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Forward genetic screens using chemical mutagens have been successful in defining the function of thousands of genes in

eukaryotic model organisms. The main drawback of this strategy is the time-consuming identification of the molecular

lesions causative of the phenotypes of interest. With whole-genome sequencing (WGS), it is now possible to sequence

hundreds of strains, but determining which mutations are causative among thousands of polymorphisms remains chal-

lenging. We have sequenced 394 mutant strains, generated in a chemical mutagenesis screen, for essential genes on the

Drosophila X chromosome and describe strategies to reduce the number of candidate mutations from an average of ~3500

to 35 single-nucleotide variants per chromosome. By combining WGS with a rough mapping method based on large

duplications, we were able to map 274 (~70%) mutations. We show that these mutations are causative, using small 80-kb

duplications that rescue lethality. Hence, our findings demonstrate that combining roughmapping withWGS dramatically

expands the toolkit necessary for assigning function to genes.

[Supplemental material is available for this article.]

Systematically defining the function of genes remains one of the

most challenging endeavors in biological sciences. Several large

forward and reverse genetic efforts have been initiated in mice to

address this issue (Justice et al. 1999; Clark et al. 2004; Bradley et al.

2012; White et al. 2013). However, Caenorhabditis elegans and

Drosophila melanogaster are still the most coveted systems to per-

form systematic functional annotation of genes required for de-

velopment, nervous system function, organogenesis, metabolism,

etc. (Venken et al. 2011). To this end, three main approaches are

typically used: RNA interference (RNAi), transposon hopping, and

chemical mutagenesis. Each of these methods has advantages as

well as drawbacks (Mohr et al. 2010; Venken et al. 2011). Chemical

mutagens like EMS (ethyl methanesulfonate) have the major ad-

vantage of being unbiased and often permit the generation of allelic

series. However, mapping the causative mutations using traditional

techniques is tedious and time consuming (Venken et al. 2011).

The limitations of chemical mutagenesis, however, can be

partially overcome by using low concentrations of mutagen to

reduce the mutagenic load, thereby reducing the generation of

second site mutations that can modify the phenotype of interest

and confound mapping efforts. Moreover, if a method can be de-

veloped to efficiently map hundreds of mutations in a relatively

short time, a major hurdle would be overcome. Currently, muta-

tions are mapped in Drosophila using duplications (Cook et al.

2010; Venken et al. 2010), deficiencies (Parks et al. 2004; Cook et al.

2012), recombination mapping based on visible markers, single-

nucleotide variations (SNVs) (Berger et al. 2001; Hoskins et al.

2001), and/or P-elements (Zhai et al. 2003). The process typically

takes several months, depending on the availability of genetic

tools, and the methods are not easily scalable to large sets. Hence,

a majority of mutations, generated in prior forward genetic EMS-

mutagenesis screens, remain unassigned to a gene, even though

cursory phenotypic studies have been carried out. Thus, high-

throughput strategies, facilitating identification of the causative

mutations, are highly desirable.

With the advent of whole-genome sequencing (WGS) (Sarin

et al. 2008, 2010; Blumenstiel et al. 2009) and the reduction in cost

of sequencing an entire genome (less than $500 per Drosophila
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genome at 303 coverage) (Hobert 2010), it is now possible to se-

quence an entire collection of mutant strains. In principle, com-

paring mutant and wild-type genome sequences should allow for

the unambiguous identification of phenotype-causing mutations.

However, natural sequence variation between chromosomes from

different strains makes it challenging to determine causative mu-

tations. For example, sequencing of 120 wild-type flies revealed

one SNV per 25 nucleotides (Mackay et al. 2012). This corresponds

to nearly 1 million polymorphisms for the X chromosome, which

is 22.4 Mb and contains 2194 genes (http://www.ncbi.nlm.nih.

gov/mapview/stats/BuildStats.cgi?taxid=7227&build=9&ver=

4&chrm=X). Moreover, even flies that share similar genetic back-

grounds exhibit numerous SNVs (Blumenstiel et al. 2009; Keightley

et al. 2009). Hence, WGS does not provide a direct solution to the

problem of mapping causative mutations.

Thus far, several proof-of-principle studies, each applying

different approaches to successfully map a chemically induced

mutation using WGS, have been documented in the literature

(Sarin et al. 2008, 2010; Blumenstiel et al. 2009; Zhang et al. 2009;

Earley and Jones 2011; Fairfield et al. 2011; Andrews et al. 2012;

Bull et al. 2013). In general, a subset of SNVs is first removed based

on assay-specific criteria upon which some form of mapping is

performed to reduce the number of candidate mutations. For in-

stance, Leshchiner et al. (2012) designed an algorithm that identifies

SNVs in regions of homozygosity when one combines meiotic

mapping with WGS (Leshchiner et al. 2012). Here, every mutant

strain is allowed to recombine for several generations with a wild-

type strain of different genetic background, upon which a number

of individual progeny are pooled and sequenced. This method has

allowed the successful mutation identification of a handful of

mutants in flies, worms, zebrafish, and mice, but the number of

complementation groups that weremapped per report is limited. It

thus remains unclear how scalable this approach is or what its

success rate is when one attempts to apply WGS to identify their

mutant of interest (Doitsidou et al. 2010; Earley and Jones 2011;

Andrews et al. 2012; Leshchiner et al. 2012; Bull et al. 2013; Henke

et al. 2013). The drawback of combining meiotic mapping and

WGS is that (1) recombination mapping requires several genera-

tions of back-crossing and is less straightforward when recessive

lethal mutations are being mapped, and (2) in order to sequence

multiple animals per genotype, animals are typically pooled and

sequenced on one lane of the Illumina sequencer at a low coverage

(43–53), which fails to identify many SNVs that are present in

the genome. In addition, it was recently found that, apart from

slightly reducing the mutational load, outcrossing mutant strains

to wild-type strains also introduces a significant number of vari-

ants and may hence complicate mutation identification (Sarin

et al. 2010).

Alternatively, independent variants that are found in the

same gene can lead to gene identification when the mutants that

are part of the same complementation group and exhibit similar

phenotypes are sequenced (Sarin et al. 2008; Gonzalez et al. 2012).

However, none of the strategies used thus far have been scaled

effectively to map numerous causative mutations, and it remains

to be determined what the optimal filters are, what fraction of

mutations can be identified, and what fraction of multiple versus

single alleles can be mapped effectively using the current tech-

nologies. Finally, one needs to demonstrate without a doubt that

a mutation is causal among hundreds of mutations.

