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Abstract—We present a method combining affinity prediction with region agglomeration, which improves significantly upon the state of

the art of neuron segmentation from electron microscopy (EM) in accuracy and scalability. Our method consists of a 3D U-NET, trained

to predict affinities between voxels, followed by iterative region agglomeration. We train using a structured loss based on MALIS,

encouraging topologically correct segmentations obtained from affinity thresholding. Our extension consists of two parts: First, we

present a quasi-linear method to compute the loss gradient, improving over the original quadratic algorithm. Second, we compute the

gradient in two separate passes to avoid spurious gradient contributions in early training stages. Our predictions are accurate enough

that simple learning-free percentile-based agglomeration outperforms more involved methods used earlier on inferior predictions. We

present results on three diverse EM datasets, achieving relative improvements over previous results of 27, 15, and 250 percent. Our

findings suggest that a single method can be applied to both nearly isotropic block-face EM data and anisotropic serial sectioned EM

data. The runtime of our method scales linearly with the size of the volume and achieves a throughput of � 2.6 seconds per megavoxel,

qualifying our method for the processing of very large datasets.

Index Terms—Connectomics, electron microscopy, deep learning, structured loss, segmentation, affinity prediction, agglomeration
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1 INTRODUCTION

PRECISE reconstruction of neural connectivity is of great
importance to understand the function of biological

nervous systems. 3D electron microscopy (EM) is the only
available imaging method with the resolution necessary to
visualize and reconstruct dense neural morphology without
ambiguity. At this resolution, however, even moderately
small neural circuits yield image volumes that are too large
for manual reconstruction. Therefore, automated methods
for neuron tracing are needed to aid human analysis.

We present a method combining a structured loss for
deep learning based instance separation with subsequent
region agglomeration for neuron segmentation in 3D elec-
tron microscopy, which improves significantly upon state
of the art in terms of accuracy and scalability. For an over-
view, see Fig. 1, top row. The main components of our
method are: (1) Prediction of 3D affinity graphs using a 3D
U-NET architecture [1], (2) a structured loss based on MALIS

[2] to train the U-NET to minimize topological errors, and (3)
an efficient OðnÞ agglomeration scheme based on quantiles
of predicted affinities.

The choice of using a 3D U-NET architecture to predict
voxel affinities is motivated by two considerations: First,
U-NETs have already shown superior performance on the
segmentation of 2D [3] and 3D [1] biomedical image data.
One of their favourable properties is the multi-scale archi-
tecture which enables computational and statistical effi-
ciency. Second, U-NETs efficiently predict large regions.
This is of particular interest in combination with training on
the MALIS structured loss, for which we need affinity pre-
dictions in a region.

We train our 3D U-NET to predict affinities using an exten-
sion of theMALIS loss function [2]. Like the original MALIS loss,
we minimize a topological error on hypothetical thresholding
and connected component analysis on the predicted affinities.
We extended the original formulation to derive the gradient
with respect to all predicted affinities (as opposed to sparsely
sampling them), leading to denser and faster gradient compu-
tation. Furthermore, we compute theMALIS loss in two passes:
In the positive pass, we constrain all predicted affinities bet-
ween and outside of ground-truth regions to be 0, and in the
negative pass, we constrain affinities inside regions to be 1
which avoids spurious gradients in early training stages.

Although the training is performed assuming subse-
quent thresholding, we found iterative agglomeration of
fragments (or “supervoxels”) to be more robust to small
errors in the affinity predictions. To this end, we extract
fragments running a watershed algorithm on the predicted
affinities. The fragments are then represented in a region
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adjacency graph (RAG), where edges are scored to reflect
the predicted affinities between adjacent fragments: edges
with small scores will be merged before edges with high
scores. We discretize edge scores into k evenly distributed
bins, which allows us to use a bucket priority queue for sort-
ing. This way, the agglomeration can be carried out with a
worst-case linear runtime.

