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Abstract—We have entered the big data era, where massive data
are generated each single day. Most of these new generated big
data are images and videos. Besides the fast-increasing data
size, the image and video processing algorithms become much
more complex, which poses great demands to data storage and
computation power. Our image processing cloud project aims to
support the image processing research by leveraging the cloud
computing and big data analysis technology. In this paper, we
present our design for image processing cloud architecture, and
big data processing engine based on Hadoop. We also report the
performance scalability and analysis on the cloud using several
widely used image processing algorithms.
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I. INTRODUCTION

We have entered the so-called big data era, where massive
data are generated each single day. Big data are generated
by digital processing, social media, Internet, mobile devices,
computer systems and a variety of sensors. Most of these new
generated big data are images and videos. Big data analytics
requires scalable computing power and sophisticated statis-
tics, data mining, pattern recognition, and machine learning
capabilities [1]. It is exaggerative in image processing domain
since the image and video processing algorithms become more
and more complicated, which demands even more power in
computation. Some of these image processing requires even
real-time processing capability [2]. It is time to rethink if we
need to create a domain specific cloud for image processing
research in order to meet these challenging requirements.

Image processing research and education are fundamental
to support research in many other fields such as medical, oil
& gas, and security. It has been widely used in industries.
Researchers and students working on the domain are in great
need of a high-level programming environment that can utilize
the latest, large scale computing resources to speed up their
research, since the image data have much higher resolution and
the computation are much more sophisticated and intensive
than before. The modern computer architectures, however,
have evolved to be extraordinarily complex, and frequently
becomes a challenge rather than help for general researchers
and educators that use image processing technology, which
is even equally true for experts in this domain. In order to
utilize large scale computing resources to meet the image
processing requirements, researchers will face scalability chal-
lenges and hybrid parallel programming challenges of creating
code for modern computer hardware configurations with multi-
level parallelism, e.g., a cluster based on multicore processor
nodes. It is not only hard for researchers to implement their
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algorithms using existing programming environment; but, it
is also challenging to them to reuse and share the existing
research results since these results are largely dependent on
OS, libraries, and underlying architectures.

In order to fill the gap between complicated modern
architectures and emerging image processing algorithms for
big data, our image processing cloud project aims to produce
a high-performance and high-productivity image processing re-
search environment integrated within a cloud computing infras-
tructure. The cloud will not only provide sufficient storage and
computation power to image processing researchers, but also it
provides a shared and open environment to share knowledge,
research algorithms, and education materials. By leveraging
the cloud computing and big data processing technology, our
design is to hide the software and hardware complexity from
researchers, so that they can focus on designing innovative
image processing algorithms, instead of taking care of under-
lining software and hardware details.

In this paper, we discuss the related work in Section II,
and then introduce our image processing cloud architectures
in Section III. Further, we describe our experimental image
processing applications and their performance analysis in Sec-
tion IV and Section V, respectively. Last, we will discuss the
future work and conclusion in Section VI.

II. RELATED WORK

There are several related work in processing images in
parallel using Hadoop platform. The biggest difference be-
tween our work and others is that our solution provides a
PaaS and supports the multiple languages in implementing
image processing algorithms. HIPI [3] is one of them that
is similar to our work. In contrast to our work, HIPI [3]
creates an interface for combining multiple image files into
a single large file in order to overcome the limitation of
handling large number of small image files in Hadoop. The
input type used in HIPI is referred to as a HipilmageBundle
(HIB). A HIB is a set of images combined into one large file
along with some metadata describing the layout of the images.
HIB is similar with Hadoop sequence file input format, but
it is more customizable and mutable [4]. However, users are
required to modify the image storage using HIB, which creates
additional overhead in programming. In our work, we make the
image storage transparent to users, and there is no additional
programming overhead for users to handle image storage.

Hadoop Mapreduce for Remote Sensing Image Analysis
[5] aims to find an efficient programming method for cus-
tomized processing within the Hadoop MapReduce framework.
It also uses the whole image as InputFormat for Hadoop, which
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is similar with our solution. However, the work only supports
Java so that all mapper codes need to be written in Java.
Compared with our solution, he performance is not as good as
the ours since we use native C++ implementation for OpenCV.

