Together with a hot water storage tank (with optional pure electrical heating), a
thermal distribution system, and a thermal mass they form P2H configurations
with added capabilities, which offer an extended range of balancing power and
more options for local energy management, such as consuming self-generated
electricity or selling it on the market.
3 Time scale reflects the time spans in which some residual load is balanced,

which can range from seasonal to diurnal shifts down to the sub-second range
(frequency response) and translate into timing parameters of the FS, such as the
advance notification by the requester, the response time of the consumer load,
the amount of temporal shifting, and the duration of the load profile shifted.
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exploitation?
The main research questions of the present review are formulated as

follows:

• Is DR from domestic P2H a mature technology for mass deployment
and usage, ready to make a key contribution to the required flex-
ibility in future grids when i-RES capacity shares will exceed 50%,
that is comparable in quantity and quality to flexible backup gen-
erators or battery storage? This question concerns all time scales of
FS including frequency response and contingency reserves [18–21].

• Are the basic technologies and regulatory frameworks in place and
sufficiently tested as a complete tool chain for mass usage?
Regarding technologies, the dispatch of flexible resources must be
coordinated with basic load generation to meet the constraints of
spatial power distribution and to balance the load based on the most
accurate and up-to-date information available. An efficient and se-
cure ICT infrastructure integrates different control levels including
the domestic energy management. Regarding economic archi-
tecture, markets emerge that through their actors, roles, pricing
schemes, and regulations incentivize profitable DR business models
but also confine in a purposeful way the future FS business.

Upcoming doubts regarding such an ideal state are partly due to the
stepwise rebuild of the FS sector in general. Traditionally, the flexibility
needed by grid operators has been defined by programs or products
addressing problems that arise in a specific context defined by geo-
graphy, regulation (EU: ENTSO-E [22], US: FERC), and current gen-
eration technology. Examples include [23–26]

• Spinning and non-spinning reserves
• Primary, secondary, and tertiary reserves
• Frequency response
• Regulation and balancing, capacity, resource adequacy, or conges-
tion.

In the future, flexibility needs will arise in more manifold ways, and
their effects spread out over different sectors of the electricity system,
i.e., generation, storage, consumption, transmission, and distribution
[27]. FS are basically public goods but their investors, providers, and
beneficiaries remain separated.4 The total value chain falls apart into
heterogeneous markets and regulations. There exist no uniform abstract
performance criteria - beyond (signed) balancing power and energy
capacity – for tendering FS, specifying orders or comparing offers from
diverse providers, such as flexible generators or flexible demand or
battery storage. This complicates valuation, competition, and decision-
making on equivalence and substitutability.

Several difficulties stem from features that are genuine to the field
of domestic P2H. DR programs for HVAC units such as air-conditioners
and storage heaters have existed as contracts between utility companies
and domestic retail customers since the 1970s. A bewildering variety of
DR tariffs is in place worldwide [30], which reflects the past and pre-
sent w.r.t. generation mixes, market structures, and regulations. In the
future, domestic P2H supporting high shares of i-RES might require
integrating millions of customers into the smart grid, which become co-
responsible for supply security, much more than they used to be. Op-
erational stability and flexibility must then rely either on their goodwill
as price-elastic decision makers [31], or on a high degree of DR auto-
mation, or on a combination of both approaches.

Regarding the DR market situation, the trend goes towards un-
bundling different segments, such as generation, transmission, and
balancing [28]. Since households, unlike owners of big storage units or
flexible generator plants, are too small to trade at a reserve/capacity
market individually, they must be pooled by aggregators [32–35].

Barriers to market entrance and serious concerns about soundness of
aggregator business based on domestic P2H are persisting [3,6].

In fact, the low capital investment favors domestic HVAC and P2H
as FS providers: the thermal demand as a form of electricity end use is
already in place and grid-connected, whereas a new battery storage unit
or new backup plant represents a dedicated construction. However, the
investment required to integrate many HVAC customers into a new ICT
infrastructure is significant and will go beyond deploying “smart de-
vices”: firstly, requirements on data privacy, data security and system
resiliency5 and, secondly, advanced automation needs must be met.
New standards for home energy management or building automation
systems (HEMS/BAS) are required through which the conflicting goals
of thermal comfort, energy conservation, and demand flexibility are
controlled [41,42]. These HEMS will need to penetrate the residential
sector where they are not common today. Not all HEMS development
costs but a relevant portion can be attributed to the new functions
providing grid flexibility.

The transition process of innovations, investment, and market pe-
netration from traditional HVAC controls to HEMS will largely define
the speed of exploiting the available potential. Since FS are public
goods benefiting the entire electricity system, nobody may start in-
vesting unless expecting rewards [29]. Revenues will be generated from
the macroeconomic value of FS which is measured by the total system
costs to integrate i-RES at a given penetration level (e.g. 30%, 50%, and
80%). These integration costs comprise grid costs (reinforcement and
extension, especially in distribution circuits), real-time balancing costs,
and profile costs suffered by other market actors, such as for keeping an
under-utilized backup plant as a capacity reserve [3]. Curtailment of i-
RES may also incur profile costs.6 Available estimates of integration
costs vary considerably due to the system boundaries and scenario as-
sumptions; e.g. Hirth et al. specify 25–35€/MWh wind integration costs
at 30–40% wind penetration [43], and Agora states 5–20€/kW h at 50%
wind and PV penetration [44].

Those integration costs that can be avoided through flexibility
measures impose a cap on their market value. Domestic P2H will be
reduced further by competition with battery storage and flexible
backup plants which offer similar services. Since no uniform quality
criteria for all kinds of FS currently exist, the market volume of do-
mestic P2H remains unknown. With respect to practical potential, we
expect more insight from current transition projects than from policy
studies or revenue simulations based on scenario analysis, which re-
quire several independent assumptions about a rather distant future.

1.3. Research question and organization of the present review

In this review we approach our research question by evaluating
experiences gained in international field studies and demonstration
projects of DR flexibility that include a large share of domestic P2H/
HVAC. Within the last ten years several large field trials in different
countries have been completed, and others are still ongoing. The in-
ternal algorithms for resource allocation deployed and under test (the
“operating system” dispatching the power resources) and the interfaces
to the customers as P2H operators receive particular attention. We
expect measured results on DR benefits for distribution grids, analysis
of customer interaction (e.g. persistence of involvement, price elasticity
of load, impact on life style), and effects that result from the regulatory

4 This situation is known as the dilemma of split incentives [28,29].

5 Cost-effective off-the-shelf Internet components are potentially vulnerable
entry points for launching attacks on the grid infrastructure, e.g. [36]. It re-
mains to be seen whether current proposals for smart meters or thermostats or
DR control boxes, e.g. [37], meet the requirements imposed on cybersecurity
and data privacy. Developing customized solutions for households with higher
computational power but restricted functionality [38–40] will be more ex-
pensive.
6 The share of profile costs that can be attributed specifically to i-RES gen-

eration is being debated [43].
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frameworks and market/pricing structures adopted in the experiments.
Regarding experimental design, we are seeking the thin line between
shielded laboratory test environments that often exclude real electricity
customers and pre-commercial roll-out programs that focus narrowly
on a specific technology (e.g. advanced metering) or on a new tariff, but
leave little scope for exploring and comparing between different algo-
rithmic (ICT) or regulatory options.

The rest of the paper is organized as follows. Section 2 classifies the
thermal storage technologies for residential use and their load flex-
ibility-enabling properties. In Section 3, taxonomies of load manage-
ment, load scheduling algorithms, and architectures are introduced that
will be used to classify the field projects discussed and compared in
Section 4. Since load balancing turned out being rooted in a common
micro-economic platform for real-time pricing of electricity in several
field projects, this approach will be evaluated and discussed in more
detail in Section 5. Experiences from field trials in different regions are
then summarized and evaluated; conclusions on the maturity of do-
mestic P2H as FS providers are drawn in Section 6.