The resulting method (prediction of affinities, watershed,
and agglomeration) scales favourably with OðnÞ in the size n
of the volume, a crucial property for neuron segmentation
from EM volumes, where volumes easily reach several hun-
dreds of terabytes. This is a major advantage over current
state-of-the-art methods that all follow a similar pattern. First,
voxel-wise predictions are made using a deep neural net-
work. Subsequently, fragments are obtained from these pre-
dictions which are thenmerged using either greedy (CELIS [4],
GALA [5]) or globally optimal objectives (MULTICUT [6] and
lifted MULTICUT [7], [8]). All these methods depend heavily
on the quality of the initial fragments, which in turn depend
on the quality of the boundary prediction. Despite this strong
coupling, the boundary classifier is mostly trained unaware
of the algorithm used to subsequently extract fragments. A
noteworthy exception is a recent work [9] where a boundary
classifier is trained using a structured loss to fill objects with
seeded watershed regions. This work demonstrates the use-
fulness of structured boundary prediction, similar in spirit to
the method described here. Nevertheless, the majority of cur-
rent efforts focuses on the merging of fragments: Both CELIS

and GALA train a classifier to predict scores for hierarchical

agglomeration which increases the computational complexity
of agglomeration during inference. Similarly, the MULTICUT

variants train a classifier to predict the connectivity of frag-
ments that are then clustered by solving a computationally
expensive combinatorial optimization problem. Our pro-
posed fragment agglomeration method drastically reduces
the computation complexity compared to previous merge
methods and does not require a separate training step.

We demonstrate the efficacy of our method on three
diverse datasets of EM volumes, imaged by three different
3D electron microscopy techniques: CREMI (ssTEM, Drosoph-
ila), FIB-25 (FIBSEM, Drosophila), and SEGEM (SBEM, mouse
cortex). Our method significantly improves over the current
state of the art in each of these datasets, outperforming in
particular computationally more expensive methods with-
out favorable worst-case runtime guarantees.

We made the source code for training1 and agglomera-
tion2 publicly available, together with usage example scripts
to reproduce our CREMI results.3

2 METHOD

2.1 Deep Multi-Scale Convolutional Network for
Predicting 3D Voxel Affinities

We use a 3D U-NET architecture [1] to predict voxel affinities
on 3D volumes. We use the same architecture for all

Fig. 1. Overview of our method (top row). Using a 3D U-NET (a), trained with the proposed constrained MALIS loss, we directly predict inter-voxel affini-
ties from volumes of raw data. Affinities provide advantages especially in the case of low-resolution data (b). In the example shown here, the voxels
cannot be labeled correctly as foreground/background: If A were labeled as foreground, it would necessarily merge with the regions in the previous
and next section. If it were labeled as background, it would introduce a split. The labeling of affinities on edges allows B and C to separate A from
adjacent sections, while maintaining connectivity inside the region. From the predicted affinities, we obtain an over-segmentation that is then merged
into the final segmentation using a percentile-based agglomeration algorithm (c).

1. https://github.com/naibaf7/caffe
2. https://github.com/funkey/waterz
3. http://cremi.org/static/data/20170312_mala_v2.tar.gz
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investigated datasets which we illustrate in Fig. 1a. In par-
ticular, our 3D U-NET consists of four levels of different res-
olutions. In each level, we perform at least one convolution
pass (shown as blue arrows in Fig. 1a) consisting of two con-
volutions (kernel size 3� 3� 3) followed by rectified linear
units. Between the levels, we perform max pooling on vari-
able kernel sizes depending on the dataset resolution for the
downsampling pass (yellow arrows), as well as transposed
convolution of the same size for upsampling (brown
arrows). The results of the upsampling pass are further
concatenated with copies of the feature maps of the same
level in the downsampling pass (red arrows), cropped to
account for context loss in the lower levels. Details of the
individual passes are shown in Fig. 6. A more detailed
description of the U-NET architectures for each of the inves-
tigated datasets can be found in Fig. 5.

We chose to predict voxel affinities on edges between vox-
els instead of labeling voxels as foreground/background to
allow our method to handle low spatial resolutions. As we
illustrate in Fig. 1b, a low z resolution (common for serial sec-
tion EM) renders a foreground/background labeling of vox-
els impossible. Affinities, on the other hand, effectively
increase the expressiveness of our model and allow to obtain
a correct segmentation. Furthermore, affinities easily gener-
alize to arbitrary neighborhoods and might thus allow the
prediction of longer range connectivity.