Parallel Image Database Processing with MapReduce and
Performance Evaluation in Pseudo Distributed Mode [6] per-
forms parallel distributed processing of a video database by
using the computational resource in a cloud environment. It
uses video database to store multiple sequential video frames,
and uses Ruby as programming language for Mapper, thus runs
on Hadoop with streaming mode same as ours. As a result, our
platform is designed to be more flexible and supports multiple
languages.

Large-scale Image Processing Using MapReduce [7] try to
explore the feasibility of using MapReduce model for doing
large scale image processing. It packaged large number of
image files into several hundreds of Key-Value collections, and
split one huge image into smaller pieces. It uses Java Native
Interface(JNI) in Mapper to call OpenCV C++ algorithm.
Same with the above work, this work only supports a single
programming language with additional overhead from JNI to
Mapper.

III. PVAMU CLOUD ARCHITECTURE

The PVAMU (Prairie View A&M University) Cloud Com-
puting infrastructure is built on top of several HPC clusters
together. The cloud consists of a virtual machine farm based on
Apache CloudStack [8] to provide Infrastructure as a Service
(TaaS), and a Hadoop-based high-performance cluster to pvoide
Platform as a Service (PaaS) to store and process big data
in parallel. Although we describe the entire system in the
section, the experiments conducted in the paper were on top
of the Hadoop cluster. We integrated the widely-used image
processing library OpenCV [9] on the Hadoop cluster to build
the image processing cloud. We describe these two major
components in the following sections.

Figure 1 shows the Cloud Computing infrastructure devel-
oping at PVAMU. The infrastructure consists of three major
components: 1) A Cloud center with a large number of Virtual
Machines (VM) farm as the cloud computing service portal
to all users; 2) A bare-metal high performance cluster to
support High Performance Computing (HPC) tasks and big
data processing tasks; 3) a shared data storage and archive
system to support data access and storage. In this system,
the Cloud infrastructure functions as the service provider to
meet a variety of users requirements in their research and
education. For HPC, the Cloud submits these tasks to the HPC
cluster to fulfill their computing power demands. For these
high throughput applications, the Cloud will deliver suitable
virtual machines from the VM farm to meet their requirements.
The Cloud orchestrates all functionalities of the entire system;
provide elastic computing capability to effectively share the
resources; delivers the infrastructure/platform services to meet
users research requirements; supports the big data storage and
processing; and builds a bridge between end-users and the
complicated modern computer architectures.

A. PVAMU Virtual Machine Farm Cloud

We create a virtual machine farm based on Apache Cloud-
Stack on top of an 56 nodes dual-core IBM cluster, and
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Figure 1. PVAMU Cloud and HPC Cluster for Big Data Processing

a new small Dell cluster with three 32 CPU cores servers,
and one GPGPU server with 48 CPU cores and 1 NVIDIA
Fermi GPGPU. Apache CloudStack is an open source software
package that can deploy and manage large number of Virtual
Machines to provide highly available, and highly scalable IaaS
cloud computing platform. The goals of the PVAMU cloud
are to provide IaaS and PaaS with customized services, to
share resources, to facilitate teaching, and to allow faculty and
students in different groups/institutions to share their research
results and enable deeper collaborations. The CloudStack is
used to manage users, to handle users requests by creating
virtual machines, and allocate resources.

B. Image Processing Cloud

The image processing cloud is built by integrating the
image processing library OpenCV with Hadoop platform to
deliver PaaS specifically for image processing. The following
describes the two major components.

1) Hadoop Cluster: We installed the Hadoop [10] big data
processing framework on the bare-metal HPC cluster within
PVAMU Cloud to provide PaaS. All experiments presented in
the paper are conducted on the Hadoop cluster. The Hadoop
cluster consists of one 8-node HP cluster with 16-core and
128GB memory each, and a 24-node IBM GPGPU cluster
with 16-core and one Nvidia GPU in each node, and con-
nected with InfiniBand interconnection. We have installed the
Intel Hadoop Distribution [11] based on Apache Hadoop [10]
software stack, which is a framework that is designed to store
and process big data on large-scale distributed systems with
simplified parallel programming models. It consists of Hadoop
common utilities, Hadoop Distributed File System (HDFS) for
high-throughput and fault tolerance data access, Hadoop Yarn
for job scheduling and resource management, and Hadoop
MapReduce [12] for parallel processing engine based on a
simple parallel pattern. Besides its capabilities of storing and
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processing big data, the built-in fault tolerance feature is also
a key to complete big data analytics tasks successfully. The
Hadoop cluster is used in our project to handle image and
video storage, accessing and processing.