Here,wedescribe our large-scale effort tomap394EMS-induced

mutations.We performedWGS onmutant lines that were generated

in a forward genetic screen for essential genes on the X chromosome

(Yamamoto et al. 2014) and have developed a set of filters to reduce

the number of SNVs to a manageable level. By combining WGS

with a rough mapping strategy (to;1.4 Mb), we were able to map

274 (70%) of the mutations. The mutations were shown to be

causative by rescuing the lethality with small, molecularly defined

P[acman] duplications (Venken et al. 2009, 2010). In summary, we

show that WGS can be successfully applied to map EMS-induced

mutations on a large scale, permitting forward genetic screens to

annotate the function of numerous genes at a much greater pace

than currently available methodologies.

Results

303 sequence coverage identifies the majority of SNVs

We generated a collection of EMS-induced lethal mutations on the

Drosophila X chromosome, using low EMS concentrations (7.5–10

mM), and screened for numerous phenotypes inmosaic animals to

systematically assign phenotypes. Details of the phenotypic anal-

ysis of the screen are described elsewhere (Yamamoto et al. 2014).

We performed WGS to map the causative mutations in mutants

that displayed interesting phenotypes. About 30 virgin females

were used for genomic DNA extraction to prevent contamination

with sperm DNA, and flies were starved for 4–6 h to clear yeast

DNA.We sequenced our isogenized y w FRT19A (FRT19Aiso) at 483

coverage with Illumina HiSeq 2000 (Bentley et al. 2008) to de-

termine the optimal coverage to detect the majority of SNVs in a

Drosophila strain when compared to the reference strain in FlyBase

(y; cn bw sp) (Adams et al. 2000; St. Pierre et al. 2013). An SNV was

considered heterozygous if it was read at least three times and

could be detected in$10%of the reads (Sarin et al. 2010). If an SNV

was detected in $90% of the reads, it was considered a homozy-

gous SNV (Challis et al. 2012).

To identify the sequencing depth required to identify the

majority of SNVs, we randomly down-sampled FRT19Aiso reads to

simulate the number of homozygous SNVs that would be identi-

fied at specific sequencing depths (Fig. 1A). Beyond a sequencing

depth of 303, the number of identified SNVs did not effectively

increase with increased coverage (Fig. 1A). As shown in Figure 1B,

at an average of 303 coverage, ;95% of the X chromosome is se-

quenced at least 10 times, which represents the depth required to

reliably call heterozygous SNVs. This percentage does not include

genomic regions containing highly repetitive DNA, as it is very

difficult to properly align Illumina’s short ;100-bp reads to the

reference genome when these contain a highly repetitive sequence.

For the Drosophila X chromosome, these repetitive sequences en-

compass 10.3% of the chromosome, and the majority falls into

intergenic regions (Smit et al. 1996). About 3.3% of exons are

embedded in this repetitive DNA. Hence, we expect to be able to

call the SNVs with high confidence for;92% of the exons of the X

chromosome.

Isogenized chromosomes facilitate mutation identification

As shown in Figure 1, A and C, at a sequencing depth of 483 we

identified 59,414 SNVs in FRT19Aiso, or 2.7 SNVs per kb, when

compared to the reference X chromosome in FlyBase (Adams et al.

2000; St. Pierre et al. 2013). Among these SNVs, 1844 are non-

synonymous and 16 are nonsense mutations (Fig. 1C). However,

these SNVs are most likely benign polymorphisms, as the newly

isogenized FRT19Aiso strain was extensively phenotyped prior to

mutagenesis and was selected for its robust health and fertility in

1708 Genome Research
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homozygous flies (Yamamoto et al. 2014). Given the high genetic

diversity between these two strains, extensive filtering is required

to identify potential causative mutations in mutant lines.

Identifying candidate mutations requires multiple layers

of filtering

For mutations that cause lethality, collecting sufficient DNA to

perform WGS from hemizygous mutant animals before they die is

tedious. Therefore, we initially crossed different mutant chromo-

somes [y w (*) FRT19A] to FRT19Aiso and performed WGS on

heterozygous females carrying one mutant y w (*) FRT19A and one

nonmutagenized y w FRT19Aiso X chromosome to identify the

causativemutations. In a pilot experiment of four y w (*) FRT19A/y w

FRT19iso, we observed an average of 50,167 SNVs on the X chro-

mosome when compared to the reference genome (Fig. 2B). The

majority of these SNVs correspond to variants detected in FRT19Aiso

and are therefore not causative of the mutant phenotype. Removing

the SNVs that overlap between the heterozygous mutant/FRT19Aiso

and the homozygous FRT19Aiso chromosome (Fig. 2A, DIso) resulted

in an average of 3596 candidate SNVs (Fig. 2B). Removing the SNVs

that map to intergenic regions or that correspond to synonymous

changes reduced the number of SNVs to 177 (functional in Fig. 2A).

Finally, we filtered the remaining SNVs against benign variants

that had been identified as homozygous SNVs in wild-type flies

that were sequenced for the Drosophila Genetic Reference Panel

(DDGRP) (Fig. 2A; Mackay et al. 2012). The latter filter reduced the

SNVs from 177 to 87 SNVs per heterozygous mutant chromosome

(Fig. 2B).

Determining which of the remaining 87 SNVs is causative

can depend either on failure to complement preexistingmutations

or on duplication mapping. On the X chromosome, deficiency

mapping is not feasible for essential genes as males only carry

a single X chromosome. Hence, we first performed duplication

mapping to identify a duplication that can rescue lethality. We

obtained a set of 21 partially overlapping duplications that to-

gether span 93.5% of the X chromosome (Supplemental Fig. 1A).

The duplication set consists of 1- to 2-Mb duplications inserted on

the Y chromosome or an autosome or that are free-floating chro-

mosome fragments (Fig. 3A). Many of the selected duplications

were only mapped cytologically (Lindsley and Zimm 1992). We

therefore performed array comparative genomic hybridization

(array CGH) to determine the molecular coverage of most of these

lines andwere able to identify the coverage of 16 large duplications

(Supplemental Fig. 1B,C; Erickson and Spana 2006; Cook et al.