2. Thermal storage technologies for residential use

Thermal energy storage (TES) methods can be classified into three
categories: thermochemical, latent, and sensible TES. Thereof, ther-
mochemical TES is the only technology enabling long-term storage of
thermal energy, since the underlying storage mechanisms are based on
chemical ad- or absorption and are therefore almost free of energy

losses in steady state [45,46]. However, the deployment of this tech-
nology for residential use is still in early development with few proto-
type set-ups, very high unit costs and no long-term operation experi-
ence. Thus, even though the technology is very promising due to a high
energy storage density and its seasonal storage potential, it is not ex-
pected that thermochemical TES will play a major role in the residential
sector in the short term.

2.1. Latent and sensible TES

Latent TES utilizes the latent heat of a phase change, thus the energy
required to freeze or melt a given medium, to store thermal energy
[47]. A huge variety of phase change material (PCM) (e.g. water, par-
affin, salt hydrates) with a large diversity of melting temperatures and
phase change enthalpy is available and can be utilized as latent TES.
However, the application in residential buildings limits the amount of
suitable PCMs distinctly due to the high restriction of melting tem-
peratures, super-cooling effect, corrosive behavior, toxicity and costs
[47]. Therefore, micro-encapsulated paraffin based PCM (e.g. in-
tegrated in gypsum boards or in slurries) or water based ice-storage
methods are the most suitable latent TES for residential applications
[48,49]. The amount of energy stored in latent TES is given by

=Q V L· · ,latent (1)

wherein is the density, V the volume, and L the specific latent heat of
the material.

Fig. 2. Top: Final energy demand (shares in %) in the European Union according to EU-28 trends from reference scenario 2010 to 2050 [7]. Bottom: For comparison,
largest energy end uses in IEA countries 2014 (worldwide), ©OECD/IEA 2017 Energy Efficiency Indicators Database, IEA Publishing https://www.iea.org/
newsroom/news/2017/december/the-iea-energy-efficiency-indicators-database.html. Category energy end uses corresponds to final energy demand in the top diagram
and services correlate with the tertiary sector.
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In sensible TES, the thermal energy is stored through changes of the
temperature of the storage medium. The amount of stored energy is
proportional to the allowed temperature range, the specific heat capa-
city, and the mass of the storage medium described by volume and
density [47]. Therefore, the thermal energy stored by an ideal sensible
TES can be described according to Eq. (2):

=Q V c dT· · · ,sens (2)

wherein is the density, V the volume, c the specific heat capacity and
dT the temperature change of the observed material. For the applica-
tion in residential buildings sensible water based hot and cold storage
tanks, rocks, bricks, and the soil adjacent to the building can be used as
TES [47,48]. Water-based storage tanks are the most widely used TES
solutions in this sector, due to the high specific heat capacity, the
natural stratification into thermal layers, the good controllability of
heat transfer, and the easy integration with mostly water based re-
sidential heating systems [47].

2.2. Thermal storage based residential load shifting

Often the most visible appearance of residential DSM is active
control of domestic “smart” appliances (e.g. washing machines, dryers
or dishwashers) according to the availability of renewable energy.
However, residential electrical appliances are responsible for a very
small amount of the residential energy demand; therefore, these DSM
measures have only limited load shifting (LS) potential [7,50,51]. While
this might change in the future with an increasing dissemination of
electric vehicles [51], the space heating and domestic hot water (DHW)
requirements of residential buildings already make an essential share of
the current German and European final energy demand (FED), as shown
by Fig. 2. This yields theoretically large LS potentials. Early residential
load shifting measures successfully utilized night storage heaters (NSH),
which were operated according to static Time-of-Use (ToU) pricing,
with significantly lower electricity costs during the night [52]. Fur-
thermore, the LS potential of hot water storage tanks is often utilized in
solar thermal systems to decouple generation and consumption times.
Hot water tank based LS associated with heat pumps (HP) and re-
sistance heaters has been evaluated in several studies but demonstrated
limited potential and cost-effectiveness [51,53,54] to date. However, it
has been shown that beyond these measures thermal demand side
management in residential buildings has great potential to play a major
role in stabilizing the future power grid [53,55,56].

It is an ongoing debate whether NSH with their low energy effi-
ciency should play a role in future residential LS [52]. However, HP are
already operating with dynamic external signals, which indicate shut-

off periods during peak consumption times. The LS potential of HP is
expected to be even higher [57]. Exemplary solutions for coupling heat
pump operation with local PV generation are already available [58].
Residential heating systems do not only consume but also inject elec-
tricity into the grid when heat and power (CHP) units are combined. A
grid-compatible operation of such systems is usually only possible if the
electricity generation can be decoupled from the heat demand [59].
Therefore, most LS measures involving HPs and CHPs require thermal
flexibility within a residential building. However, the current energy
market conditions do not encourage any investment in thermal storage
beyond the requirements of reliable and secure operation of the in-
stalled heating equipment [60]. The lack of motivation to engage in and
invest in LS activities has been identified as a major risk to exploiting
the residential flexibility potential, along with the slowly emerging
metering and communication infrastructure required to receive DSM
signals or Real-Time-Pricing (RTP) information [48,56,60].

3. Overview of demand side management

Demand side management (DSM) is generally defined as the mod-
ification of energy demand of consumers through different methods
such as financial incentives. The main implementation mechanisms of
DSM are short-term demand response (DR) and long-term energy effi-
ciency programs. According to [61], DR is defined as “intentional
electricity consumption pattern modifications by end-use customers
that are intended to alter the timing, level of instantaneous demand, or
total electricity consumption”. Recently, home energy management
systems (HEMS) have emerged for local load management at the con-
sumer side. According to [41], HEMS are defined as residential DR tools
that shift or curtail demand to improve the energy consumption and
production profile of a building on behalf of a consumer by providing
optimal operation schedules. Numerous sources provide in-depth re-
views of HEMS or building energy management systems [41,62,63],
scheduling in buildings [64,65], and DR concepts [50,66]. Accordingly,
the characteristic features of DSM concepts are identified and illu-
strated in Fig. 3.

3.1. Objectives for scheduling strategies

The objectives for operation scheduling in HEMS vary depending on
the consumer, the application, and the DR framework. The list includes:

• Energy cost reduction e.g. minimization of energy consumption.
• Increase of consumer comfort and well-being.
• Environmental concerns e.g. reduction of GHG emissions.

• Load profiling which evaluates the desirability of the load profile to
some party such as:
– Reducing grid dependency for consumers.
– Reducing peak demand for utilities.
– Adapting to the variations in power supply from renewable energy
sources to reduce power imbalance (smart grid application).

3.2. Target devices in DSM concepts

According to the survey [41], the majority of HEMS and DR studies
in the literature typically target electrical appliances or white goods
such as time-shiftable loads, notably washing machines, dryers and
dishwashers as well as electrical storage systems, mainly stationary
batteries and electric vehicles. The scheduling of heating systems, aside
from electrical heater has recently gained a lot of attention. The main
idea is to exploit the thermal flexibilities enabled by the availability of
thermal storage to allow for electrical load shifting.

3.3. Approaches: decision scope

HEMS can be classified into reactive and predictive approaches.

Fig. 3. Overview of the characterizing features of DSM concepts [67].
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Reactive HEMS typically use heuristics, i.e. knowledge based techni-
ques, which approximate solutions based exclusively on certain pre-
scribed rules for the actual system state, with no consideration of pre-
dictions. An example of this approach for energy management in
residential buildings is provided in [68]. The development of heuristics
requires extensive experience and knowledge about the considered
system and exploits case-specific strategies that cannot be generalized
for other systems. The main advantage of a well-designed heuristic is
the low computational effort required for generating a good solution.
Yet, powerful heuristics are difficult to derive for complex architectures
including diverse components. However, reactive HEMS have been re-
cently formulated as multi-agent systems (MAS). MAS are negotiation
based frameworks characterized by a flexible and extensible archi-
tecture. A notable example is provided by the “PowerMatcher” model in
[69].