2) OpenCV Image Processing Library: We selected the
widely-used OpenCV (Computer Vision) [9] library as the base
image processing library integrated with our image processing
cloud. OpenCV is an open source library written in C++, and
it also has Java and Python interfaces supporting Windows,
Linux, Mac OS, iOS and Android. It is optimized and par-
allelized for multicores and accelerators using OpenCL. We
installed the library on the Hadoop cluster to enable image
processing capability with MapReduce parallel programming
model.

By combining the above two components, we are able to
implement a scalable image processing cloud to deliver the
capabilities as services to support researchers/faculty/students
to conduct their research in image processing domain. In the
next section, we present our design and implement of several
image processing algorithms in the cloud, and discuss their
performance.

IV. DESIGN AND IMPLEMENTATION IMAGE PROCESSING
CLOUD

The goal of our image processing cloud is to deliever PaaS
to image processing researchers and developers. It should be
able to store large amout of images and videos, as well as be
able to process them and meet the performance requirements.
Users should be able to work their image processing algorithms
using their familiar programming langugaes with very limited
knowledge in parallelism. It is a challenge to meet these
requirements since image processing researchers use different
programming languages in designing and implementing algo-
rithms. The most popular-used programming models include
Matlab, Python, C/C++, and Java. In order to meet the multi-
language requirement, we cannot rely on native Hadoop Java
programming model.

Hadoop platform provides distributed file system (HDFS)
that supports large amount of data storage and access. Hadoop
MapReduce programming model supports parallel processing
data based on the widely-used map-and-reduce parallel ex-
ecution pattern. In order to support the multiple language
requirements in image processing domain, we choose Hadoop
streaming programming model by revising standard input and
output, and stream data to applications written with different
programming languages. Moreover, the streaming model is
also easy to debug in a standalone model, which is critical
to test and evaluate an algorithm before going to large-scale.
To achieve the best performance, we choose C++ in our
underlining library implementation to keep the optimizations
as much as possible.

The image processing application execution environment
with MapReduce on Hadoop is shown in Figure 2. On the
left side, a large number of images are stored in HDFS,
which are distributed across the cluster with 128MB as one
block. These images are split by Hadoop MapReduce engine
with customized InputFormat, and are distributed to large
number of mappers that execute image processing applications
to the assigned images. The results may be merged by the
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Figure 2. Image Processing Execution Environment with MapReduce

reducer that exports the results to customized OutputFormat
class to finally save the outputs. Since large amount raw data
are transferred among split, mappers and reducers, it is very
important to keep data locality to minimize network traffic. All
mappers are launched on the node where the processed images
are physically stored.

A. InputFormat

The main challenges of performing image processing on
Hadoop are how to split data split and how to implement
customized mappers. In Hadoop streaming mode, the input
data need to be processed by InputFormat class at first, and
then pass to each mapper through the standard input (Stdin).
The InputFormat class in Hadoop is used to handle input data
for Map/reduce job, which need to be customized for different
data formats. The InputFormat class describes the input data
format, and define how to split the input data into InputSplits
buffer, which will be sent to each mapper. In Hadoop, another
class RecordReader is called by mapper to read data from each
InputSplit.

Depending on the image or video size, we implemented
two different InputFormat classes to handle them. For still
image processing with many individual image files, the In-
putFormat class is straightforward. It simply distributes these
images to mappers by each image file since they are smaller
than block size of Hadoop system. For the mass individual
image files, ImageFileInputFormat extends FileInputFormat,
which return false in isSplitable and create ImageFileRecor-
dReader instance in getRecordReader. ImageFileRecordReader
will creates Key/Value pair for mapper and read whole content
of input image file actually.