2010). All mutants, generated in the screen, were crossed to one-

third of the duplication set, covering;50% of the X chromosome

in the first round. In subsequent rounds, mutations that failed to

be rescued by any duplication in the previous round were crossed

to the next set. This allowed us to map the lethality of 72% of

Figure 1. A sequencing depth of 303 permits identification of 95% of SNVs. (A) Graph displaying the number of identified SNVs at different sequencing
depths for the isogenized FRT19A X chromosome (FRT19Aiso ). A 303 coverage allows identification of ;95% of the SNVs identified at 503 coverage.
(B) Percentage of the X chromosome that is covered 13–53 (black), 53–103 (dark gray), 103–203 (gray), or $203 (light gray) at various average
sequencing depths. An average sequencing depth of 303 allows reliable heterozygous SNV-calling (requiring 10 or more reads) of 95% of the X chro-
mosome. (C ) Description of SNVs identified in the X chromosome of FRT19Aiso sequenced at 483when compared to the reference sequence (y; cn bw sp)
(Adams et al. 2000).

Large-scale sequencing of EMS mutations
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mutations to a genomic region of ;1.4 Mb. Second site lethal

mutations account for;9.5% of the failures (data not shown), and

incomplete coverage of the duplication set accounts for another

7%. The remaining 11% may be due to an enrichment of lethal

mutations in the areas that are not covered by duplications. In

addition, large duplications create unhealthymale flies that do not

always generate sufficient offspring to determine rescue (Supple-

mental Fig. 1A).

Since the lethality-causing mutation of interest should be

located within the region that is covered by the rescuing duplica-

tion, wewere able to reduce the number of SNVs to on average four

to five per mutant (Fig. 2B). We next rescued the lethality with

P[acman] duplications, prioritizing based on the severity of the

mutation. The P[acman] X chromosome duplication kit consists

of a library of partially overlapping 80-kb constructs that span the

entire X chromosome (Venken et al. 2010). We were able to rescue

lethality and hence confirm the molecular identity of the genetic

aberrations underlying the four sequenced heterozygous mutant/

iso lines (CG17766 [R1294X], CG6189 [Q860X], CG11579 [Q84X],

and CG3794 [V124E]) (Table 1; Supplemental Table 2). No other

mutations were identified in the coding regions contained in the

;80 kb covered by the P[acman] clones. Hence, by combining

rough mapping with WGS, we were able to identify the genetic

lesion that underlies a mutant phenotype.

Mapping two mutations at once

As with most EMS screens, we expected to isolate from one to

numerous alleles per gene. To reduce the number of lines that had

to be sequenced, we determined which alleles fail to complement

each other when they were rescued by the same duplication and

belonged to the same phenotypic class (Fig. 3B). Thus far, this

allowed us to establish 109 complementation groups consisting of

multiple alleles (5.1 alleles per gene) and 935 mutant strains that

either contain single alleles or have not been assigned to a com-

plementation group yet. To reduce the cost, we performedWGS on

females carrying two complementing mutations mapping to dif-

ferent duplications, thereby halving the sequencing costs (Fig. 3C).

We generated and sequenced 197 transheterozygous lines, in-

cluding 258 single alleles and 136 alleles (68 3 2) of genes repre-

sented by multiple alleles.

Additional filters greatly facilitate mutation identification

Data analysis of the first 20 sequenced transheterozygous mutants

revealed that the same SNVs could be found in multiple strains,

suggesting that these alleles are present in a substantial fraction of

the genomes. These alleles should have been eliminated in the

isogenization process, but they have likely appeared in the gen-

erations after the isogenization of the chromosome. Regardless of

their origin, these variations are unlikely to be causative of le-

thality. We therefore built a database to exclude these background-

specific SNVs (DXscreen filter) (Fig. 4A). This database can be built

and modified, depending on the number of lines that are se-

quenced.We tested theDXscreen database based on recurring SNVs

found in either the first six, 12, 24, 48, or 96 transheterozygous

mutant flies (Fig. 4B). Applying this filter to the sequence files for all

352 chromosomes that were sequenced led to a very significant

decrease in SNVs when the data of the first 12 transheterozygous

genomeswere included (Fig. 4B).We therefore decided to build our

DXscreen database based on the sequences acquired with the first

12 genomes.

Apart from these recurring SNVs, a last filter was implemented.

We observed that some genes contain multiple SNVs in the first set

of 20 sequenced genomes that could not be found in the reference

genome or FRT19Aiso (Fig. 4C). For example, SNVs in CG32580

were found in 91% of the sequenced lines and carried, on average,

22 SNVs per X chromosome. Hence, SNVs that map to these genes

are very unlikely to be causative of the phenotypes, and the cor-

responding genes were excluded from our analysis as they lead to

Figure 2. Filtering process to identify candidate genes in heterozygous mutants. (A) Flowchart of filters applied to identify candidate mutations in
heterozygous mutants [y w (*) FRT19A/y w FRT19Aiso]. All identified SNVs (brown) were first filtered against SNVs identified in the isogenized FRT19A X
chromosome (DIso, orange). Subsequently, only SNVs that affect the coding sequence or splice sites were retained (functional, green). Next, the
remaining SNVs were filtered against a database, containing polymorphisms found in a homozygous state in a collection of 205 viable, wild-type strains
from the Drosophila Genetic Reference Panel (DDGRP, blue). (B, left) Impact of filters, introduced in A, on the total number of SNVs identified on the X
chromosome. (Right) In a 1-Mb interval, the number of remaining candidate mutations is ;4.

Haelterman et al.

1710 Genome Research
www.genome.org



an elevated number of false positives. In total, this filter excludes

;5% of the X chromosome genes (technical in Fig. 4A,C; Supple-

mental Table 1).

Adding these two filters to the previous sets yields an average of

29 SNVs per mutant X chromosome (Fig. 4D). These SNVs are from

now on referred to as candidate mutations. Hence, if a mutation can

bemapped to an;1.4-Mb region (the average size of the duplications)

as described above, only one to two candidate mutations should

remain on average, which is indeed what we observed (Fig. 4E).

Sequencing of two independently generated alleles per

complementation group

For two alleles of a complementation group, we compared only the

SNVs that fall into the region to which lethality wasmapped (;1.4

Mb). For most complementation groups, this led to the identifi-

cation of a single gene for which both sequenced alleles carried

a different candidate mutation. Subsequently, these candidate

mutations were shown to be causal

for lethality, as mutant flies carrying a

P[acman] duplication covering the gene

are viable, and no other coding SNVs

are present in the DNA covered by the

P[acman] construct (Fig. 3D). We were

able to identify and confirm a lethal mu-

tation in 115/136 (85%) of the sequenced

pairs (Fig. 4F). This percentage includes

strains that carry second site hits (;10%).

A strain was labeled as carrying a second

site hit if it carried a mutation in the same

gene as the other sequenced allele of the

complementation group and failed to

complement this allele, yet could not be

rescued by a P[acman] duplication (see the

underlined mutations in Table 1 and Sup-

plemental Table 2). As discussed below,

this success rate can be further improved

with better sequencing technology and

data analysis.

