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Abstract

Action recognition has been advanced in recent years

by benchmarks with rich annotations. However, research

is still mainly limited to human action or sports recogni-

tion - focusing on a highly specific video understanding

task and thus leaving a significant gap towards describ-

ing the overall content of a video. We fill in this gap

by presenting a large-scale “Holistic Video Understanding

Dataset” (HVU). HVU is organized hierarchically in a se-

mantic taxonomy that focuses on multi-label and multi-task

video understanding as a comprehensive problem that en-

compasses the recognition of multiple semantic aspects in

the dynamic scene. HVU contains approx. 577k videos in

total with 13M annotations for training and validation set

spanning over 4378 classes. HVU encompasses semantic

aspects defined on categories of scenes, objects, actions,

events, attributes and concepts, which naturally captures

the real-world scenarios.

Further, we introduce a new spatio-temporal deep neural

network architecture called “Holistic Appearance and Tem-

poral Network” (HATNet) that builds on fusing 2D and 3D

architectures into one by combining intermediate represen-

tations of appearance and temporal cues. HATNet focuses

on the multi-label and multi-task learning problem and is

trained in an end-to-end manner. The experiments show

that HATNet trained on HVU outperforms current state-

of-the-art methods on challenging human action datasets:

HMDB51, UCF101, and Kinetics. The dataset and codes

will be made publicly available.

1. Introduction

Video understanding is a comprehensive problem that

encompasses the recognition of multiple semantic aspects,

that include: a scene or an environment, objects, actions,

⋆Ali Diba, Mohsen Fayyaz and Vivek Sharma contributed equally to

this work, and listed in alphabetical order.

Attribute:

Day, Blue

Event:

Entertainment

Concept:

Fun, Joy
Action:

Jet-Skiing

Scene:

Sea, Jungle

Object:

Person, Boat

HVU DataSet

HATNet

Figure 1. Holistic Video Understanding Dataset: A multi-label and

multi-task dataset and HATNet as a new deep ConvNet for video

classification.

events, attributes, and concepts. Even if considerable

progress is made in video recognition, it is still rather lim-

ited to action recognition - this is due to the fact that there

is no established video benchmark dataset that integrates

joint recognition of multiple semantic aspects in the dy-

namic scene. While Convolutional Networks (ConvNets)

have caused several sub-fields of vision to leap forward,

one of the expected drawbacks of training the ConvNets for

video understanding with a single-class label per task is in-

sufficiency to describe the content of a video. This issue

primarily impedes the ConvNets to learn a generic feature

representation towards challenging holistic video analysis.

To this end, one can easily overcome this issue by recast-

ing the video understanding problem as multi-task classifi-

cation, where multiple class labels are assigned to a video

from multiple semantic aspects. Furthermore, it is possi-

ble to learn a generic feature representation for video anal-

ysis and understanding. This is in line with image classi-

fication ConvNets trained on ImageNet that facilitated the

learning of generic feature representation for several vision

tasks. Thus, training ConvNets on a multiple semantic as-
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pects dataset can be directly applied for a holistic recog-

nition and understanding of concepts in video data, which

makes it very useful to describe the content of a video.

To address the above drawbacks, this work presents the

“Holistic Video Understanding Dataset” (HVU). HVU is

organized hierarchically in a semantic taxonomy that aims

at providing a multi-label and multi-task large-scale video

benchmarking with comprehensive list of tasks and annota-

tions for video analysis and understanding. HVU contains

approx. 577k videos in total, with 12M (11,917,055) an-

notations for training set and 900K for validation set span-

ning over 4378 classes. A full spectrum encompasses the

recognition of multiple semantic aspects defined on them

including 419 categories for scenes, 2651 for objects, 877

for actions, 149 for events, 160 for attributes and 122

for concepts, which naturally captures the long tail dis-

tribution of visual concepts in the real world. All these

tasks are supported by rich annotations with an average

of 2681 annotations per class. For instance, HVU con-

sists of 481k, 31k, 65k samples in train, validation and

test set, and is a sufficiently large dataset, which means

that the scale of dataset approaches that of image datasets.