For the big video file, it needs to be split and to be sent
to the mapper for processing. There are different video file
containers; in this project only MPEG transport stream file
is considered to simplify split implementation. TSFileIlnput-
Format is used for parsing the MPEG transport stream, and
for generating split information including offset in video file
and the hostname which will process the related split, and
create TSFileRecordReader in the getRecordReader function.
TSFileRecordReader will create Key/Value pair for mapper
and read the section data from input video file, then pass it to
mapper for processing.
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B. Mapper and Reducer

Most of work for programming in Hadoop is to divide
algorithms into Mapper and Reducer, and embed and imple-
ment them in them respectively. In Hadoop streaming mode,
the main difference with other modes is the I/O processing in
Mapper and Reducer. Both Mapper and Reducer could only
get Key/Value from Stdin and output results through Stdout.
A common I/O class named CommonFilelO was designed to
handle different type data sources, including normal local files,
Stdin/Stdout and HDFS file on Hadoop. The frequently used
file system interfaces were provided, such as open, read/write
and close and more. We implement our own Mapper and Re-
ducer as independent image processing applications with input
and output handled by Stdin and Stdout. By using Hadoop
streaming model, we are able to launch these image processing
applications as large number of Mappers or Reducers that
execute in parallel.

C. OutputFormat

OutputFormat class in Hadoop describes the output-
specification for a Map-Reduce job. It sets the output file
name and path and creates the RecordWriter instance, which is
passed to Map/Reduce framework and writes output results to
file. For the image processing with small files, OutputFormat is
unnecessary and the intermediate results could to be stored on
HDEFES directly. But for big video file, different applications
will output different results. We have implemented several
OutputFormat templates for reducer jobs. For example, to get
the Histogram of whole file, it needs to accumulate each result
of Reducer in OutputFormat; while for the template matching
application, it needs to save each matched result and give a
summarization in OutputFormat.

D. Results

As a result of our implementation, the image processing
cloud is able to handle image processing algorithms written
with multiple lanuages, including Matlab, Python, C/C++,
and Java, which is the major contribution comparing with
other related work. Moreover, the cloud provides scalable
performance by keeping the native C++ implementation of
OpenCV library internally, and takes the data locality into
consideration in the task scheduling strategy. The next section
discusses the performance experiments using three typical
image processing algorithms.

V. EXPERIMENTS

We choose three widely-used image processing algorithms
including Discrete Fourier Transform (DFT) [13], face de-
tection, and template matching to conduct performance and
programming experiments on our image processing cloud. Our
images are downloaded from Internet public photos, including
Google images, National geographic photo gallery, and Flickr
public photos. The Fourier Transform algorithm is one of
fundamental and most-widely used image processing algorithm
that transforms data from spatial domain to frequency domain
to facilitate more advanced image processing algorithms. The
2D DFT are frequently applied to digital image files in many
image processing algorithms. Face detection on image and
video is very useful in many areas, such as surveillance and
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entertainment equipment. The feature-based cascade classifiers
provide a practical face detection algorithm; it is popular used
but still need much computation for multi-images or video file.
Template Matching could find the location of small template
image in big image files, which is one core function in machine
vision. These three algorithms are implemented on top of
OpenCV, and apply them to three groups of images as test
pattern. These three groups of images are separated to the small
size group with images less than 1MB, the middle size group
of images from 1M to SMB, and the big size group of images
from 5MB to 30MB. The experiments are conducted on our
small HPC cluster with 8 HP nodes, 16 cores and 128GB
memory each. In this cluster one is mater node for jobtracker
and the other seven are worker nodes for computation, so we
have total 112 cores. Table I shows the face detection program
execution time for both sequential and Hadoop MapReduce
parallel execution.

TABLE 1. FACE DETECTION PROGRAM EXECUTION TIME FOR THREE
GROUPS OF IMAGES

Small Size Im- | Middle Size Im- | Large Size
ages with 5425 | ages with 2539 | Images with 400
Files/594MB Files/3621MB Files/4436MB

Sequential 1386.02s 4511.35s 5716.31s

codes

Parallel on 228s 140s 97s

Hadoop

Figure 3 shows the face detection speedup of the three
groups of images comparing with sequential execution. With
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8 nodes and 16 cores each, the experiments show a maximum
59 times speedup for big images. Apparently, the image size
determines the speedup due to the I/O processing time. In
Hadoop big data framework, it is designed to achieve better
performance with big files and computation intensive pro-
grams. The max number of simultaneously running mappers
could reach up to max CPU cores in the cluster. The small
images need to be aggregated into big files to improve the
performance. Figure 4 shows the execution time of different
algorithms applying on big size image files. Figure 5 shows
the speed up factors of different algorithms applying on big
size image files. The face detection need more time to execute
on single process, but could get best speed up on Hadoop
platform.