Sequencing single alleles

We sequenced 258 mutations in genes

that carry single alleles. Although the av-

erage number of SNVs per mutant is 29,

duplication mapping permitted us to re-

duce the number of SNVs to an average of

2.44 candidate mutations per mutant,

ranging from zero to nine (Fig. 4E). For

;50% of the mutations, only one of the

candidates was a nonsense mutation, and

P[acman] duplicationswere used to rescue

the lethality of these mutations first. We

were able to rescue lethality and confirm

the molecular identity for 159/258 of the

single alleles, an overall efficiency of 62%

(Fig. 4F; Table 1; Supplemental Table 2).

In total, we identified and validated

274 mutations in 148 genes. Of these, 20

were randomly selected and all were ver-

ified by Sanger sequencing (data not

shown). Fifty-five percent of all validated

mutations were transitions (A4G and C4T changes) (Fig. 4G).

Eight percent of the identifiedmutations impair splicing, and 44%

are nonsense mutations. Interestingly, 81 (55%) of the identified

genes are uncharacterized, and for 111 (76%) of the genes, the

described mutations represent the first lethal EMS alleles that are

publicly available (Table 1; Supplemental Table 2). Hence, the

mutations that were generated through the X chromosome screen

andweremapped throughWGSprovide a substantial expansion of

the toolkit necessary for assigning function to genes.

Discussion

Here, we report the first large-scalemapping of chemically induced

lethal mutations in a higher eukaryote. We show that WGS can be

applied on a large scale in Drosophila to identify ;70% of the

mutations, provided that SNVs are extensively filtered and rough

mapping is performed. Upon filtering out those SNVs that are in

noncoding regions and those that lead to synonymous changes,

Figure 3. Mapping and sequencing strategy. General strategy to map lethal mutations on the X
chromosome. (A) Duplication (Dp) mapping: For every mutant, lethality was mapped to an ;1.4-Mb
region by Dp mapping. (B) Complementation (Compl) testing: Mutations that map to the same du-
plication were intercrossed to identify Compl groups. (C ) Sequencing: Whole-genome sequencing
(WGS) was performed on a total of 394 transheterozygous mutations (mut 1/mut 3) whose lethalities
map to a different duplication. The 394 mutations correspond to 258 single alleles and 68 comple-
mentation groups with two alleles. (D) Validation: We used 80-kb P[acman] duplications to rescue the
lethality and confirm the mapping.
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the number of SNVs is typically reduced by about 20-fold. By re-

moving SNVs that were found as homozygous SNVs in wild-type

flies, we further reduced the SNVs by about twofold. Removing

SNVs that occur frequently reduces the SNVs by about fivefold.

Hence, by combining WGS with a rough mapping approach, we

typically identified one to three candidates. Combining these

strategies with rescue experiments using the P[acman] BAC trans-

genic collection allowed us to identify 274 out of 394 EMS-induced

mutations. We also provide compelling evidence that the muta-

tions are causative, as we rescue the lethality associated with the

mutations with relatively small, molecularly defined duplications.

Currently, a collection of strains carrying P[acman] duplications

that together span the entire chromosome is only available for the

X chromosome (Venken et al. 2010). However, the generation of

strains for the second and third chromosome is in progress (RChen

and G Mardon, pers. comm.). It is important to emphasize that

even low doses of EMS induce, on average, 3500 SNVs per mutant

chromosome (about one SNV per 35 kb) (Fig. 2B) emphasizing the

need of rescuing the phenotypes of EMS-induced mutations.

Enhancing mapping efficiency

As described above, when multiple alleles are sequenced from

a complementation group, we were able to successfully map 85%

Table 1. Subset of genes, identified through WGS and validated by 80-kb P[acman] dp rescue and/or complementation tests

FlyBase ID CG number Gene symbol
P[acman]
duplication

First EMS
allele? Mutation

Conserved in
humans? Comment

FBgn0027087 CG6335 Aats-his Dp(1;3)DC347 Yes D160V; R213W Yes
FBgn0030089 CG9113 AP-1y Dp(1;3)DC203 No L133P; Splice acceptor

(9,006,195)
Yes

FBgn0017418 CG5659 ari-1 Dp(1;3)DC342 Yes C136Y Yes
FBgn0000117 CG11579 arm Dp(1;3)DC034 No S2C; Q84X; Q100X; V144E;

D171N; Q490X
Yes

FBgn0011742 CG9901 Arp2 Dp(1;3)DC316 Yes W89X Yes
FBgn0030343 CG1886 ATP7 Dp(1;3)DC245 Yes R355X; G579R; V761D Yes
FBgn0000163 CG5055 baz Dp(1;3)DC530 No Y302X Yes Other alleles of this compl.

group could be rescued
FBgn0000173 CG18319 ben Dp(1;3)DC277 No W129X; P120L Yes
FBgn0000210 CG11491 br Dp(1;3)DC443 No C665R No
FBgn0030434 CG4400 Brms1 Dp(1;3)DC261 Yes K188X; M1I and A235T Yes
FBgn0263111 CG1522 cac Dp(1;3)DC131 Yes W623X Yes
FBgn0015615 CG9802 Cap Dp(1;3)DC316 Yes Q146X; K575X Yes
FBgn0026143 CG3658 CDC45L Dp(1;3)DC100 Yes D99V Yes Other alleles of this compl.

group could be rescued
FBgn0263237 CG3319 Cdk7 Dp(1;3)DC136 Yes E68K; G200D; W228S Yes
FBgn0000319 CG9012 Chc Dp(1;3)DC523 No G314S; Q498X Yes
FBgn0015024 CG2028 CkIa Dp(1;3)DC257 Yes L141M; G148S Yes
FBgn0000346 CG1618 comt Dp(1;3)DC266 No L257Q Yes
FBgn0029502 CG14437 COQ7 Dp(1;3)DC486 Yes W90X; W118X Yes
FBgn0025864 CG12737 Crag Dp(1;3)DC499 Yes W1306X; splice donor

(8,488,883)
Yes

FBgn0011576 CG3466 Cyp4d2 Dp(1;3)DC039 Yes K350X Yes
FBgn0025641 CG14622 DAAM Dp(1;3)DC024 Yes D360V Yes
FBgn0001624 CG1725 dlg1 Dp(1;3)DC238 No Q551X; splice donor