The HVU action categories builds on action recognition

dataset [18, 22, 24, 37, 52] and further extend then by in-

corporating labels of scene, objects, events, attributes, and

concepts in a video. The above thorough annotations en-

able developments of strong algorithms for a holistic video

understanding to describe the content of a video. Table 1-2

show the dataset statistics.

Furthermore, we introduce a new spatio-temporal ar-

chitecture called “Holistic Appearance and Temporal Net-

work” (HATNet) that focuses on the multi-label and multi-

task learning for jointly solving multiple spatio-temporal

problems simultaneously. HATNet fuses 2D and 3D archi-

tectures into one by combining intermediate representations

of appearance and temporal cues, leading to a robust spatio-

temporal representation.

Our HATNet achieves state-of-the-art results on the

HMDB51, UCF101 and Kinetics datasets. In particular,

if the model is pre-trained on HVU and fine-tuned on the

corresponding datasets it outperforms models pre-trained

on Kinetics. This shows the richness of our dataset as

well as the importance of multi-task learning. To our best

knowledge, this is the first work to focus on the training of

very deep 3D ConvNets from scratch for video understand-

ing and beating I3D pre-trained on Kinetics, thus clearly

showing the impact of HVU. Further, our HATNet requires

no ImageNet pre-trained image classification architecture

as was the back bone of I3D. We experimentally show

that HATNet achieves remarkable performance on UCF101

(96.9%), HMDB51 (74.5%) and Kinetics (73.5%).

Train Validation Test

481k 31k 65k

Table 1. HVU dataset statistics i.e. #videos-clips for train, valida-

tion, and test sets.

2. Related Work

Action Recognition with/without ConvNets: Over the

last two decades, a multitude of action recognition tech-

niques in videos have been proposed by the vision commu-

nity. Among the hand-engineered ones that could model ef-

fectively the appearance and motion representations across

frames in videos are HOG3D [23], SIFT3D [33], HOF [26],

ESURF [50], MBH [6], and iDTs [44]. Several other tech-

niques were proposed to model the temporal structure in

an efficient way, such as the actom sequence model [15];

temporal action decomposition [31]; dynamic poselets [46];

ranking machines [14].

There are several approaches to end-to-end ConvNets-

based action recognition [12, 21, 36, 40, 48] to exploit the

appearance and the temporal information. These methods

operate on 2D (individual image-level) [9, 10, 16, 38, 39,

48, 51] or 3D (video-clips or snippets of K frames) [12, 40,

41, 42]. The filters and pooling kernels for these architec-

tures are 3D (x, y, time) i.e. 3D convolutions (s×s×d) [51]

where d is the kernel’s temporal depth and s is the kernel’s

spatial size. These 3D ConvNets are intuitively effective

because such 3D convolution can be used to directly ex-

tract spatio-temporal features from raw videos. Carreira et

al. proposed inception [20] based 3D CNNs, which they re-

ferred to as I3D [5]. More recently, some works introduced

temporal transition layer that models variable temporal con-

volution kernel depths over shorter and longer temporal

ranges, namely T3D [8]. Further in [7], Diba et al. pro-

pose spatio-temporal channel correlation that models cor-

relations between channels of a 3D ConvNets wrt. both

spatial and temporal dimensions. In contrast to these prior

works, our work differs substantially in scope and techni-

cal approach. We propose an architecture, HATNet, that

exploits both 2D ConvNets and 3D ConvNets to learn an

effective spatio-temporal feature representation. Finally, it

is worth noting the self-supervised ConvNet training works

from unlabeled sources for action recognition, such as Fer-

nando et al. [13] and Mishra et al. [29] generate training

data by shuffling the video frames; Sharma et al. [34] mines

labels using a distance matrix based on similarity although

for video face clustering; Wei et al. [49] predict the order-

ing task; Ng et al. [30] estimates optical flow while recog-

nizing actions. Self-supervised and unsupervised represen-

tation learning is beyond the scope of this paper.