Predictive HEMS incorporate forecasts for estimating states to
provide an optimal schedule under future conditions. Predictive HEMS
rely on a mathematical program or meta-heuristic for the scheduling
model. Typically [70–73], predictive scheduling is implemented in a
moving window framework, also referred to as sliding window, rolling
or receding horizon algorithms. This framework is used to reduce
computational effort and improve the schedule by updating the fore-
casts in a cyclic manner. This allows for reacting to disturbances de-
pending on the rescheduling rate, which is a feature of reactive sche-
duling.

Through embedding forecasts, predictive HEMS and DR are ex-
pected to hold an advantage over classical reactive approaches for the
accommodation of volatile RE especially in scenarios with a large share
of renewable generation capacity.

3.4. Forecast models in predictive scheduling

Predictive HEMS or scheduling incorporates several forecasts as
inputs. These include predictions of weather conditions e.g. solar irra-
diation and outdoor temperature, PV and wind power generation, oc-
cupancy, as well as energy consumption behavior, i.e. space heating,
domestic hot water and electrical demand. Forecast models have been
heavily investigated [74–76] and can be broadly grouped in:

• Black box models which are data driven formulated and require no
knowledge about the physical characteristics of the system. These
comprise regression and machine learning techniques as well as
modified formulations i.e. adaptive and stochastic formulation.
These models are widely used, e.g. [77]. The field of applications
includes price, weather variables, PV generation, electrical and
thermal demand prediction among many others.

• White box models which are based on detailed physical re-
presentation of a specific system [78]. This approach is exhaustively
applied for predicting building thermal behavior, i.e., space heating
demand or indoor air temperature.

• Grey-box models that represent an intermediate stage between
white and black models and are typically applied to predict thermal
behavior as well [79,80].

3.5. Scheduling algorithms

Many approaches have been proposed to schedule residential en-
ergy systems according to the survey [81]. These can be categorized
into:

• Mathematical optimization or programming: linear program-
ming (LP), quadratic programming (QP), dynamic programming
(DP), mixed integer linear programming (MILP), mixed integer non-
linear programming (MINLP); decomposition techniques such as
Lagrangian Relaxation (LR) or Lagrangian decomposition (LD),
Benders decomposition and Dantzig-Wolfe decomposition (DWD)

combined with the column generation algorithm; robust optimiza-
tion and stochastic programming.

• Meta-heuristic: bio inspired evolutionary algorithms (EA), popu-
lation based genetic algorithm (GA) and particle swarm optimiza-
tion (PSO), trajectory based simulated annealing (SA) and taboo-
search method (TSM).

• Heuristics: rule based or knowledge based techniques and priority
listing.

3.6. Architecture of DSM strategies

The authors of [82,83] provide an overview of control and DR
system architectures. The arrangements comprise centralized, decen-
tralized, and hybrid or distributed architectures. In centralized archi-
tectures, the central component has access to all information. Theore-
tically, a centralized approach allows for achieving the best solution.
However, the difficulty of this approach lies in application bottlenecks
such as scalability, computation tractability, data privacy concerns and
communication infrastructure. Decentralized architectures eliminate
several disadvantages of a centralized approach at the cost of stability
and optimality. In a decentralized architecture, the overall problem
solution is decomposed into sub-systems without direct coupling be-
tween them. Hybrid or distributed architectures are formulated based
on a trade-off between stability and information exchange. In non-
hierarchical distributed architectures, subsystems with similar or con-
flicting goals interact directly with each other, in a cooperative or
competitive manner. An example of a non-hierarchical distributed ar-
chitecture is provided in [84], in which a game theory based scheduling
model for residential DSM is applied. Hierarchical distributed archi-
tectures employ a multi-layer structure with a coordinator or ag-
gregator entity which coordinates the negotiation across the sub-
systems. Hierarchical distributed structures are typically applied in
MAS [12]. Further, they are well suited for mathematical optimization
using decomposition methods such as LR and DWD [85].

4. Existing use cases of TES-based DSM

As the predictable base-load supply in the grid is replaced by more
intermittent renewable energy (i-RES) and large-scale grid storage such
as power-to-gas is still in the trial stage, the load control of flexible
consumers (DSM, DR) is becoming increasingly important. Indeed, the
statistical flexibility found in load profiles aggregated from many con-
sumers such as P2H loads seems to form a custom-fit counterpart to the
volatility of many small producers of renewable electricity. In this re-
view, the frontier between research and large-scale field demonstration
of TES-based DSM is explored: where do we see generalizable and
scalable success stories, what are practically realizable contributions of
demand flexibility to future grid performance, and which major barriers
towards mass deployment are remaining?

Tables 1, 2 summarize 16 DR projects worldwide that include in-
depth field-testing and demonstration of demand response. Our main
focus is on Europe (11 projects); five projects were carried out else-
where, in the United States (3), China (1), and Japan (1). A majority of
DR projects are known from and have been summarized in reports by
the International Energy Agency (IEA DSM Task 17 – Pilot Studies and
Best Practices of Demand Flexibility in Households and Buildings [33])
or in the 2014 Case Book by the International Smart Grid Action Net-
work (ISGAN) [86], which is part of a framework created within the
IEA. In 2012, already, a report by the Dutch KEMA laboratories “In-
ventory and Analysis of Smart Grid Demonstration Projects” [87] in-
cluded well over 100 such projects worldwide.

Our unique criteria of project selection are stated and justified as
follows:

Narrow Technical Review Focus (DR+HVAC): One main focus is
on TES in buildings (HVAC in the residential and tertiary sectors, in-
cluding district heating networks or municipal plants) which are
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electrically operated in large numbers. Their electricity consumption is
controllable, individually or aggregated, as a flexible resource (demand
response, active demand). In addition to this core requirement, further
household appliances like washing machines (‘smart wet appliances’,
SWA) or electric vehicles (PEV) may be investigated.

Vertical Impact Analysis: A thorough empirical impact analysis of
this narrow subject covering several integration levels should accom-
pany the field testing, from

• End-user requirements and experience (user acceptance and in-
volvement, load responsiveness, permanence, comfort, economy,
autonomy, privacy), to

• New terminal devices becoming part of the SG automation hierarchy
(advanced metering, programmable thermostats, smart starting
function, DR-capable or grid-friendly HEMS), to

• Core control and coordination methods (balancing, load scheduling
and dispatching, forecasting, and pricing) at the distribution and
transmission grid levels and on different time scales, to

• Measurable grid-level performance impacts, such as practically
achievable potentials of shifted or leveled load or frequency reserve,
and benefits on supply reliability, power quality, loading of dis-
tribution networks, electricity costs, or sustainability of the power
generation mix.

• The interplay with the smart grid economy (pricing, new tariffs,
regulation, new stakeholders and business models) and with parallel
streams of innovation (e.g. emerging standards on ICT, automation
and control, IoT and vulnerability) are crucial aspects of the ana-
lysis.

Field tests accompanying the introduction of new technologies,
products, or devices such as Smart Meters, Smart Home Appliances, or
innovative components for grid modernization often lack the analytical
and scientific focus described and are discarded.

Readiness Level: With regard to the technology road map, pilot
projects include not only innovative grid and ICT hardware (HW) and
software (SW), but also a significant number of real electricity custo-
mers/households that cover their everyday electricity demand thereon.
At the same time, pilots should provide unique degrees of freedom to
test and compare new regulations, tariffs, and role models, not alone
methods or algorithms. We investigate use cases on a fine line between
shielded laboratory environments denoted often micro-grid demon-
stration sites (see Table 1 in [88]), and (pre-) commercial roll-out
programs. The latter are tied often to a specific supplier or utility and
always act within an existing regulatory framework and market struc-
ture, for example, to explore a new suite of DR tariffs of which Paterakis
et al. [30] present an impressive variety. Whereas laboratory-scale
micro-grids exclude real customers and are partly based on simulation,
the roll-out programs are too narrow in scope and lack the openness to
provide insight into a different energy future. We admit a conflict of
goals making it difficult to find projects that perfectly fit on that line
and will discuss our reasoning further below.