(11,289,826)
Yes

FBgn0000520 CG2711 dwg Dp(1;3)DC406 No C363S; H411L Yes Both alleles fail to compl.
dwg8

FBgn0029849 CG3774 Efr Dp(1;3)DC152 Yes M216K Yes
FBgn0001404 CG9659 egh Dp(1;3)DC046 No D241N; V333E No
FBgn0023512 CG3806 eIF2B-e Dp(1;3)DC034 Yes Y534X Yes
FBgn0029629 CG8636 eIF3-S4 Dp(1;3)DC046 Yes K216X Yes
FBgn0260400 CG4262 elav Dp(1;3)DC008 Yes Q122X Yes
FBgn0030092 CG8971 fh Dp(1;3)DC501 Yes S45R Yes
FBgn0000709 CG1484 flil Dp(1;3)DC379 No A715V Yes
FBgn0000711 CG2096 flw Dp(1;3)DC224 No K156X Yes
FBgn0004656 CG2252 fs(1)h Dp(1;3)DC184 No K1115X Yes Other alleles of this compl.

group could be rescued
FBgn0004598 CG18734 Fur2 Dp(1;3)DC313 Yes Splice donor (16,269,894) Yes
FBgn0010391 CG2522 Gtp-bp Dp(1;3)DC234 Yes V439D; splice acceptor Yes

(11,022,824)
FBgn0001189 CG3095 hfw Dp(1;3)DC029 Yes W348X No
FBgn0001565 CG1666 Hlc Dp(1;3)DC379 Yes G58D Yes
FBgn0004864 CG1594 hop Dp(1;3)DC238 No G175R; Q39X; D1076N Yes
FBgn0264562 CG16902 Hr4 Dp(1;3)DC035 Yes W728X; Q867X; W885X Yes All three alleles fail to compl.

dHR41

For the full list, see Supplemental Table S2. For 76% of the identified genes, no preexisting lethal EMS mutations are available. Mutation characterization
is as follows: When the mutation is not underlined or bolded, the allele can be rescued by the corresponding P[acman] duplication. When the mutation is
underlined and bolded, the allele cannot be rescued by the corresponding P[acman] duplication, and the chromosome most likely carries another lethal
mutation. When the mutation is underlined, we were unable to identify a P[acman] duplication that rescued the lethal allele. The latter two categories of
alleles were mapped by performing complementation tests with preexisting lethal alleles (see Comment).
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of the sequenced lines. Why only 85% of the mutations? First, the

Illumina sequencing technology has several shortcomings. Due to

the relatively short sequence reads (;100 bp), highly repetitive

genomic regions are difficult to align to the genome. Such mis-

aligned regions would lead to the calling of numerous false-positive

SNVs and are therefore generally excluded from analysis. As de-

termined by RepeatMasker, a program designed to detect and filter

out highly repetitive regions, 3.3% of the coding region of the

Drosophila X chromosome is excluded from analysis (Smit et al.

1996). Second, we found that a subset of the X chromosome genes

(5%) contains multiple SNVs in many WGS reactions. The 100

excluded genes (Fig. 4C; Supplemental Table 1) are not signifi-

cantly bigger than the average gene on the X chromosome (data

not shown), yet SNVs are observed too frequently to be causative.

Figure 4. Filtering strategy to identify candidate genes in transheterozygous (mut 1/mut 2) mutants. (A) The same filters were applied as in Figure 2,
and additional filters were added to remove SNVs identified repeatedly in multiple sequenced genomes (DXscreen [red]). A final filter was added to
exclude genes that appear to be difficult to sequence (technical [purple]). (B) Building a background-specific filter (∆Xscreen). The largest drop in SNVs is
seen when the DXscreen filter is built based on recurring SNVs found in 12 transheterozygous mutant genomes. (C ) Building a technique-specific filter
(technical). Approximately 95 genes appear difficult to sequence or analyze, since SNVs in these genes are called in nearly every sequenced genome.
Hence, these genes were excluded from analysis (see Supplemental Table 1). (D) Distribution of the number of SNVs per chromosome that were identified
in all analyzed sequence files. On average, 15 to 25 SNVs were identified for the two X chromosomes sequenced in the same reaction. (E) Distribution of
the number of identified candidate mutations in an ;1.4-Mb region to which lethality was mapped by duplication mapping. On average, one to two
candidate mutations were found per duplication. (F) Mapping efficiency. For complementation groups consisting of multiple alleles, the causative mu-
tation could be identified in 85%of the sequenced lines, as they could be rescued by an 80-kb P[acman] construct. For single alleles, themutation could be
validated in 62% of the sequenced lines. (G) Characteristics of the identified mutations.
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These identified variants are therefore unlikely to represent true

SNVs. Rather, we surmise that these genes represent a challenge

for the Illumina sequencing technology. Indeed, similar findings

were recently documented when human exome sequences were

analyzed, and the investigators generated similar lists of genes

and chromosome regions that should be excluded from analysis

(Fuentes Fajardo et al. 2012). These SNVs could be the result of

misalignments in low complexity regions or of duplicated genes,

paralogs, or pseudogenes. However, the underlying reason re-

mains unclear.

Third, at 303 sequencing depth, we are unable to call SNVs

for 4.7% of the X chromosome (Fig. 1B). Fourth, all functional

predictions are based on genes annotated in FlyBase version 5.12

of the Drosophila genome, and newly annotated or unannotated

genes were not screened (St. Pierre et al. 2013). Fifth, EMS induces

small insertions and deletions (indels) in ;2.4% of the mutant

chromosomes (Cooper et al. 2008). Indeed, when indels were an-

alyzed in 20/120 chromosomes for which we failed to identify

a causativemutation, two causative indelswere identified (CG8949

[16965894DelC] and CG7280 [18741343InTG]). We therefore es-

timate that 1%–3% of the total number of mutations are indels.

Finally, we did not analyze mutations that affect transcriptional

regulation. Based on the above data, the fraction of regulatory

mutations among the lethal, EMS-induced mutation fractions

appears to be very small. For the sequenced alleles that are part of

a complementation group, we reached an efficiency of 85%. If we

add the genes that were not covered at 303 coverage (4.7%), the

excluded genes (3.3% + 5.0%), and the causative indels (1%–3%),

the fraction of lethality-causing regulatory mutations that is in-

duced by EMS is very low.

Two alleles per complementation group facilitate mutation

identification

We obtained a different mapping efficiency for complementa-

tion groups consisting of single (62%) or multiple (85%) alleles.