2.2 Training Using Constrained Malis

We train our network using an extension of the MALIS

loss [2]. This loss, that we term constrained MALIS, is
designed to minimize topological errors in a segmentation
obtained by thresholding and connected component analy-
sis. Although thresholding alone will unlikely produce
accurate results, it serves as a valuable proxy for training: If
the loss can be minimized for thresholding, it will in partic-
ular be minimized for agglomeration. To this end, in each
training iteration, a complete affinity prediction of a 3D
region is considered. Between every pair of voxels, we
determine the maximin affinity edge, i.e., the highest mini-
mal edge over all paths connecting the pair. This edge is
crucial as it determines the threshold under which the two
voxels in question will be merged. Naturally, for voxels that
are supposed to belong to the same region, we want the
maximin edge affinity to be as high as possible, and for vox-
els of different regions as low as possible.

Our extension consists of two parts: First, we improve the
computational complexity of the MALIS loss by presenting
an Oðn log ðnÞ þ knÞ method for the computation of the gra-
dient, where n is the size of the volume and k the number of
ground-truth objects. We thus improve over the previous
method that had a complexity of Oðn2Þ. Second, we com-
pute the gradient in two separate passes, once for affinities
inside ground-truth objects (positive pass), and once for
affinities between and outside of ground-truth objects.

2.2.1 The MALIS Loss

Let G ¼ ðV;E; aÞ be an affinity graph on voxels V with
edges E � V 2 and affinities a : E 7! ½0; 1�. A maximin edge
between two voxels u and v is an edge mmðu; vÞ 2 E
with lowest affinity on the overall highest affinity path P �

u;v

connecting u and v, i.e.,

P �
u;v ¼ argmax

P2Pu;v

min
e2P

aðeÞ mmðu; vÞ ¼ argmin
e2P �

u;v

aðeÞ; (1)

where Pu;v denotes the set of all paths between u and v. If
we imagine a simple thresholding on the affinity graph,
such that edges with affinities below a threshold u are
removed from G, then the affinity of the maximin edge
mmðu; vÞ is equal to the highest threshold under which
nodes u and v would still be part of the same connected
component. Acknowledging the importance of maximin
edges, the MALIS loss favors high maximin affinities between
voxels that belong to the same ground-truth segment, and
low maximin affinities between voxels that belong to differ-
ent ground-truth segments. We assume that a ground-truth
segmentation is given as a labelling s : V 7! f0; . . . ; kg such
that each segment has a unique label in f1; . . . ; kg and back-
ground is marked with 0. Let F � V denote all foreground
voxels F ¼ fv 2 V j sðvÞ 6¼ 0g and dðu; vÞ indicate whether u
and v belong to the same ground-truth segment:

dðu; vÞ ¼
1 if u; v 2 F and sðuÞ ¼ sðvÞ;
0 otherwise:

�

(2)

The MALIS loss Lðs; aÞ is the sum of affinity losses over the
maximin edges of every pair of voxels that do not belong to
the background:

Lðs; aÞ ¼
X

u;v2F

l dðu; vÞ; aðmmðu; vÞÞð Þ: (3)

The affinity loss can be any continuous and differentiable
function, we chose lðx; yÞ ¼ ðx� yÞ2 for all experiments in
this paper.

2.2.2 Quasilinear Loss Computation

Considering that we have Oðn2Þ; n ¼ jV j, pairs of voxels,
but—in the case of grid graphs considered here—only OðnÞ
edges, it follows that maximin edges are shared between
voxel pairs. This observation generalizes to arbitrary
graphs. In particular, the union of all maximin edges forms
a maximal spanning tree (MST),

mmðu; vÞ j ðu; vÞ 2 V 2
� �

¼ MSTðGÞ; (4)

i.e., there are always only n� 1maximin edges in a graph.
That the previous equality holds can easily be proven by

contradiction: Assume that for a pair ðu; vÞ, mmðu; vÞ =2
MSTðGÞ. Let Pþ

u;v � MSTðGÞ denote the path connecting u

and v on the MST, and let mtpðu; vÞ denote the edge with
minimal affinity on Pþ

u;v:

mtpðu; vÞ ¼ argmin
e2Pþ

u;v

aðeÞ: (5)

Following our assumption, Pþ
u;v does not contain mmðu; vÞ.

By definition Eq. (1), the following inequalities hold:

aðmtpðu; vÞÞ 	 aðmmðu; vÞÞ 	 aðeÞ 8e 2 P �
u;v: (6)

We can now remove mtpðu; vÞ from the MST to obtain two
disconnected sub-trees separating u from v. Since P �

u;v con-
nects u and v, there exists an edge e� 2 P �

u;v that will recon-
nect the two sub-trees. However, aðmtpðu; vÞÞ 	 aðe�Þ.
If strict inequality holds, this will create a tree with a
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larger sum of affinities than the MST, thus contradicting
our assumptions. If equality holds and aðmtpðu; vÞÞ ¼
aðmmðu; vÞÞ ¼ aðe�Þ, then there are more than one possible
MSTs and hence mmðu; vÞ is contained in one of them.