Project Period: Most field demonstration projects reviewed started
after 2010 and ended before 2016, but a few started before or are still
ongoing.

4.1. Project categories

The project categories represented by the columns in Table 1–3 are
explained briefly unless their meaning is obvious. The respective pro-
ject references are given in Table 4.

Project Size (C2): Several independent size indicators exist, and the
easiest available data were adopted. The number of participant
households is most informative, but in some cases the total load (MW or
GW) is specified instead. Total load and participant numbers are not
readily convertible because average household loads vary between
countries and projects, and in one case a few large municipal plants are

the DR providers instead of many small residential customers. Another
criterion is project cost or funding, but for large project clusters the
costs are not always attributable to the field tests properly.

Research questions/objectives (C3): The project research ques-
tions substantiate the desired impact analysis mentioned before.
Objectives either focus on the consumers, when their active cooperation
is voluntary but essential for the project success, or emphasize the in-
tegration issues with regard to ICT standards or existing DR market or
regulatory frameworks, or focus on performance variables measuring
the grid benefit. Hosting more i-RES, improved balancing despite un-
certainties, new DR contributions to frequency reserve (power quality),
improved spatio-temporal patterns of line or transformer loading
(average-to-peak load), or achievable potentials of load flexibility are
important quantifiable benefits. New coordination or scheduling
methods as discussed in Section 3 have not been targeted by all pro-
jects. Research objectives may include also non-functional goals.

Target devices (C4): The device/TES configurations most suitable
for load management were introduced in Section 2. Those addressed
primarily in the field tests are abbreviated in column 6; please refer to
the list of acronyms. HVAC applications rank first and other, e.g. de-
ferrable, household appliances second. Households able to feed elec-
tricity (back) into the grid, such as batteries, PEV, co-generation units
(CHP), or PV generation are denoted as “prosumers”, and in some cases
their power ratings are specified.

Load shaping goals (C5): According to Gelling's classification [89],
contributions from the demand side can reduce or increase the overall
load level (e.g. through energy saving or increased electrification due to
vehicle-to-grid (V2G) or heat pumps), or target specific load shapes/
profiles (of individuals or aggregations), such as shifting or leveling
load patterns over a given time window (peak shaving, valley filling). In
addition to such scheduled services, canceling suddenly arising residual
load or following a frequency signal in real time have become key ap-
plications of domestic DR [9].

Research Platform/Configuration (C6): This category covers the
experimental concepts and components of HW, SW, organization, and
architecture, which define the field testing infrastructure. The hardware
and software includes metering, device control (smart thermostats,
smart start functions), visualization, new HEMS software, architectural
frameworks, and communication protocols. Organizational concepts
concern the market (pricing schemes, tariffs), the additional rewards or
incentives for participants, new regulatory specifications for running
experiments, or new roles and institutions like demand aggregators
placed between grid operators, utility companies, and consumers.

Results/Outcomes (C7): The technical results summarized in this
column provide direct answers to the research questions in column 5 or
mention spin-off results obtained in the project, as well as general
lessons learned. Question marks indicate new research questions raised

Table 4
Project references table.

Project name Refs.

PowerMatching City [33,69,90–95]
Couperus [33,95,96]
Your Energy Moment (YEM) [33,94]
Linear [33,97–101]
EcoGrid EU [33,102–106]
Smart Grid Gotland [107–109]
Municipal Plants for DR [110]
Tiko [111]
Nice Grid [86,112,113]
E-Energy Project Cluster [17,33,114–116]
Modellversuch Flexibler Wärmestrom [117]
AEP Ohio gridSmart [118]
Pacific Northwest Smart Grid Demo (PNW SGD) [119–124]
Olympic Peninsula Demonstration Project (OlyPen) [125,126]
Kitakyushu Smart Community Creation Project [86,127–129]
Shanghai Project [30,130–132]
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or possible barriers seen on the road towards mass participation of
HVAC/DR as flexible loads.

4.2. Project technologies

The decision and control technology implemented for DR is char-
acterized in more detail by the technology matrix given in Table 5. Due
to the lack of published information, Table 5 includes only a subset of
eight demonstration projects. It should be noted that some demon-
stration projects have stipulated independent scientific work in unit
commitment, dispatching, or decision making; but it is not clear whe-
ther the methods proposed or functions implemented belong to the core
system under field test. The technology-relevant categories represented
in the columns in Table 5 are as follows.

Operational Variables (C2): The Objectives (column 5 in Tables 1,
2) are substantiated with those functional goals and variables that ex-
press the physical grid states or the interests of individual stakeholders
or the public, such as environmentally-friendly power generation. Goals
addressed by scheduling were discussed in Section 3.1. In addition,
quantitative performance measures are included that were not ex-
plicitly targeted (controlled or optimized) by the grid system under test
but were monitored externally to evaluate the impact of DR strategies.
Project results exist in the form of time series or aggregated statistics,
e.g. probability densities.

DR Time Scale (C3): The load changes envisaged by DR (column 7
in Tables 1, 2) are characterized as strategic (e.g. energy conservation,
preferring local use of locally generated electricity), or as scheduled
(when DR affects a day-ahead or intra-day load schedule), or as RT,
when DR reacts to unforeseen situations in real time, such as RT bal-
ancing, load following, or frequency response.

Decision Scope (C4): Decisions concerning only the actual system
state are classified as reactive according to the taxonomy in Section 3.3,
and otherwise as predictive. Having distinct decision scopes at different
levels is possible. For instance, an EMS at household level could in-
corporate predictions of weather and storage temperatures in its price
bid, whereas the market agent looks only at the current bids to find the
clearing price.

Decision Algorithm (C5): According to Section 3.5 the decision
making and especially load scheduling algorithms are classified into
methods of mathematical optimization (which may still be reactive or
predictive, using only actual states or state predictions), and into sim-
pler methods based on heuristic rules or on meta-heuristics for seeking
global optima of decision variables.

Architecture (C6): In Section 3.6 the information architecture in
which DR strategies are implemented has been characterized as central
(C), decentralized (D), or as hierarchically-distributed multi-layer ar-
chitecture (HD). Independently, the essential information flow between
components on the same layer or between adjacent ones is character-
ized as unidirectional, bidirectional, or multi-cast.

DR Automation Degree (C7): This is essential when human con-
sumers are part of a closed control loop. Under manual DR consumers
retain their autonomy to start or delay appliances, notwithstanding
prices or other incentives. A DR strategy is automatic if appliances are
controlled directly (remotely) or indirectly through a software agent
acting on dynamic prices. Semi-automatic strategies take a middle
course by offering the consumers preferences to strike a balance be-
tween thermal comfort and economy. The loads are dispatched auto-
matically in accordance with the preferences. Often, users may overrule
automatic decisions.

DSM Control (C8): A common dichotomy distinguishes direct load
control (DLC) of appliance states from indirect control via prices
[30,81]. DLC in the present review means controlling appliances’ load
states physically without recourse to economy (prices, scarcity). The
control algorithms can address consumers individually by switching
device states or changing thermostat set points or modifying power
levels (if the appliance permits), or collectively by specifying switching

probabilities or random delays [133,134]. In any case, DLC entails in-
dependent contractual payments to incentivize or remunerate the
flexibility provided as a service. With indirect control, on the other
hand, the electricity price (€/kW) conveys all information about the
grid state and the direction of flexibility desired. Time-integrating price
and consumption (kW) yields the costs; therefore, the cash-flow is by
means of an energy tariff. In Table 5, this case is distinguished further
by the type of pricing:

• Time-of-Use (ToU): prices are priorly known by the time at each
day;

• Critical-Peak-Pricing (CPP): prices signal the current load situation
but are announced ahead;

• Real-Time-Pricing (RTP): prices signal the current load situation
but are set without notice and unilaterally by the utility company or
grid operator.

• Real-Time Trading (RTT): as RTP, but prices are negotiated among
all buyers and sellers at a common market (in two stages, placing
bids first and then clearing the market).

Where mutually exclusive entries appear together in Table 5, such
as both “manual” and “automatic” activation in column 7, both alter-
natives were field-tested at different project stages, or different con-
sumer groups were compared using different control mechanisms.