The reasons for this discrepancy are twofold. First, comparing

two sequence files and probing for variants that affect the same

gene is straightforward and has a higher chance of success. Sec-

ond, when multiple alleles are available, it is possible to de-

termine whether a second site lethal mutation is present on the

chromosome. Indeed, we were unable to rescue ;10% of the

mutations that are part of a complementation group using a

P[acman] construct, although the lethality associated with an-

other allele of the same complementation group can be rescued

(Table 1; Supplemental Table 2). We therefore surmise that ;10%

of the single alleles contain a second site lethal mutation. As the

EMS dosage determines the number of induced mutations, it is

important to treat the animals with the lowest possible dose, as

this will facilitate mapping (i.e., reduce the number of candidate

SNVs) in addition to reducing the mutagenic load. Obviously, this

requires that the screening assay is simple as the number of animals

that need to be screened is inversely proportional to the dose of

EMS.

Mutation identification with WGS: What is feasible?

Numerous mutagenesis screens have been performed since the

introduction of Drosophila as a model organism (St. Johnston

2002). These screens have been very successful at describing gene

function, yet the majority of mutations are unassigned to a gene.

In the absence of any mapping or preexisting complementation

test, it will be highly unlikely that one can identify the causative

mutation. However, when two alleles of a single complementation

group are available and our set of filters is applied, the number of

genes containing an SNV on both X chromosomes is 1.7 6 0.8

SNVs (Supplemental Fig. 2A), permitting rapid gene identification

without the need of rough mapping. Unfortunately, for screens

that were performed in the past, the isogenized strain may no

longer be available, and several filters that we used will not be

available when only two or fewer alleles are sequenced. In addi-

tion, one may be interested in mapping only a single comple-

mentation group rather than the hundreds that were sequenced

for this project. Is it possible to useWGS to identify the underlying

genetic aberrations in these mutant strains? To address this

question, we simulated the mapping for 40 different comple-

mentation groups using filters that do not require any preexisting

knowledge (Supplemental Fig. 2B). We first eliminated all the

SNVs shared by the two chromosomes, the background-specific

SNVs (background) (Supplemental Fig. 2B). Second, we applied

the functional filter to retain only the SNVs that alter the protein

coding sequence or that affect splicing. Third, we filtered out

genes that contained three or more mutations in the same gene,

which corresponded mostly to genes excluded in the technical

filter described above. For the last filter, we calculated the genome

mappability score (GMS), which represents the probability that

a read can be aligned properly at a given position (Lee and Schatz

2012), as genes that have a low mappability score are more likely

to be misaligned. For genes on the X chromosome, the average

GMS is 96 6 13 (a score of 100 represents a perfect chance of

aligning to the correct position in the genome), and we excluded

genes with a mappability score below 85, the technical filter.

Applying this set of filters yielded an average of 3.5 6 1.5 SNVs

per X chromosome that affect the same gene in both alleles of

a complementation group (Supplemental Fig. 2), including the

gene we identified previously. It should therefore be feasible to

map mutations from preexisting mutant collections using WGS

as long as two alleles or more of a complementation group are

available.

Extrapolation of our data suggests that if a behavioral

screen is performed,WGS should be able to identify the genes of

interest if the following conditions are met: First, the screen is

performed on an isogenized chromosome; second, the screened

phenotype needs to be robust such that it can be unam-

biguously mapped to large deficiencies or duplications by

complementation tests; and third, two or more alleles have

been identified for a given complementation group. If these

conditions are met, one can generate and apply filters (Sup-

plemental Fig. 2B, right) that will lead to the identification of an

average of 3.5 candidate mutations. The mutants can then be

crossed to flies containing an 80-kb P[acman] construct that spans

the variant of interest. To allow this on the second and third chro-

mosome, a collection of strains carrying 80-kb P[acman] constructs

is generated (R Chen and G Mardon, pers. comm.). As some be-

havioral phenotypes are extremely sensitive to alterations in the

genetic background, mapping the lesion with deficiencies may be

difficult or impossible. We estimate that for this type of mutants,

the number of remaining candidate mutations upon filtering will

be about 20-fold higher than estimated in Supplemental Figure 2B.

In summary, mapping will only be possible if the phenotypes are

not easily subject to genetic variation and if multiple alleles are

available.

To facilitate data analysis of WGS, we have established a web-

based interactive tool where sequence files can be uploaded and
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filtered according to our protocol (http://www.iipl.fudan.edu.cn/

FlyVar). Here, individual filters can be selected, allowing one to, for

instance, solely filter out the SNVs that were found as a homozy-

gous variant in the DGRP collection. In addition, we assembled

a file (Bellen-FRT19Aiso-variants.vcf) containing all SNVs that

were identified in our isogenized FRT19A strain upon filteringwith

the DGRP filter (Supplemental File 1). Finally, we generated a file

(Bellen-EMS-mutations.vcf) that contains all variants, identified in

the sequencedmutants, remainingupon filtering against theDGRP

variants (Supplemental File 2). Both files can be downloaded from

http://www.iipl.fudan.edu.cn/FlyVar/sourcefordownloading.jsp.

In conclusion, given the high number of SNVs between two

Drosophila chromosomes, it is imperative to initiate a screen with

an isogenized chromosome, since more than 50,000 SNVs can be

filtered out (Fig. 2B). Next, a low dose of mutagen will facilitate the

mapping process. It reduces the generation of second site hits that

increase the total number of SNVs that potentially modify the

phenotype of interest and confound mapping efforts. Hence, an

isogenized strain that is treated with a low dose of EMS will greatly

facilitate the mapping process. Upon screening for a phenotype of

interest, the remaining mutants should be mapped to ;1 Mb. For

the X chromosome, this is most easily achieved with duplication

mapping as sets of duplications are available (Cook et al. 2010;

Venken et al. 2010). For autosomes, we recommend P-element

mapping, as it is arguably the fastest, cheapest, and least labor-

intensive technique tomap to an;1-Mb interval in our laboratory

(Zhai et al. 2003). Alternatively, SNP mapping (Berger et al. 2001;

Hoskins et al. 2001) or deficiencymapping (Parks et al. 2004; Cook

et al. 2012) can be used. Finally, the information obtained from

WGS with the appropriate filters described here can be combined

with the rough mapping data (Supplemental Fig. 3), resulting in

the identification of one to five candidatemutations. This number

is then reduced to a single gene by complementation tests with

small deficiencies on the autosomes or P[acman] duplications on

the X chromosome. This should allow for the relatively fast iden-

tification of the majority of mutations generated by forward mu-

tagenesis screens and should significantly alleviate the biggest

burden of this type of screen.