The closest work to ours is by Ray et al. [32]. Ray

et al. concatenates pre-trained deep features, learned in-

dependently for the different tasks, scenes, object and ac-

tions aiming to the recognition, in contrast our HATNet is

2
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Figure 3. Coverage of 16 different subsets of the 6 main semantic categories in videos. 36.5% of the videos have annotations of all

categories.

trained end-to-end for multi-task and multi-label recogni-

tion in videos.

Video Classification Datasets: Over the last decade, sev-

eral video classification datasets [3, 4, 24, 25, 37] have been

made publicly available with focus on action recognition,

summarized in Table 3. We briefly review some of the most

influential action datasets available. The HMDB51 [24]

and UCF101 [37] datasets are currently the most success-

ful in the field of action recognition. However, they are

simply not large enough for training deep ConvNets from

scratch. Recently, some large action recognition datasets

were introduced, such as ActivityNet [4] and Kinetics [22].

ActivityNet contains 849 hours of video, including 28,000

action instances. Kinetics contains 300k videos spanning

400 human action classes with more than 400 examples for

each class. The current experimental strategy is to first pre-

train models on these large-scale video datasets [4, 21, 22]

from scratch and then fine-tuning them on small-scale

datasets [24, 37] to analyze their transfer behavior. In the

last year also, a few other action datasets have been intro-

duced with more samples, temporal duration and the diver-

sity of category taxonomy, they are HACS [52], AVA [18],

Charades [35] and Something-Something [17]. Other huge

datasets such as Sports-1M [21] and YouTube-8M [2]. The

annotations of these datasets are slightly noisy as they are

annotated by an automatic tagging algorithm. Furthermore,

only video-level labels have been provided, and they are

also limited to activity taxonomies with a focus on sports

actions only. Due to these reasons, pre-training on these

datasets prevents models from providing good training.

Finally, it is worth noting the work on SOA dataset [32]

which is in the similar spirit of HVU. SOA is a multi-task

and multi-label video dataset aiming to the recognition of

different visual concepts, such as scenes, objects and ac-

tions. In comparison, HVU has multiple semantic aspects

not limited to scenes, objects, actions only, but also in-

cluding events, attributes, and concepts. Our HVU dataset

can help the vision community and bring more attention to

holistic video understanding. Further, we invite the com-

munity to help to extend this dataset that will spur research

in video understanding as a comprehensive, multi-faceted

problem. Note that, SOA dataset is not publicly available

while we were writing this paper. Our dataset will be made

publicly available in the next few months.

Motivated from the efforts to construct large-scale

benchmarks for object recognition in static images, i.e. the

Large Scale Visual Recognition Challenge (ILSVRC) to

learn a generic feature representation is now a back-bone

3



Task Category Scene Object Action Event Attribute Concept Total

#Classes 419 2651 877 149 160 122 4378

#Annotations 1, 485, 154 5, 944, 277 1, 552, 920 918, 696 1, 036, 308 965, 077 11, 902, 432

#Videos 366, 941 480, 821 481, 418 320, 428 368, 668 375, 664 481, 418

Table 2. Statistics of the HVU training set for different categories. The category with most number of classes and annotations is the object

category.

Dataset Scene Object Action Event Attribute Concept #Videos Year

HMDB51 [24] - - 51 - - - 7K ’11

UCF101 [37] - - 101 - - - 13K ’12

ActivityNet [4] - - 200 - - - 20K ’15

AVA [18] - - 80 - - - 57.6K ’18

Something-Something [17] - - 174 - - - 108K ’17

HACS [52] - - 200 - - - 140K ’19

Kinetics [22] - - 600 - - - 500K ’17

SOA [32] 49 356 148 - - - 562K ’18

HVU 419 2651 877 149 160 122 577K ’19

Table 3. Comparison of the HVU dataset with other publicly available video recognition datasets in term of #classes per category. Note

that SOA is is not publicly available at this moment.

to support several related vision tasks. We are driven by the

same spirit towards learning a generic feature representation

at the video level for a holistic video understanding.