4.3. Summary of demonstration projects

With respect to strategic focus and technology, the projects ar-
ranged geographically in Tables 1–3 can be divided into three (over-
lapping) groups:

• Group 1 focuses on the real-time electricity market as a key tech-
nology for power balancing and coordination and on its im-
plementation and field testing in an existing regulatory environ-
ment. Five large projects implemented a negotiation scheme with
bidding and market clearing “in real time” (denoted transactive
control (TC) in the USA): OlyPen, PNW SGDP, AEP Ohio GridSmart,
Power Matching City, and Couperus. In a sixth project (EcoGrid EU)
a bid-less algorithm was implemented that determines the price
unilaterally from behavioral predictions of market players.
Therefore, “indirect” control strategies (in column 8 in Table 5)
using the real time price (RTT, RTP) are dominantly represented in
this group.

• Group 2 is concerned mainly with the users (residential consumers
or prosumers) and the interfaces for integrating their appliances into
the SG as flexible loads. Subject matters include consumer motiva-
tion and sustained involvement, price responsiveness, using home
energy management systems (HEMS), data privacy and security, and
long-term impact of DR on electricity bills (PM City, YEM, Linear,
EcoGrid EU, SG Gotland, E-Energy, Nice Grid). This consumer focus
is often motivated by the development and demonstration of self-
sufficient energy communities, virtual power plants or micro-grid
cells.

• Group 3 is most interested in the measurable benefits of TES-based
DR for future distribution grids, e.g. practically achievable poten-
tials of load shifting, integrating higher levels of i-RES, improving
the power quality, and mitigating congestion problems in distribu-
tion circuits. Projects with this focus include Municipal Plants, Tiko,
Flexibler Wärmestrom, the Chinese Shanghai Project, and the
Japanese Kitakyushu project. Most projects from group 1 and sev-
eral from group 2 analyzed the grid benefits as well.

Notably, those field demonstration projects that are explicit about
new coordination methods for flexible demand (especially TES-based)
and also put these high on their testing agenda (group 1) rely on TC,
where we view the bid-less method of EcoGrid EU as an alternative
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form of market-based control. From several large projects, such as
Chinese Shanghai, Japanese Kitakyushu, Swedish Smart Grid Gotland
or French Nice Grid we could not find sufficiently reliable details,
especially on the algorithms for balancing and dispatching. Several
projects from group 2 simply pass on the dynamic electricity tariffs
(ToU, CPP, or RTP) available in some DR programs to their test cus-
tomers. A notable exception is the E-DeMa sub-project of the German E-
Energy cluster where a new electronic market place [116] has been
designed, implemented, and field-tested. The core efforts in E-DeMa
however went into the architecture and ICT framework and not into
specific market algorithms as was the case in the PM City or the PNW
SGD project.

Finding the market-based TC so strongly represented in the largest
pilot studies without specifically searching for it did come as a surprise,
because mass deployment of small-scale TES storage for flexibility must
solve so many problems in different areas and must invoke diverse
methods. For this reason, the TC methodology, its virtues, restrictions,
and simplifications are reviewed in some detail.

4.4. Transactive Control

Transactive Control (TC) has been implemented and field-tested in
the Olympic Peninsula Demonstration Project (OlyPen, the first project
of this type), the Pacific Northwest Smart Grid Demo (PNW SGD), AEP
Ohio gridSmart, and in Europe the PM City and the Couperus projects.

At the core of TC lies a real-time electricity market that balances
load and generation in real-time (periodically, every five minutes) and
decides on the units' dispatching order. At the beginning of the current
period all pending bids for power generation or consumption are col-
lected. An auctioneering algorithm then aggregates the buyers', re-
spectively, sellers' bids - each bid comprises a power level and a price -
into two bid functions. The algorithm then finds their intersection as

the price that cancels supply and demand amounts, and sends the
cleared price back to the bidders (Fig. 4). Demand bids above and
supply bids below the clearing price succeed and contract here all at the
same clearing price.

A supplier bid curve can be imagined as a merit-order function: the
bids are ordered by increasing prices and their offered power “packets”
are stacked in that order. Price steps correspond to the marginal costs of
the cheapest remaining generator that can supply additional power.
The demand bid curve is aggregated similarly from demand bids or-
dered by decreasing prices. A consumer signals urgency of power needs
by the price he/she is ready to pay: for instance, the closer the tem-
perature or filling level of a P2H application comes to its tolerance
limits, the higher the acceptable price. Demand bid prices are often
piecewise linear transformations of the thermal goal variables that in-
dicate the quality of service. The function parameters (slopes and off-
sets) may reflect a trade-off between comfort and energy made in-
ternally [91,125,124]. Demand bid curves for deferrable loads can be
constructed similarly as a piecewise linear transformation of starting
time such that the price becomes maximal at the latest optimal starting
time [135].

As shown through the bidding examples in Fig. 4, TC is a general
method for real-time balancing that copes with generation, flexible
demand, and storage resources. Any demand that is not basically ex-
cluded from flexibility – such as plug loads, possibly – must place a bid
at a competitive market and await the clearing price before proceeding;
i.e., demand is flexible and is granted conditionally by design. Power
and reserve power are treated and traded equally as a substitutable flow
commodity. Locational constraints such as the capacity of a transmis-
sion line or a transformer in a distribution circuit can be accom-
modated: at the level of power injection that would break the con-
straint, the bidding price normally indicating marginal generator cost
would rocket up, to infinity in the worst case. To update these

Fig. 4. Microeconomic power balancing through negotiated real-time prices (RTP): On the left and right are shown individual bids for power demand, respectively,
power supply, together with bidding strategies for special cases such as flexible demand and capacity constraints (see text). The auctioneering process in the center
sorts the bids by descending price order into an aggregated demand curve, respectively, by ascending price order into an aggregated supply curve. Their intersection
point (assumed existing and unique) defines the market clearing quantity (MCQ) and price (MCP).
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constraints incremental power flow calculations (assuming balanced
conditions) are performed concurrently with the bidding functions.
Residual load, i.e. a sudden gap opening between demand and supply
due to forecasting errors, is closed in the same way by a modified
supplier curve: with negative residual power the price becomes zero (
“consume at any price”) and with positive infinite ( “consume by no
price”).

The basic TC scheme neither uses nor provides load schedules for
planning the future and therefore is seen as a reactive mechanism ac-
cording to Section 3.3 (column 4 in Table 5). However, in actual field
implementations such as PNW SGD, predictions built on forecasts are
combined or blended with the real-time dispatch (TC) algorithm
[119,123].

The DSM control type is tagged Indirect - RTT because the nego-
tiated price alone defines the threshold above which loads will be up
and running. When market clearing is found by simple intersection of
merit-order-type bid curves, the decision-making is classified as heur-
istic (column 5 in Table 5). More complex optimization algorithms for
the clearing decision are however possible and are compatible with TC
[121]. The architectures for implementing TC are classified as hier-
archically-distributed: the auctioneer on top communicates bi-direc-
tionally with the bidders at the leaves (tag HD/bi-direct). In a full-
fledged distribution grid, this basic hierarchical relation may be re-
peated at several layers or combined with different architectures at the
leaves or on top.

A comprehensive in-depth presentation of TC and its realization in a
multi-agent architecture is found in Kok's PhD thesis [91]. Detailed
implementation reports and case studies, e.g. on how to compute and
parametrize bidding functions for flexible loads, are available for the
OlyPen demonstration project [125,126], for PNW SGD [123], and for
the AEP Ohio SG project [118]. Several thematic and methodical sur-
veys on TC provide insights how to optimize more complex goal func-
tions and handle ancillary constraints [95,121,136] on top of the RTP-
controlled dispatch. Hu et al. [95] modify a preferred schedule for
charging electric vehicles (PEV) by incorporating locational capacity
constraints of the distribution circuit. Chassin at al. [136] provide
guidelines to determine the regulation price of grid-friendly household
appliances.