Methods

EMS mutagenesis

In short, mutagenesis was performed on 6-d-old, isogenized y w

FRT19A iso males that were starved for 6–12 h by feeding them

a sucrose solution containing a low concentration (7.5–10 mM) of

EMS for 15 h. After recovery from mutagenesis, these males were

mated en masse with Df(1)JA27/FM7c Kr > GFP virgin females for

3 d. In the F1 generation, y w mut* FRT19A/FM7c Kr>GFP (mut*

indicates the EMS-induced mutation) virgins were collected and

33,887 females were crossed with FM7c Kr>GFP males to establish

balanced stocks; 5859 lines carried lethal mutations, and the

remaining stocks were discarded.

Array CGH

Array CGH to determine the molecular coverage of large cytolog-

ically mapped duplications was performed as previously described

(Erickson and Spana 2006). In brief, male flies that carry X dupli-

cations were crossed with virgin females carrying a wild-type

X chromosome. The male progeny carrying the X chromosome

duplication was selected based on the markers present on the

duplication, and genomic DNA was extracted using the PureLink

Genomic DNA mini kit (Invitrogen). Labeling, hybridization, and

detection were performed at the Duke University Microarray

Facility using operon array-ready 70mer oligo arrays. Array CGH

data for Dp(5678) were kindly provided by Drs. Eric Spana (Duke

University) and Kevin Cook (Indiana University). Data forDp5459

were kindly provided by Dr. Ela Serpe (NICHD). We did not per-

form array CGH for Dp(761), Dp5594, Dp948, Dp929, and Dp5273

due to technical reasons.

Duplication rescue and rough mapping using large duplications

Virgin females from mutant lines were crossed to males carrying

different X chromosome duplications. Progenies were scored to

determine whether the duplication rescued the lethality of the

mutation. The duplication mapping was performed in three

rounds.

Round 1: Df(1)svr, Nspl-1 ras2 fw1/Dp(1;Y)y267g19.1/C(1)DX, y1 f1

(Dp901), Df(1)64c18, g1 sd1/Dp(1;2;Y)w+/C(1)DX, y1 w1 f1

(Dp936), Df(1)JC70/Dp(1;Y)dx + 5, y+/C(1)M5 (Dp5279), Dp(1;

Y )619, y+ BS/w1 oc9/C(1)DX, y1 f1 (Dp5678), y1 nejQ7 v1 f1/

Dp(1;Y )FF1, y+/C(1)DX, y1 w1 f1 (Dp5292), Df(1)v-N48, f*/

Dp(1;Y)y + v + #3/C(1)DX, y1 f1 (Dp3560), Dp(1;Y)BSC1, y+/w67c23

P{lacW}SmrG0060/C(1)RA, y1 (Dp5596), Dp(1;Y)W73, y31d B1, f+,

BS/C(1)DX, y1 f1/y1 bazEH171 (Dp1537), Dp1538, Df(1)R20, y1/

C(1)DX, y1 w1 f1/Dp(1;Y)y + mal + (Dp3033)

Round 2:Dp(1;f)R, y+/y1 dor8 (Dp761),Df(1)dhd81,w1118/C(1)DX,

y1 f1; Dp(1;2)4FRDup/+ (Dp5594), Df(1)ct-J4, In(1)dl-49, f1/

C(1)DX, y1 w1 f1; Dp(1;3)sn13a1/+ (Dp948), winscy/Dp(1;Y)8-28-

8A/C(1)DX, y1 w1 f1 (Dp8-28-8A) (gift from Dr. Kevin Cook,

IndianaUniversity),Df(1)v-L15, y1/C(1)DX, y1w1 f1; Dp(1;2)v+75d/+

(Dp929),C(1;Y)6, y1 w* P{white-un4}BE1305mew023/C(1)RM, y1 pn1

v1; Dp(1;f)y+ (Dp5459), w* l(1)dd4xr16/ FM7a/Dp(1;Y)y + g +

(Dp26276), Df(1)19, f1/C(1)DX, y1 w1 f1; Dp(1;4)r + l (Dp5273)

Round 3: Dp(1;Y)BSC231, y+ P{39.RS5 + 3.39}BSC27, BS/Df(1)ED7265,

w1118 P{39.RS5 + 3.39}ED7265/C(1)RA, In(1)scJ1, In(1)sc8, l(1)1Ac1,

scJ1 sc8 (Dp33250), Dp(1;Y)BSC223, y+ P{39.RS5 + 3.39}BSC16,

BS/Df(1)ED7344, w1118 P{39.RS5 + 3.39}ED7344/ C(1)RA,

In(1)scJ1, In(1)sc8, l(1)1Ac1, scJ1 sc8 (Dp33244),Dp(1;Y)BSC129,

y+ P{39.RS5 + 3.39}BSC22, BS/Df(1)ED7441, w1118 P{39.RS5 +

3.39}ED7441/C(1)RA, In(1)scJ1, In(1)sc8, l(1)1Ac1, scJ1 sc8

(Dp30450)

Rescuedmaleswere crossed to a stock that carries a compound

X chromosome (C(1)DX) or to the original mutant stock to es-

tablish stocks that stably produce rescued male flies. For Dp5459,

this was not possible due to technical reasons.

DNA preparation for Illumina sequencing

Twenty to 50 flies were collected, starved for 4–6 h, and frozen at

�80°C. Subsequently, flieswere homogenized in BufferG2 (20mM

EDTA, 100 mM NaCl, 1% Triton X-100, 500 mM guanidine-HCl,

10 mM Tris at pH 7.9). DNase-free RNase A was added (20 mg/mL),

and lysates were incubated for 30 min at 37°C. Samples were

subsequently subjected to proteinase K treatment (0.8 mg/mL) for

2 h at 50°C. Lysates were spun at 14,000 rpm for 20 min before

loading to pre-equilibratedQiagenG-20 columns. Next, a standard

DNA purification protocol was followed to obtain DNA.

DNA libraries for sequencing were generated according to

Illumina’s sample preparation protocol for genomic DNA. Briefly,

1 mg of genomic DNA was sheared into 300- to 500-bp fragments.

DNA fragments were end-repaired using polynucleotide kinase

and Klenow. The 59 ends of the DNA fragments were phosphory-

lated and a single adenine base was added to the 39 ends using

Klenow exonuclease. Illumina Y-shaped index adaptors were
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ligated to the repaired ends,

then the DNA fragments were

PCR-amplified for eight cycles

and fragments of 200–500 bp

were isolated by bead purifica-

tion. The libraries were quan-

tified using the PicoGreen

fluorescence assay and their

size distributions determined by

the Agilent 2100 Bioanalyzer.