3. HVU Dataset

The Holistic Video Understanding dataset (HVU) is or-

ganized hierarchically in a semantic taxonomy of holis-

tic video understanding. Almost all real-wold condi-

tioned video datasets are targeting human action recogni-

tion. However, a video is not only about an action which

provides a human-centric description of the video. By fo-

cusing on human-centric description, we ignore the infor-

mation about scene, objects, events, attributes of the scenes

or objects available in the video. While SOA [32] is a multi-

task and multi-label data set, which has classes of scenes,

objects, and actions, to our knowledge it is not publicly

available. Furthermore, HVU has more categories (actions,

scenes, objects, events, attributes, and concepts). One of the

important research questions which is not addressed well in

recent works on action recognition, is leveraging the other

contextual information in a video. The HVU dataset makes

it possible to assess the effect of learning and knowledge

transfer among different tasks, such as enabling the transfer

learning of object recognition in videos to action recogni-

tion and vice-versa. In summary, HVU can help the vision

community and bring more interesting solutions to holistic

video understanding. Our dataset focuses on the recognition

of scenes, objects, actions, attributes, events, and concepts

in the real-world user generated videos.

3.1. HVU Statistics

HVU consists of 577k videos. The number of samples

for train, validation, and test splits are reported in Table 1.

The dataset consists of trimmed videos clips. In practice,

the duration of the videos are different with maximum of

10 seconds length. HVU has 6 main categories: scene, ob-

ject, action, event, attribute, and concept. In total, there are

4378 classes with approx. 13M annotations for training and

validation set. On average, there are ∼ 2681 annotations

per class. We depict the distribution of categories with re-

spect to number of annotations, classes, and annotations per

class in Fig. 2. We can observe that the object category has

the highest quota of classes and annotations, which is due

to the abundance of objects in video. Despite having the

highest quota of the classes and annotations, the object cat-

egory does not have the highest annotations per class ratio.

However, the average number of ∼ 2, 241 annotations per

class is a reasonable amount of training data for each class.

The scene category does not have a large amount of classes

and annotations which is due to two reasons: the trimmed

videos of the dataset and the short duration of the videos.

This distribution is somewhat the same for the action cat-

egory. The dataset statistics for each category is shown in

Table 2 for the training set.

3.2. Collecting and Annotation

Building a large-scale video understanding dataset is

time-consuming task. In practice, there are two main tasks

which are usually most time consuming for creating a large-

scale video dataset: (a) acquisition or collecting appro-

priate data, and (b) annotating the data. Recent datasets,
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Figure 4. Different classes tend to co-occur semantically in HVU.

Here, we visualize t-SNE [27] relationship. This embedding is

purely based on class co-occurrence, without using video content.

such as ActivityNet, Kinetics, and YouTube-8M have col-

lected their data from the Internet sources to reduce the ef-

fort needed for data collection. For the annotation of these

datasets, usually a semi-automatic crowdsourcing strategy

is used, in which a human manually verifies the crawled

videos from the web. We use a similar strategy with minor

changes to reduce the cost of data collection and annotation.

Since we target the real-world user generated videos, thanks

to the category taxonomy diversity of Youtube8M, Kinetics-

600 and HACS, we use these datasets as main source of the

HVU. All of the aforementioned datasets are datasets for

action recognition. Manually annotating a large number of

videos with multiple semantic concepts is not feasible due

to the amount of videos, and also the difficulty for a hu-

man to pay attention to every detail - which might introduce

label noise that is difficult to eradicate. Therefore, we em-

ploy a semi-automatic method for annotation. We use the

Sensifai Video Tagging API [1] to get rough annotations of

the videos, which predicts multiple tags (or class labels) for

each video. To make sure that each class has approximately

around the same number of samples, we prune the classes

which have less than 50 samples. Afterwards, expert hu-

man annotators verify the relevance of the tags to their cor-

responding video for the validation and test set. We plan

to verify the training set tags in the new future versions of

the HVU. Figure 4 shows the t-SNE [27] visualization of

semantically related categories tend to co-occur on HVU.