4.5. Significance of field test results

All demonstration projects reviewed successfully implemented and
carried out their research program. In several field tests quantitative
performance figures were measured:

• DR potentials, specified as a percentage of individual or aggregate
loads shifted or leveled, range between about 10% (3–10% in E-
Energy, 8% in PNW SGD in a simulation assuming 30% of loads
being responsive) and 48% of aggregate peak load in YEM. The
majority of the load shares moved lie in the range 15–25%. These
results cover the whole range of DR control options and pricing
schemes (manual and automatic DR, ToU, CPP, and RTP tariffs, as
well as TC-based RTT schemes). No evident correlation between
load control performances and specific coordination and in-
centivization mechanisms was established. According to the PNW
SGD study, work remains to be done on whether to use the RTP
signals as a dynamic tariff for mass deployment of DR [123].

• Findings on the economic or societal impacts of DR and on the
changes in consumption behavior were made mostly in the afore-
mentioned Group 2 projects. Among these, only PM City reported
comparative flexibility cost scenarios carried out at a national scale
(in the Netherlands [33]): flexible demand and active distribution
management were compared to investments in the network capacity
(grid reinforcement).
For raising customer awareness dynamic tariffs are mostly used but
explicit messages or traffic lights signaling the grid state are also

possible (e.g. Nice Grid). Effects on the electricity bills were ana-
lyzed in several projects; AEP Ohio GridSmart found moderate
savings in household (-5%) and in wholesale electricity costs (-5%).
Consumer acceptance, responsiveness, and price elasticity of loads
were measured notably in YEM and in E-Energy. Consumer re-
sponsiveness varies over time, because it must be learned and may
be unlearned due to fatigue or disinterest e.g. [137].

• Most clearly demonstrated were the benefits achieved for the dis-
tribution grid through flexible management of HVAC loads, espe-
cially by using TC technology (projects in Group 1). Imbalances due
to fluctuating wind generation were reduced by up to 60% in PM
City and up to 94% in Couperus. Through active load management,
the loading of feeder circuits and transformers (substations) was
persistently kept bounded within their capacity limits in several
projects. Peak loads were reduced by at least 30%, and congestion
was mitigated.

We do not further process or visualize the quantitative performance
figures that are listed in Tables 1, 2, or even attempt to rank them,
because they are incomparable between different projects. The precise
meanings of goal variables differ. For instance, does imbalance reduc-
tion through DR refer to the total or the average power imbalance
(MW), or to the number of DR requests made, or to some default bal-
ancing method, and what is the balancing period? Experimental con-
ditions differ; for example, the available control power (in % of the load
shifted) is a function of the number of households, the appliance types
targeted and their simultaneity factor. Seasonal and weather conditions
(wind) and load types further influence the imbalance reduction. There
exist no standardized test cases or benchmarks.

Summarizing, we see the stress tests for mass deployment of TES-
based flexible loads yet to come. The scenarios tested so far have lim-
ited relevance for, say, future penetration levels of 80% i-RES:

1. Doubts persist on the concepts of price elasticity and load respon-
siveness and how to measure them. These concepts are well-defined
if people determine their own electricity consumption depending on
real price signals (manual DR). Signals from the grid to the demand
side can effectively control the physical grid states (balancing and
loading), or can indicate economic scarcity in the grid (supply and
demand), or can signal the customers a real financial burden, but
these are generally different things. Customers’ electricity bills and
market prices according to the RTP curve often diverge in the field
tests. Separate incentives were sometimes granted to motivate more
customers to participate, or shadow markets were established. Still,
load responsiveness is crucial and cannot be foregone as long as
humans remain in the decision loop.

2. Flexible demand services on fast time scales providing frequency or
contingency response or fast balancing were ignored in most field
tests except Tiko [111]. Even the transactive markets apparently
were not employed to provide ancillary services at the fast rate they
were able to clear (every 5min). In fact, the top-down control
through a stream of price signals caused daily load shifting patterns
that local HEMS might plan decentrally for themselves [125].

3. The majority of field tests (except PNW SGD, EcoGrid EU, Nice Grid,
and Tiko) included a few hundred households or less as proper
participants, which are too few to create a diverse load distribution
and an environment for testing resource competition. Sometimes,
the recruited households were too similar with regard to building
types, HVAC equipment, load types and sizes (e.g. in the Couperus,
Nice Grid, and Smart Grid Gotland project environments).7

4. Even the largest and most elaborated demonstration projects

7 These projects aimed specifically at creating self-sufficient energy commu-
nities, which tend to be more homogeneous than grown city districts. Still, the
results do not permit general conclusions.

P. Kohlhepp et al. Renewable and Sustainable Energy Reviews 101 (2019) 527–547

540



suffered minor technical limitations, which highlight the difficulties
of a pilot implementation compared to a simulation. In PNW SGD
[123] flexible appliances can only drop or postpone load, i.e. pro-
vide positive balancing power. The reaction of flexible loads to
prices was not field-tested in a closed loop but simulated, because
third-party software did not permit the TC system reacting on prices
to alter the load dispatching order ([123], pp.158). Based on the
project reports, we cannot judge whether this limitation produced
any noticeable quantitative effects.
On the other hand, the open-loop bid-less market algorithm pro-
posed for EcoGrid [105] used no direct feedback from the end users
but predicted their responses to real-time prices. Inaccurate fore-
casts by the rather complex algorithm could cause instability. We do
not know whether the algorithm [105] or a simpler one was part of
the field tests.

5. A challenging situation of grid balancing that heavily depended on a
rich offer of flexible load has not been reported from the field trials.
The particularly high balancing reduction of 94% achieved in
Couperus may in part result from a down-scaled wind turbine gen-
eration. It would be informative to see how the basic RTP market
scheme handled tight competition and dynamic inter-temporal
constraints of flexible demand resources.

5. Critical review

Achieving permanently balanced and efficient allocation of grid
resources is crucial for grid stability, supply security, and cost effec-
tiveness of any electricity system [138]. In solving this problem control-
theoretic and micro-economic concepts flow together [69,81,95]. Op-
timal control methods including predictive scheduling address the
physical grid stability (frequency control, real-time balancing) and in-
clude economic costs as decision variables and objective functions
[139]. But resource allocation may also be posed as a market equili-
brium of demand and supply which is a classical domain of micro-
economics [91,136]. When highlighting a decision or control variable
or coordination mechanism as “price”, in whatever framework, one
should ask whether the price reflects human cost perception and eco-
nomic reasoning to drive decision-making, e.g. to shift HVAC load. Does
the market price sufficiently differentiate and qualify the commodities

or services traded, i.e. FS? Regarding the control context, can the price
stabilize the physical grid states on any time scale, especially when
rotational inertia is reduced due to a high i-RES penetration level?
These questions are discussed jointly for each methodology tested ra-
ther than for each project. As mentioned before, the real-time pricing
model adopted in six major field projects plays a dominant role in our
review.

5.1. Micro-economic assumptions

The crucial market assumption of power being a substitutable flow
commodity [91] appears too simplistic to trade flexibility services (FS).
The commodities of demand response, i.e. the FS, are not readily sub-
stitutable. They are not instantaneous levels of power (or change of
power), but power profiles over time that satisfy diverse performance
criteria [15] and constraints, such as on response times, ramping slopes,
holding time, availability depending on frequency of use, and further
criteria such as black-starting capability or impact on reactive power
balance. Not even power levels are infinitely divisible; flexible on/off
devices have fixed power ratings. Demands on FS result in part from the
situations that leave specific patterns of load imbalance to be filled, for
instance, substitution or replacement reserves after contingencies.
Flexibility offers provided by backup generation plants, batteries, and
residential loads are as diverse as the demands put on FS; see e.g. Ela
et al. [140] on quality – differentiated service markets for trading FS.