Libraries were sequenced on

the Illumina HiSeq 2000 as

100-bp paired-end reads (or

50-bp single-end reads for

a small number of samples),

following the manufacturer’s

protocols.

Illumina data analysis

and variant detection

Repetitive sequences, present

in the D. melanogaster reference genome (dm3), were first masked

using the RepeatMasker software (Smit et al. 1996). Sequence reads

were then aligned to this masked reference genome (dm3) using

Burrows-Wheeler Aligner software (BWA version 0.5.4) (Li and

Durbin 2009) and calibrated with the Genome Analysis Toolkit

(GATK version 1.0.3299) (McKenna et al. 2010). Variants (SNVs

and small indels) were called using the Atlas2 variant anal-

ysis software (Challis et al. 2012). At least three reads were required

to support variant calling (Sarin et al. 2010). In addition to variant

calls, the application collects coverage information to estimate the

likely genotype of each variant site. For heterozygous sites, the

cutoff was set at 0.1 of the allele fraction, whereas it was set at 0.9

for homozygous sites.

Filtering

All called variants that map to the X chromosome were subjected

to several rounds of filtering to remove noncausal poly-

morphisms. First, homozygous and heterozygous SNVs that had

also been detected in FRT19Aiso were removed. Next, SNVs that

map to coding regions were extracted with an in-house perl script

that also allows identification of variants that affect either

splicing or the amino acid sequence (FlyBase Release 5.12 ge-

nome annotation downloaded from UCSC http://genome.ucsc.

edu/cgi-bin/hgTrackUi?g=flyBaseGene&db=dm3) (St. Pierre et al.

2013). Only these SNVs were retained. The remaining SNVs were

compared to a database that we built based on data from the

D.melanogasterGenetic Reference Panel (Mackay et al. 2012). SNVs

that were detected at least once in a homozygous state in this data

set were considered as not essential for viability and were included

in our database. The next filter is based on a database consisting of

variants that recur in the sequenced mutant strains. Variants that

appear at least once in a homozygous state or at least four times in

a heterozygous state were included in this database. SNVs of all se-

quenced transheterozygous mutants were filtered against this da-

tabase, which was based on the first 12 sequenced genomes. The

final filter excludes SNVs thatmap to genes that appear to be difficult

to sequence with the current Illumina sequencing technology. The

average number of SNVs per gene was calculated based on all

remaining variants detected in the 307 sequenced genomes. The av-

erage number of SNVs per gene, per genomewas calculated. Based on

the 95% confidence interval, the top 5%outliers were incorporated in

the final filter.

Sanger sequencing validation

For PCR verification of causative mutations, DNA was isolated

from 10 to 15 third instar larvae using the PureLink Genomic DNA

mini kit (Invitrogen). PCR reaction conditions were as follows:

1 mL DNA, 1 mL primer F (10 mM), 1 mL primer R (10 mM), 2 mL 103

buffer, 0.16 mL dNTPs (25 mM each), 0.08 mL Qiagen HotStarTaq

DNA polymerase (Qiagen), and 14.76mLmilliQwater. PCR cycling

conditions in PTC-225 or DNA Engine (MJ Research) were as fol-

lows: denaturation for 10 min at 94°C; 35 cycles for 30 sec at 94°C,

for 30 sec at 60°C, and for 60 at 72°C; and post-amplification ex-

tension for 10 min at 72°C. PCR was performed with mutation-

specific primers (see Table 2).

P[acman] duplication mapping

Balanced mutant females [y w (*) FRT19A/FM7c Kr>GFP] were

crossed to a transgenic male, containing an 80-kb P[acman] du-

plication that covers a single candidate mutation. Progenies were

scored to determine whether the duplication rescued the lethality

of the mutation. A duplication was considered to cover the caus-

ative mutation if viable, unbalanced, hemizygous, mutant males

could be detected in the progeny of this cross.

Data access

The sequencing data for this study have been submitted to theNCBI

Sequence Read Archive (SRA; http://www.ncbi.nlm.nih.gov/sra)

under accession number PRJNA239441. We have also generated

a database that allows web-based query and data filtering of se-

quence files (http://www.iipl.fudan.edu.cn/FlyVar). Files containing

identified variants can be found in the Supplemental Material

(Supplemental Files 1, 2) and at http://www.iipl.fudan.edu.cn/

FlyVar/sourcefordownloading.jsp. The mutant strains have been

deposited at the Bloomington Drosophila Stock Center (http://

flystocks.bio.indiana.edu/).
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Table 2. Primer pairs for PCR verification of causative mutations

CG9012 (G314S) ctgcagaacggtgttgatgt ctgttctgctttgcagttcg
CG8184 (T1107I) cgccgaatatacacccatct gccagcagggatttgatgta
CG3095 tcttttcagtggcaacatgc ttgtggtaggtgggattggt
CG3704 (E300X) tgttcctgctgcagtttgtc aagattctcgaaagcgtgga
CG9056 (R990X) cagttgccttgctgttgaaa agcgatgggcacagtatctc
CG10260 (W879X) ctgtgtcgtaatgggcttca gctcgagaagcaccagaatc
CG9045 (splice donor

mutation at 15749822)
gtcagcgagttgctcagatg ccgtcatatcgcccattaag

CG9659 (V333E) gcatttccaaggcatttgtt tggtgacccacgaatagaca
CG2845 (E595K) ttttgcacgaggatctttcc gcagcatgttctccagcata
CG3073 (Q190X) gccaacgtagacgaaccact gcactcgtgctctcaatcaa
CG9126 (V279D) ccagcgggtaccagtttcta ggaagctatctttggcaagc
CG2845 (K140X) actttggttcttgcccacag gcacatatccggcgttagtt
CG11156 (Q525X) aactggatgacgccgaatac atccatttgggtggaacttg
CG4542 (W350R) gccggagttttgaaggtaca aaaagggtgggcctgttagt
CG1424 (V216E) gcaaacagttgggtggactt tgcgcgacttcagattattg
CG9659 (D241N) gagaattcggtgcgtggtat aaatgcctgcgatttctcat
CG34401 (W946X) ttcacctcatctcgcagcta acagaaaagcgcacttggac
CG6335 (D160V) ccacagaagcctacaatttgc gatcttgttcatcgccaggt
CG3039 (V93E) ggaagaaaagcacgaagcac catggcaggaaacagtttga
CG11092 (K239X) cacgtggtccaagactcctt ggttcccgattccttgagat
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