3.3. Human Verification

As mentioned before, the tags of the videos are automati-

cally generated. Therefore, we employ workers to verify the

tags. We provide a GUI interface with a video player and

the predicted tags for each video with a check-box entry for

each tag. The human annotator reviews each video (often

multiple times) and determines if it contains the intended

classes, and removes (by marking) any irrelevant tags that

Convolution

3DConv Blocks

Convolution Action

Tags

Figure 5. Multi-task neural network configuration, applied on

HVU dataset.

might introduce label noise. The process takes approx. 100

seconds per clip on average for a trained worker.

3.4. Taxonomy

We use the Sensifai video tagging services [1] for an-

notating the videos. Their video tagging API is trained on

internal Sensifai datasets which can recognize videos with

∼10K annotations, spanning categories of scenes, objects,

events, attributes, concepts, logos, emotions, and actions.

As mentioned earlier, we prune tags with imbalanced distri-

bution and finally, refine the tags to get the final taxonomy

by using WordNet [28] ontology. The refinement and prun-

ing process was aimed to preserve the true distribution of

labels. Finally, we ask the human annotators to classify the

tags in to 6 main semantic categories, they are scenes, ob-

jects, actions, events, attributes and concepts. Moreover,

it is important to note that each video may be assigned to

multiple semantic categories. There are 50 different sets of

videos based on assigned semantic categories. About 36%

of the videos have all of the categories. Figure 3 shows the

percentage of the different subsets of the main categories.

3.5. Video Recognition Datasets

As covered in related-work, there exists a lot of pub-

licly available benchmarks and datasets which focus on hu-

man action recognition. The first ones were KTH [25],

HMDB51 [24], and UCF101 [37] that inspired the design

of action recognition models based on hand-engineered fea-

tures. However, they are simply not large enough and have

insufficient variation for learning good representative fea-

tures by training deep ConvNets from scratch. To solve

this issue, datasets, such as, Sports1M [21], Kinetics [22],

and AVA [18] were recently introduced. Although, such

datasets have provided more training data, they are still

highly specialized for the action recognition task only. In

comparison, HVU focuses on multi-tasks. In Table 3, we

compare HVU with the current publicly available video

recognition datasets. Note that, SOA [32] shares the same

spirit to HVUs, but to the best of our knowledge the SOA

dataset is not publicly available at this moment.

4. Holistic Appearance and Temporal Network

In this section, we study the state-of-the-art 3D Con-

vNets for video classification and then describe our
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Figure 6. HATNet: A new 2D/3D deep neural network with 2DConv, 3DConv blocks and merge and reduction (M&R) block to fuse 2D

and 3D feature maps in intermediate stages of the network. HATNet combines the appearance and temporal cues with the overall goal to

compress them into a more compact representation.

new proposed “Holistic Appearance and Temporal Net-

work” (HATNet) for multi-task and multi-label video clas-

sification.

4.1. 3DConvNets Baselines

3D ConvNets are designed to handle temporal informa-

tion coming from video clips and have more robust perfor-

mance for video classification. 3D ConvNets exploit both

spatial and temporal information in one pipeline. In this

work, we chose 3D-ResNet [41] and STCnet [7] as our 3D

CNNs baseline which have competitive results on Kinetics

and UCF101 datasets. To measure the performance on the

multi-label HVU dataset, we use mean average precision

(mAP) over all of the labels. We also report the performance

on the category of actions and other classes (objects, scenes,

events, attributes, and concepts) separately. The compar-

ison between all of the methods can be found in Table 4.

The objective function of these networks is cross entropy

loss.