Consequently, we are able to identify the maximin edge
and compute its loss for each voxel pair by growing an MST
on G. We use Kruskal’s algorithm [10] to grow an MST,
which consists of two steps: First, we sort all edges by affin-
ity in descending order. Second, we iterate over all edges
and grow the MST using a union-find data structure. When-
ever a new edge e merges two trees T1; T2 
 MST ðGÞ dur-
ing construction of the MST, we compute the positive and
negative weight of this edge on the fly. The positive weight
wP ðeÞ corresponds to the number of voxel pairs of the same
ground-truth segment merged by e:

wP ðeÞ ¼ jfðu; vÞ 2 F 2 j dðu; vÞ ¼ 1; e ¼ mmðu; vÞgj: (7)

By construction, e is the maximin edge to all pairs of voxels
between the two trees it merges. Therefore, wP ðeÞ equals the
product of the number of voxels having label i in either tree,
summed over all i 2 f1; . . . ; kg. Let VT denote the set of vox-
els in T and V i

T � VT the subset with ground-truth label i.
The positive weight can then be rewritten as:

wP ðeÞ ¼
X

i2f1;...;kg

V i
T1

�

�

�

�

�

� V i
T2

�

�

�

�

�

�: (8)

Equivalently, the negative weight wNðeÞ is the number of
voxel pairs of different ground-truth segments merged by e:

wNðeÞ ¼ jfðu; vÞ 2 F 2 j dðu; vÞ ¼ 0; e ¼ mmðu; vÞgj (9)

¼
X

i6¼j2f1;...;kg

V i
T1

�

�

�

�

�

� V
j
T2

�

�

�

�

�

� (10)

¼ VT1

�

�

�

� VT2

�

�

�

��
X

i2f1;...;kg

V i
T1

�

�

�

�

�

� V i
T2

�

�

�

�

�

�: (11)

We can now rewrite the MALIS loss Eq. (3) as

Lðs; aÞ ¼
X

e2MSTðGÞ

wP ðeÞlð1; aðeÞÞ þ wNðeÞlð0; aðeÞÞ; (12)

and avoid the costly sum over all pairs of voxels. We keep
track of the sizes of sets VT and V i

T used in each tree during

the construction of the MST. Consequently, the complexity
of our algorithm is dominated by first sorting all edges by
their affinity in Oðn log ðnÞÞ and subsequently evaluating
Eqs. (8) and (11) while constructing the MST in OðknÞ, resu-
lting in a final complexity of Oðn log ðnÞ þ knÞ. We thus
improve over a previous method [2] that required Oðn2Þ
and therefore had to fall back to sparse sampling of voxel
pairs. Note that this only affects the training of the network,
the affinity prediction during test time scales linearly with
the volume size.

2.2.3 Constrained MALIS

We further extend previous work by computing the maxi-
min edge losses in two passes: In the first pass we compute
only the weights wP for edges within the same region (posi-
tive pass). In the second pass, we compute the weights
wN for edges between different regions (negative pass).
As shown in Fig. 2, in the positive pass, we assume that all
edges between regions have been predicted correctly and
set their affinities to zero. Consequently, only maximin
edges inside a region are found and contribute to the loss.
This obviates an inefficiency in a previous formulation [2],
where a spurious high-affinity (i.e., false positive) path leav-
ing and entering a region might connect two voxels inside
the same region. In this case, the maximin edge could lie
outside of the considered region, resulting in an unwanted
gradient contribution that would reinforce the false posi-
tive. Analogously, in the negative pass, all affinities inside
the same region are set to one to avoid reinforcement of
false negatives inside regions. Finally, the gradient contribu-
tions of both passes are added together.

Note that, similar to the original MALIS formulation [2],
the constrained version presented here does not require pre-
cise location of the boundaries. In applications where the
exact location of the boundary is less relevant, a broader
background region around boundaries can be given. During
the negative pass, any correctly predicted cut through this
background region will result in a loss of zero.