With regard to optimization, a cost-optimal and balanced power
allocation over a time period is not obtained by independent myopic or
reactive optimizations, i.e. not by market clearings through an algo-
rithm that is like a merit order upgraded to handle the demand side and
clocked in five-minute intervals (cf. Fig. 5). Temporal dependence
within and among electrical appliances and generators is important;
otherwise technically infeasible allocations might result. It is also not
obvious why monetary efficiency is emphasized so much as the RTP
curves do not necessarily match the true cash flow with test consumers
in some experimental setups [118,125]. RTP appears to be used mainly
as a means to solve the balancing problem, which could be cast and
solved as an optimal (multi-variate, predictive, constrained) control
problem that encompasses physical and economic goal variables alike.

Fig. 5. Top: Example of a unit commitment
problem illustrated in the time domain for
different types of generators, storage, and de-
mand, which must cope with inter-temporal
constraints, ramping constraints, con-
tingencies, and forecasting errors. Bottom: the
same problem conceived as a snapshot se-
quence of independent market equilibria be-
tween demand and supply (RTP cleared every
5min using the substitutable flow commodity
paradigm).
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5.2. Bid construction and comparison

Market-based TC hinges on the ordering and comparison of all loads
and generators on a single price scale. After all, the bid curves should
intersect. Loads place their demand bids according to individually
perceived need of power, which is determined from end-use con-
straints8 and individual preferences between comfort and economy.
Diverse types of demand must be prioritized and made comparable
before a market can perform the final task of sorting them:

• Is user A's thermal comfort more important than B's (see [91] page
84ff)?

• How do thermal constraints in demand bidding compare to non-
thermal goals and constraints to be met, e.g. maintaining the pres-
sure or mass flow rate in a duct, charging a battery to a given level,
or meeting a wash program's deadline?

• How do bids for quality-of-service by appliances compare to mar-
ginal prices of generators (e.g. gas turbines) which have a well-de-
fined monetary meaning?

• How should a capacity limit approached in a distribution network
be monetized?

Obviously, essential weighing (or prioritizing) mechanisms that em-
body plenty of domain knowledge must be placed between bidding
agents and auctioneer to arrange different local needs artificially on a
one-dimensional price scale. The simplicity of TC is bought through
many adjusting screws and tuning parameters [123,125]. Academic
work addressing this knowledge problem [91] remains vague about
how to resolve it.

5.3. Are open bidding frameworks safe to use?

Within TC, responsibilities are divided between local distributed
agents that construct bids e.g. through their energy management sys-
tems and the auctioneering agent that clears the market (cf. Fig. 4).
Together they realize core functions of supply security and economy on
which the SG system must rely. What is the space of correct tenders
permitted? For instance, counterexamples of step functions of bidding
(opposed to the more common piecewise-linear ones) are easily con-
structed such that the intersection yields no (accurate, unambiguous)
balancing point, when there are too few producers, consumers, and
discrete power levels. How are erroneous or fraudulent bidding stra-
tegies detected and hedged against in general? The literature on TC
proposes a range of bidding procedures tailored to specific load ex-
amples [91,123,136]. However, the authors are not aware of a general
guideline (theoretical or best practice) existing to construct valid bid-
ding functions for any common type of household appliance, or a cer-
tification procedure that new bidders (HEMS) must go through before
entering the market. While such questions can be excluded from aca-
demic research, they become urgent at the level of field studies im-
mediately preceding mass deployment.

5.4. From predictive scheduling to real-time dispatch

Contemporary grid operation depends on regulatory frameworks set
by ENTSO-E in Europe or FERC in the USA. Unit commitment (UC) as
the basic building block plans the allocation of generating units a full
day ahead in hourly time steps to meet all future demands and capacity
constraints and to minimize operational costs. In this discussion, we
generously extend the term UC to also include storage units and flexible
demand.

For smart grids hosting high levels of distributed renewable energies

(i-RES) the past research decade has seen a surge in predictive resource
scheduling and model-predictive control to minimize operating costs;
see [139,141] and the discussion in Section 3. These planning tools use
detailed weather and demand forecasting, account for stochastic or set-
based uncertainties, and are increasingly supported by available soft-
ware as, e.g., HOMER, WebOPT [142]. The scheduling process is re-
fined several times (day-ahead, intraday,…) as more accurate forecasts
become available or uncertainties materialize. The planning horizon is
thereby closing in and the time granularity increases.

In the logic of a rolling horizon optimization the real-time dispatch
would just play the last schedule in the series, when there is no need or
no more time to revise it. TC computes a fundamentally different dis-
patch through market clearing. Despite the scientific work developed
around TC and mentioned before [95,121,136], predictive scheduling
and TC in practice seem incompatible and exclusive. Viewing the pro-
gress in control theory (MPC, predictive scheduling), pure market dis-
patch may appear as a dead-end.

5.5. Load control on fast time scales

As mentioned in Section 4.2, with RTP as an energy (€/kWh) tariff
the net cost9 results by integrating the power level (KW) times the price
over time. With time-varying RTP, a flexible demand curve can indeed
be monetized by the difference w.r.t. some baseline load curve. Still,
one may wonder if energy tariffs are universally adequate to trigger or
reward demand flexibility. Probably they are with an RTP changing
hourly or half-hourly, but at a higher frequency they will eventually be
no more [9]. Five-minute clearing intervals are already too short to
convey information that people perceive as a tangible cost.

It has been shown that demand-side frequency response can be
realized using only local measurements of grid frequency, e.g.
[21,134,143,144] and can be implemented decentrally. If a price signal
instead had to communicate the desired load changes, price dynamics
would have to match the dynamics of the load response elicited [145],
which could be a fast, imminent response in the form of a short load
pulse. Accelerating the price dynamics while keeping price amplitudes
bounded under an energy tariff would let the effect on the client's
electricity bill eventually vanish. Unbounded prices have been pro-
posed to compensate for shorter durations, e.g. inverse sigmoid func-
tions of grid frequency deviation [145]; however, system stability is
then endangered depending on communication delays.10 On fast time
scales, therefore, market-based grid control becomes challenging,
whether a human or an automated trading agent makes the decisions
[9,91].

Still, generation and consumption must be balanced at a seconds
time scale, especially when inertia is reduced in the grid. The short-
term flexibility offered by HEMS/HVAC systems is increasingly
exploited for fast balancing or frequency response
[9,21,133,134,146,147]. If the flexibility is an essential service but
drawn on irregularly and for short time spans, it cannot be valued by
duration (energy tariff) but rewarded through contractual incentives
[30,148]. Real-time grid control (balancing) and market-based control
of supply and demand are thereby separated. For instance, the number
of FS provisions per month is rewarded,11 or rewards are calculated
from performance features such as the response time to a request, the
accuracy of load following, or the amount of consumption delay. As-
suming some load forecast of the same period without flexibility exists,
the performance features are extracted from the customers’ response

8 The urgency of HVAC needs, for instance, depends on the current thermal
zone temperature w.r.t. the comfort limits.

9 Fixed transmission costs or taxes are ignored here.
10 Averaging the input signal (grid frequency) over sufficiently long periods has

been proposed in order to regain stability [145] but low-pass filtering also
limits the dynamics.
11Non-compliance to contractual obligations such as not responding to an

emergency DR signal might entail penalties.
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profiles. A simpler alternative is to grant customers rebates on their
basic energy tariff (e.g. RTP) that depend on the degree of flexibility
specified in advance, i.e. on the prior probability or frequency of in-
terventions they would accept [148].

We are unaware of field studies comparable to the OlyPen or the PM
City projects where the viability of fast contractually incentivized de-
mand response was tested or proved, such as DR from large TCL ag-
gregations [134]. The projects surveyed in Tables 1–3,5 apparently did
not focus on them.