4.2. MultiTask Learning 3DConvNets

Another approach which is studied in this work to tackle

the HVU dataset is to have the problem solved with multi-

task learning or joint training method. As we know that

the HVU dataset consists of high-level classes like objects,

scenes, events, attributes, and concepts, so each of these

categories can be dealt like separate tasks. In our experi-

ments, we have defined two tasks, (a) action classification

and (b) multi-label classification. So our multi-task learning

network is trained with two objective functions, that is with

single label action classification and multi-label classifica-

tion for objects, scenes, etc. The basic network is an STCnet

which has two separate Conv layer as for the last layer for

each of the tasks (see Figure 5). In this experiment, we use

ResNet18 as the backbone network for STCnet. The total

loss of the training comes as following:

Ltotal = LAction + LTagging (1)

For the tagging branch we have cross entropy loss since

it is multi-label classification and softmax loss for action

recognition branch as single label classification.

4.3. 2D/3D HATNet

Our “Holistic Appearance and Temporal Net-

work” (HATNet) is a spatio-temporal neural network,

which extracts temporal and appearance information in a

novel way to maximize engagement of the two sources of

information and also the efficiency of video recognition.

The motivation of proposing this method is deeply rooted

in a need of handling different levels of concepts in holistic

video recognition.Since we are dealing with still objects,

dynamic scenes, different attributes and also different

human activities, we need a deep neural network that is

able to focus on different levels of semantic information.

We propose a flexible method to use a 2D pre-trained model

on large image dataset like ImageNet and a 3D pre-trained

model on video datasets like Kinetics to fasten the process

of training and of course training from scratch is still an

option. The proposed HATNet is capable of learning a

hierarchy of spatio-temporal feature representation using

appearance and temporal neural modules.

Appearance Neural Module. In HATNet design, we

use 2D ConvNets with 2D Convolutions (2DConv) block

to extract static cues of individual frames in a video-clip.

Since we aim to recognize objects, scenes and attributes

alongside of actions, it is necessary to have this module in

the network which can handle these concepts better. Specif-

ically, we use 2DConv to capture the spatial structure in the

frame.

Temporal Neural Module. In HATNet design, the

3D Convolutions (3DConv) module handles temporal cues

dealing with interaction in a batch of frames. 3DConv

aims to capture the relative temporal information between

frames. It is crucial to have 3D Convolutions in the network

to learn relational motion cues for efficiently understanding

dynamic scenes and human activities. We use ResNet18

for both of 3D and 2D modules, so that they have the same

spatial kernel sizes, and thus we can combine the output of

the appearance and temporal branches at any intermediate

stages of the network.

Figure 6 shows how we combine the 2DConv and

3DConv branches and use merge and reduction blocks to

fuse feature maps in intermediate stages of HATNet. Intu-
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Model Scene Object Action Event Attribute Concept HVU Overall %

3D-ResNet 58.5 38.4 53.2 35.3 32.1 24.4 40.3

3D-STCNet 59.1 38.7 57.1 37.5 33.6 25.7 41.9

HATNet 62 43.4 58.5 41.9 34.5 27.6 44.7

Table 4. Different architecture mAP (%) performance comparison when trained on HVU dataset. The backbone ConvNet for all models is

ResNet18.

itively, combining the appearance and temporal features are

complementary for video understanding and this fusion step

aims to compress them into a more compact and robust rep-

resentation. In the experiment section, we discuss in more

details the HATNet design and how we apply merge and re-

duction modules between 2D and 3D neural modules. Sup-

ported by our extensive experiments, we show that HATNet

complements the holistic video recognition, including un-

derstanding the dynamic and static aspects of a scene and

also human action recognition. In our experiments, we have

also performed tests on HATNet based multi-task learning

similar to 3D-ConvNets based multi-task learning discussed

in Section 4.2.

5. Experiments

In this section, we explain the implementation details of

our experiments, and then show the performance of each

mentioned method on multi-label video recognition on the

HVU dataset. We also compare the transfer learning ability

between large scale datasets, HVU and Kinetics. Finally we

talk about the results of our method and the state-of-the-art

methods on three challenging human action and activities

datasets. For all of our experiments and comparison, we use

Model Action Tags(Object, Scene, etc)

3D-ResNet (Standard) 53.2 27.5

HATNet (Standard) 58.5 30.9

3D-ResNet (Multi-Task) 54.8 29.1

3D-STCNet (Multi-Task) 56.3 30.4

HATNet (Multi-Task) 60.6 31.7

Table 5. Multi-task learning mAP (%) performance comparison

of 3D-ResNet18 and HATNet, when trained on HVU: Actions

and Tags categories independently. The backbone ConvNet for

all models is ResNet18.