The test program could be divided into three main parts:
input and output, decode and encode, image processing al-
gorithm. The total execution time of sequential codes is the
sum of all images processing time. We can use the following
formula to represent it.

Ts = (Ti+Td+Ta) x N (1)

Here, Ti is the image reading and writing time; 7d is the
image decoding and encoding time and 7a is the algorithm
executing time.

While running on Hadoop with only mapper, the total
execution time is composed of:

Th=Tp+(Tm+Tr)x (N+C)+Tc 2)

Here, Tp is the job preparing/setup time for Hadoop job; Tm
is the average mapper executing time, which is nearly equal
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to (Ti + Td + Ta); Tr is the average mapper report time and
Tc is the job cleanup time. In our execution environment, the
Tp is about 8s and Tc¢ is about 3s while running job as shown
in Figure 6.

The profiling results of small size image pattern and
big size image pattern are shown in Figure 7 and Figure 8.
For the small size image pattern, assuming the average Tr
is 2.5s, and get the average execution time of one image
from sequential code execution result, which is 0.2555s, the
ideal speed up factor on Hadoop system could be estimated by:

1386.02 1386.02

S = = =94
8+ (0.2555+2.5) x [3F] +3 1472

For the big size image size pattern, assuming the average Tr
is 2.5s, and get the average execution time of one image from
sequential code execution result, which is 14.3s, the ideal
speed up factor could be estimated by:

5716.31 571631
8+ (14.3+2.5) x [$99] +3 8765

Considering the overhead between mappers, the estimated
results is close to our experimental results in the big size of
images case, which is the ideal speed-up by considering the
data movement, task startup and cleanup overheads. In order
to get better performance on Hadoop, we need to reduce these
overheads. One possible solution is to further improve the split
function to determine a good number of mappers based on the
number of available nodes, and reduce overloads of mappers
startup and cleanup. The improvement will be explored in the
future work.

The Hadoop system has good robustness and scalability.
Comparing with the traditional MPI program, MapReduce pro-
grams are able to complete jobs even one or more computing
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nodes in a cluster are down. New nodes could be added into
the Hadoop system at runtime to meet dynamic requirements,
thus get better performance in most cases and provide elastic
computing as needed.

VI. FUTURE WORK AND CONCLUSION

At the first stage of the project, our main goal is to explore
the feasibility and performance of using Hadoop system to
process large number of images, big size of images or videos.
From our experimental results, Hadoop is able to handle these
problems with scalable performance. However, there are also
some issues need to be considered and addressed in future
work.

The first issue is the problem of data distribution. As
stated in the previous section, Hadoop is good at handling
big data. The speedup is not apparent while trying to process
many small images scattered across multiple nodes. Even the
SequenceFile could not solve this problem efficiently. Our next
plan is trying to store image files in HBase [14]. HBase could
handle random, realtime reading/writing access of big data.
We expect to improve performance and increase the flexibility
with new solution on HBase.

The second issue is that Hadoop is not good at handle low-
latency requirement. Apache Spark [15] is a fast and general-
purpose cluster computing system. Because of the in-memory
nature [16] of most Spark computations, Spark programs can
better utilize the cluster resources such as CPU, network
bandwidth, or memory. It can also handle pipeline, which is
frequently used in image processing. In next step, we will try
to move to Spark platform, and evaluate the performance of
the experimental groups on Spark platform.

Another main goal of this project is to make it easy
for users processing image using cloud computing platform.
Most of users are not familiar with cloud platform, such
as algorithm experts or even common users; they all have
requirements of big data processing. In the next stage, a
Domain Specific Language (DSL) for image processing and
friendly user interface will be provided. Users could utilize
the powerful platform with only limited knowledge on Cloud
and use DSL to simplify their programming efforts.
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