2.3 Hierarchical Agglomeration

Our method for hierarchical agglomeration of segments
from the predicted affinities consists of two steps. First, we
use a heuristic to extract small fragments directly from the
predicted affinities. Second, we iteratively score and merge

Fig. 2. Illustration of the constrained MALIS loss. Given predicted affinities (blue low, red high) and a ground-truth segmentation (a), losses on maximin
edges are computed in two passes: In the positive pass, (b), affinities of edges between ground-truth regions are set to zero (blue), in the negative
pass (c), affinities within ground-truth regions are set to one (red). In either case, a maximal spanning tree (shown as shadow) is constructed to iden-
tify maximin edges. Note that, in this example, edge A is not a maximin edge in the positive pass since the incident voxels are already connected by a
high affinity path. In contrast, edge B is the maximin edge of the bottom left voxel to any other voxel in the same region and thus contributes to the
loss. Similarly, C is the maximin edge connecting voxels of different ground-truth regions and contributes during the negative pass to the loss. The
resulting gradients of the loss with respect to each edge affinity is shown in (d) (positive values in red, negative in blue).
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adjacent fragments into larger objects until a predefined
threshold is reached.

2.3.1 Fragment Extraction

The extraction of fragments is a crucial step for the subse-
quent agglomeration. Too many fragments slow down the
agglomeration unnecessarily and increase its memory foot-
print. Too few fragments, on the other hand, are subject to
undersegmentation that cannot be corrected.

Empirically, we found a seeded watershed to deliver the
best trade-off between fragment size and segmentation
accuracy across all investigated datasets. For the seeded
watershed, we first average the predicted affinities for
each voxel to obtain a volume of boundary predictions.
We subsequently threshold the boundary predictions at
0.5 and perform a distance transform on the resulting
mask. Every local maximum is taken as a seed, from
which we grow basins using a standard watershed algo-
rithm [11] on the boundary predictions. For an example,

see Fig. 3. As argued above, voxel-wise predictions are
not fit for anisotropic volumes with low z-resolution (see
Fig. 1b). To not re-introduce a flaw that we aimed to
avoid by predicting affinities instead of voxel-wise labels
in the first place, we perform the extraction of fragments
xy-section-wise for anisotropic volumes.

2.3.2 Fragment Agglomeration

For the agglomeration, we consider the region adjacency
graph (RAG) of the extracted fragments. The RAG is an
annotated graph G ¼ ðV;E; fÞ, with V the set of fragments,
E � V � V edges between adjacent fragments, and f : E 7!
R an edge scoring function. The edge scoring function is
designed to prioritize merge operations in the RAG, i.e., the
contraction of two adjacent nodes into one, such that edges
with lower scores are merged earlier. Given an annotated
RAG, a segmentation can be obtained by finding the edge
with the lowest score, merge it, recompute the scores of
edges affected by the merge, and iterate until the score of
the lowest edge hits a predefined threshold u. In the follow-
ing, we will denote by Gi the RAG after i iterations (and

Fig. 5. Overview of the U-net architecture used for the CREMI dataset. The architectures for FIB-25 and SEGEM are similar, with changes in the input
and output sizes (in: ð132; 132; 132Þ, out: ð44; 44; 44Þ for FIB-25 and in: ð188; 188; 144Þ, out: ð100; 100; 96Þ for SEGEM) and number of feature maps for
FIB-25 (24 in the first layer, increased by a factor of 3 for lower layers).

Fig. 4. Illustration of the three different edge update cases during
a merge. Case 1: The edge is not involved in the merge at all (a). Case
2: One of the edge’s nodes is involved in the merge, but the boundary
represented by the edge does not change (b and e). Case 3: The bound-
aries represented by two edges get merged (c and d). Only in this case
the score needs to be updated.

Fig. 3. Illustration of the seeded watershed heuristic.
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analogously by Vi, Ei, and fi its nodes, edges, and scores),
with G0 ¼ G as introduced above. We will “reuse” nodes
and edges, meaning Viþ1 
 Vi and Eiþ1 
 Ei.