Pre-Training Dataset UCF101 HMDB51 Kinetics

From Scratch 65.2 33.4 65.6

Kinetics 89.8 62.1 -

HVU 91.1 64.2 66.9

Table 6. mAP (%) performance comparison of HVU and Kinetics

datasets for transfer learning generalization ability when evaluated

on different action recognition dataset. The trained model for all

of the datasets is 3D-ResNet18.

RGB frames as input to the ConvNet models. For our pro-

posed methods we either use 16 or 32 frame long video clip

as single input to the models for classification. We use the

PyTorch for ConvNet implementation and all the networks

are trained on 8 V100 NVIDIA GPUs.

5.1. 2D/3D HATNet Design

The HATNet includes two branches: first is the 3D-Conv

blocks with merging and reduction block and second branch

is 2D-Conv blocks. After each of 2D/3D blocks we merge

the feature maps from each block and perform a channel re-

duction, which is done by applying a 1×1×1 convolutions.

Given the feature maps of the first block of both 2DConv

and 3DConv, that be of size 64 channels each. We first

merge (or concatenate) these maps, resulting in 128 chan-

nels, and then apply 1× 1× 1 convolutions with 64 kernels

for channel reduction, resulting in output of 64 channels.

The merging and reduction is done in 3D and 2D branches,

and continues independently until the last merging with two

branches.

We employ 3D-ResNet and STCnet [7] with ResNet18,

50 backbone in our experiments to develop the HATNet.

The STCnet is a model of 3D networks with spatio-temporal

channel correlation modules which improves 3D networks

performance significantly. We also had to make a small

change to the 2D branch and remove pooling layer right af-

ter the first 2D Conv to maintain a similar feature map size

between the 2D and 3D branches since we use 112×112 as

input resolution size.

5.2. HVU Results

In Table 4, we report the overall performance of different

baselines, the multi-task learning baseline and also HATNet

on the HVU validation set. The reported performance is

mean average precision on all of the classes/tags. HATNet

that exploits both appearance and temporal information in

the same pipeline achieves the best performance, since rec-

ognizing objects, scenes and attributes need an appearance

module which other baselines do not have. With HATNet,

we show that combining the 3D (temporal) and 2D (appear-

ance) convolutional blocks can learn a more robust reason-

ing ability.
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Method Pre-Trained Dataset CNN Backbone UCF101 HMDB51 Kinetics