5.6. Smart grid with reduced inertia

Maintaining grid stability under reduced inertia puts higher de-
mands on frequency control and real-time balancing. According to the
swing equation [149], the grid frequency (rotational angle velocity)
changes inversely proportional to the rotational energy (inertia) ex-
isting in the generators and proportionally to the power imbalance. As
synchronous generators are being replaced by wind farms and, in par-
ticular, by solar PV, rotational inertia not only decreases but dis-
turbances may be detected too late to activate load shedding measures,
because the feed-in points are electro-mechanically decoupled from the
grid at the DC to AC inverters. Grid instability becomes more likely than
in grids with the same physical parameters but with inherent “syn-
chronous” inertia. To counteract this, an equivalent synchronous grid
environment can be emulated and fed back through control algorithms
implemented in the inverters; several design options exist [150]. Virtual
or synthetic inertia does however not replace missing rotational energy
that does not already exist in some form and can be harnessed through
power electronics and control algorithms, such as the inertia “hidden”
in the rotors of wind turbines. Since the amount of rotational inertia
varies in grids with large shares of PV and wind power, real-time es-
timation of inertia is critical [150].

Frequency problems are resolved by removing the power imbalance
that caused them, i.e. by activating grid storage or flywheels or fast DR.
Teng et al. [151,152] derived the demand of DR balancing power
backwards from inertia estimates and the TSO requirements on how to
stabilize the grid frequency after an outage or contingency. These
specify the largest allowed deviation (nadir), the maximum rate of
change of frequency (ROCOF), and the time needed to return to ac-
ceptable levels. Synthetic inertia has been tested in real-time simula-
tions and in the field [153] and is available in commercial inverter
technology, e.g. for wind power. To the best of our knowledge, the
relationship between inertia and HVAC-based demand flexibility, or its
impact on inertia, have not been investigated in field projects. Synthetic
inertia itself provides a kind of flexibility service for frequency response
similar to storage or flexible demand but with rather unique perfor-
mance criteria. Currently no market for inertia exists but preliminary
market arrangements have been simulated [154]. Conventional power
or energy tariffs like RTP provide no suitable valuation metrics for
trading inherent or synthetic inertia [155].

5.7. Regulatory framework and market structures

TC with RTP/RTT appears to be advocated as a uniform market
structure for all organizational layers and especially for interfacing with
flexible demand in households [91,136]. It is not clear why such uni-
formity is advantageous viewing that aggregators [35] are still needed
for bundling domestic contributions into marketable flexibility offers.
Aggregators form an essential link and a separating interface, selling FS
on a flexibility market shared with a utility company (supplier) or BRP
or DSO12 but interacting differently, contractually, with the retail

customers that contribute through short-term demand responses. For
longer load shifts, on the other hand, the aggregators could pass on the
RTP or ToU supplier tariff to the customers. Mixed pricing models like
these are being discussed but apparently not field-tested on a large
scale. One reason might be persisting doubts that with current market
regulation sound business models can be created on top of residential
demand flexibility [3,6,156].

The statement found in Kok's Ph.D. thesis [91] on market-based DR
control that “the needed coordination mechanism must be fully de-
centralized and fit into the liberalized energy market” in fact applies to
most field projects in Tables 1–3, not only the ones using Power-
Matcher/TC: these adopt existing regulatory and market frameworks.13

Such an experiment design meets the needs of collaborating utility
companies who operate in these structures today, and requires less
preparatory efforts (possibly including legal exemptions) than a
Greenfield study or sandbox game for trying new regulations and value
chains, if real legal stakeholders will be part of it.

However, this adherence is also seen as a major barrier to estimate
practically realizable flexibility potentials [17], scaled down to the area
of field testing. Practical potentials and market conditions interact
closely with one another. The scope of a future DR market including
aggregator business, the avoidable integration costs at high i-RES pe-
netration levels, the investment and operating costs enabling secure
mass participation of TES-based DR could be determined more accu-
rately from field tests. The value of FS should be assessed within this
framing, not from the price spans (peak to off-peak) of electricity found
in today's wholesale markets (EPEX). Possible savings of flexible con-
sumers are well-defined only compared to inflexible or less flexible
consumers in the same test environment, not compared to their current
electricity bills.

Present markets reflect a largely centralized generation with a rising
share of renewables that still enjoy guaranteed feed-in tariffs (in
Germany). Simulations or field tests that accept the present market
rules and even draw on volumes and revenue streams from existing
markets do not much help answering which kind of FS market (players
and roles, transactions, regulation, rules) is needed when 50–80% of
generation comes from iRES but more cost-effective grid storages might
be available, too.

6. Conclusion

Our analysis suggests that the control and information technology
and the economic and regulatory frameworks field-tested and reviewed
in the present paper do not yet fully meet the flexibility challenges of
smart grids facing very high shares (> 50%) of intermittent renewable
generation. Significant benefits have been demonstrated such as effec-
tive congestion relief in distribution circuits through flexible domestic
demand (including HVAC). However, we see not yet a breakthrough in
control technology or market design paving the way to the electricity
turnaround state envisaged for 2030 or 2040. Demonstration projects
with more real customers are required in which also fundamentally
different coordination and market mechanisms should be tested, espe-
cially on the fast time scales of flexibility.

Six out of sixteen large field projects rely on the real-time electricity
market as the sole coordination and balancing mechanism (“smart grid
operating system”); from other projects we do not know this because
they focus on different aspects, such as DR potential analysis, measur-
able benefit for distribution grids by DR, analysis of consumer behavior,
development of new IT infrastructure platforms, or test of self-sufficient
micro-grid areas.

The basic micro-economic TC/RTP concept was tested first in 2007
in the OlyPen field project and has since been promoted with great

12 This could be an ancillary service market (ASM) that maps the diversity,
complexity, and quality of flexibility products and unifies the functions of ex-
isting balancing markets.

13 Except for the Chinese Shanghai project [130–132] that ventures the
transition from a monopolist supplier market to a more liberalized one.
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success and adopted in European projects such as Power Matching City
and Couperus. Several limitations and deficiencies are also evident,
such as neglecting to differentiate flexibility providers/services by types
and qualities in favor of a single flow commodity, as well as ignoring
temporal scheduling dependencies. Several FS providing ancillary ser-
vices, e.g. reactive power or inertia, can not be monetized reasonably
on the demand side by simple energy tariffs, which also lose any in-
centivizing effect on fast time scales, e.g. flexible demand for frequency
response. A causal link between pricing mechanism (RTP) and human
economic decision-making is not evident in those systems that apply
automated bidding agents and market clearing every 5min. On the
other hand, manual DR decisions are slow, partly unpredictable, and
suffer from human inadequacies like fatigue or weariness in the long
time.

Regarding market-based control, service markets with quality-dif-
ferentiated FS as products would be a methodical improvement over
pure energy tariffs under the flow-commodity paradigm. Uniform
quality criteria for specifying flexibility demand and comparing FS from
diverse providers (generation, storage, and demand) should be tested in
the field.

Methods rooted in advanced control theory are becoming available
for reliable and cost-efficient resource allocation, such as stochastic and
incremental scheduling and model-predictive distributed control under
uncertainties. However, they do not appear to have made it into big
field trials so far [81,139]. They could generate the real-time dispatch
as a by-product and an end point from a series of increasingly refined
schedules. These results should be compared with the market-based
dispatch.

With regard to the technological readiness of TES/HVAC operated
as mass flexibility providers, we see a few gaps left by the field projects
reviewed. One is fast balancing or frequency response realized by ag-
gregated HVAC loads with direct load control (implemented probabil-
istically and decentralized [18,21,134]), where aggregators provide the
compensation. We miss great field trials of this scientifically very active
research. Another essential gap is mass integration of residential cus-
tomers through AMI and DR control devices where field trials focus on
cybersecurity and seriously consider alternatives to off-the-shelf ‘IoT’
components. Regarding new DR-ready HEMS/BAS for the residential
markets, the field projects reviewed did not add evidence to us whether
TES-based DR creates enough monetary revenues to push the invest-
ments.

Many field projects reviewed have taken great efforts to make new
FS fit into existing electricity markets and regulation frameworks.
Thereby, the experiments do not really help figuring out which new
flexibility markets would best support the goals of the energy transition
in the long term. Field trials involving real customers and having the
freedom to experiment with new regulatory and market conditions
could generate market figures endogenously rather than import data
from existing markets, and could thereby also shed new light on the
revenues of FS achievable in future grids.
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