Two Stream (spatial stream) [36] Imagenet VGG-M 73 40.5 -

Conv+LSTM [10] Imagenet AlexNet 68.2 - -

TDD+FV [47] Imagenet VGG-M 90.3 63.2 -

RGB-I3D [5] Imagenet Inception v1 84.5 49.8 -

TSN [48] Imagenet Inception v2 86.4 53.7 -

LTC [43] Sport1M VGG11 82.4 48.7 -

C3D [40] Sport1M VGG11 82.3 51.6 -

TSN [48] Imagenet,Kinetics Inception v3 93.2 - 72.5

RGB-I3D [5] Imagenet,Kinetics Inception v1 95.6 74.8 72.1

RGB-I3D [5] Kinetics Inception v1 95.6 74.8 71.6

3D ResNet 101 (16 frames) [19] Kinetics ResNet101 88.9 61.7 62.8

3D ResNext 101 (16 frames) [19] Kinetics ResNext101 90.7 63.8 65.1

STC-ResNext 101 (16 frames) [7] Kinetics ResNext101 92.3 65.4 66.2

STC-ResNext 101 (64 frames) [7] Kinetics ResNext101 96.5 74.9 68.7

C3D [45] Kinetics ResNet18 89.8 62.1 65.6

ARTNet [45] Kinetics ResNet18 93.5 67.6 69.2

R(2+1)D [42] Kinetics ResNet50 96.8 74.5 72

SlowFast [11] Kinetics ResNet50 - - 75.6

HATNet (16 frames) Kinetics ResNet18 94.1 69.2 70.4

3D-ResNet18 (16 frames) HVU ResNet18 90.4 65.1 66.9

3D-ResNet18 (32 frames) HVU ResNet18 90.9 66.6 67.3

HATNet (16 frames) HVU ResNet18 95.4 72.2 71.8

HATNet (32 frames) HVU ResNet18 96.9 74.5 73.9

HATNet (16 frames) HVU ResNet50 96.5 73.4 74.6

HATNet (32 frames) HVU ResNet50 97.7 76.2 76.3

Table 7. State-of-the-art performance comparison on UCF101, HMDB51 test sets and Kinetics validation set. The results on UCF101 and

HMDB51 are average mAP over three splits, and for Kinetics is Top-1 mAP on validation set. For a fair comparison, in this table we report

the performance of methods which utilize only RGB frames as input.

5.3. MultiTask Learning on HVU

Since the HVU dataset is a multi-task classification

dataset, it is interesting to compare the performance of

different deep neural networks in the multi-task learning

paradigm as well. For this, we have used the same archi-

tecture as in the previous experiment, but with a different

last layer of convolution to observe multi-task learning per-

formance, see Figure 5. We have targeted two tasks: action

classification and Tagging (object, scene, attributes, events

and concepts). In Table 5, we have compared standard

training without multi-task learning heads versus multi-task

learning networks.

The multi-task learning methods achieve higher perfor-

mance on individual tasks as expected, in comparison to

standard networks learning for all classes as a single task.

Therefore this initial result on a real-world multi-task video

dataset motivates the investigation of more efficient multi-

task learning methods for video classification.

5.4. Transfer Learning: HVU vs Kinetics

Here, we study the ability of transfer learning with

the HVU dataset. We compare the results of pre-training

3D-ResNet18 using Kinetics versus using HVU and then

fine-tuning on UCF101, HMDB51 and Kinetics. Obvi-

ously, there is a large benefit from pre-training a deep 3D-

ConvNets and then fine-tune it on smaller datasets (i.e.

HVU, Kinetics ⇒ UCF101 and HMDB51). As it can be ob-

served in Table 6, models pre-trained on our HVU dataset

performed notably better than models pre-trained on the Ki-

netics dataset. Moreover, pre-training on HVU can improve

the results on Kinetics also, although it is marginal but still

effective.

5.5. Comparison on UCF, HMDB, Kinetics

In Table 7, we compare the HATNet performance with

the state-of-the-art methods on UCF101, HMDB51 and Ki-

netics. For our baselines and HATNet, we employ pre-

training in two separate setups: one with HVU and another

with Kinetics, and then fine-tune on the target datasets. For

UCF101 and HMDB51, we report the average accuracy

over all three splits. We have used ResNet18,50 as back-

bone model for all of our networks with 16 and 32 input-

frames. HATNet pre-trained on HVU with 32 frames in-

put achieved superior performance on all three datasets even

compared to pre-trained models on ImageNet and Kinetics
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datasets. Note that for Kinetics dataset, HATNet even with

ResNet18 as a backbone ConvNet performs almost compa-

rable to SlowFast which is trained on ResNet50.

6. Conclusion

This work presents the “Holistic Video Understanding

Dataset” (HVU), a large-scale multi-task, multi-label video

benchmark dataset with comprehensive tasks and anno-

tations. HVU contains 557k videos in total with 12M

annotations for training set, which is richly labeled over

4378 classes encompassing scenes, objects, actions, events,

attributes and concepts categorization. We believe our

HVU dataset will complement computer vision in learn-

ing generic video representation that will enable many real-

world applications. Furthermore, we present a novel net-

work architecture, HATNet, that combines as well 2D and

3D ConvNets in order to learn a robust spatio-temporal fea-

ture representation via multi-task and multi-label learning

in an end-to-end manner. We believe that our work will in-

spire new research ideas for holistic video understanding.
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