Given that the initial fragments are indeed an overseg-
mentation, it is up to the design of the scoring function
and the threshold u to ensure a correct segmentation. The
design of the scoring function can be broken down into
the initialization of f0ðeÞ for e 2 E0 (i.e., the initial scores)
and the update of fiðeÞ for e 2 Ei; i > 0 after a merge of
two regions a; b 2 Vi�1. For the update, three cases can be
distinguished (for an illustration see Fig. 4): (1) e was not
affected by the merge, (2) e is incident to a or b but repre-
sents the same contact area between two regions as
before, and (3) e results from merging two edges of Ei�1

into one (the other edge will be deleted). In the first two
cases, the score does not change, i.e., fiðeÞ ¼ fi�1ðeÞ, since
the contact area between the nodes linked by e remains
the same. In the latter case, the contact area is the union
of the contact area of the merged edges, and the score
needs to be updated accordingly. Acknowledging the
merge hierarchy of edges (as opposed to nodes), we will
refer to the leaves under a merged edge e as initial edges,
denoted by E�ðeÞ � E0.

In our experiments, we initialize the edge scores fðeÞ for
e 2 E0 with one minus the maximum affinity between the
fragments linked by e and update them using a quantile
value of scores of the initial edges under e. This strategy has
been found empirically over a range of possible implemen-
tations of f (see Section 3).

Implemented naively, hierarchical agglomeration has a
worst-case runtime complexity of at least Oðn log ðnÞÞ,
where n ¼ jE0j is the number of edges in the initial RAG.
This is due to the requirement of finding, in each iteration,
the cheapest edge to merge, which implies sorting of edges
based on their scores. Furthermore, the edge scoring func-
tion has to be evaluated OðnÞ times, once for each affected
edge of a node merge (assuming nodes have a degree
bounded by a constant). For the merge function suggested
above, a quantile of OðnÞ initial edge scores has to be found
in the worst case would a balanced merge tree improve this
figure to Oðlog ðnÞÞ?, resulting in a total worst-case runtime
complexity of Oðn log ðnÞ þ n2Þ.

To avoid this prohibitively high runtime complexity, we
propose to discretize the initial scores f0 into k bins, evenly
spaced in the interval ½0; 1�. This simple modification has
two important consequences: First, a bucket priority queue
for sorting edge scores can be used, providing constant time
insert and pop operations. Second, the computation of
quantiles can be implemented in constant time and space
by using histograms of the k possible values. This way, we
obtain constant-time merge iterations (pop an edge, merge
nodes, update scores of affected edges), applied at most n
times, thus resulting in an overall worst-case complexity of
OðnÞ. With k ¼ 256 bins, we noticed no sacrifice of accuracy
in comparison to the non-discretized variant.

The analysis above holds only if we can ensure that the
update of the score of an edge e, and thus the update of
the priority queue, can be performed in constant time.

Fig. 6. Details of the convolution (blue), max-pooling (yellow), upsampling (brown), and copy-crop operations (red). “�” denotes a convolution, “ ”
a rectified linear unit, and “�” the Kronecker matrix product.
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In particular, it is to be avoided to search for e in its respec-
tive bucket. We note that for the quantile scoring function
(and many more), the new edge score fiðeÞ after merging an
edge f 2 Ei�1 into e 2 Ei�1 is always greater than or equal
to its previous score. We can therefore mark e as stale and f
as deleted and proceed merging without resorting the queue
or altering the graph. Whenever a stale edge is popped
from the priority queue, we compute its actual score and
insert it again into the queue. Not only does this ensure con-
stant time updates of edge scores and the priority queue, it
also avoids computing scores for edges that are never used
for a merge. This can happen if the threshold is hit before
considering the edge, or if the edge got marked as deleted
as a consequence of a nearby merge.

3 RESULTS

Datasets We present results on three different and diverse
datasets: CREMI [13], FIB-25 [14], and SEGEM [15] (see Table 2
for an overview). These datasets sum up to almost 15 giga-
voxels of testing data, with FIB-25 alone contributing 13.8
gigavoxels, thus challenging automatic segmentation meth-
ods for their efficiency. In fact, only two methods have so
far been evaluated on FIB-25 [4], [14]. Another challenge is

posed by the CREMI dataset: Coming from serial section EM,
this dataset is highly anisotropic and contains artifacts like
support film folds, missing sections, and staining precipita-
tions. Regardless of the differences in isotropy and presence
of artifacts, we use the same method (3D U-NET training,
prediction, and agglomeration) for all datasets. The size of
the receptive field of the U-NET was set for each dataset to
be approximately one mm3, i.e., 213� 213� 29 for CREMI,
89� 89� 89 for FIB-25, and 89� 89� 49 for SEGEM. For the
CREMI dataset, we also pre-aligned training and testing data
with an elastic alignment method [16], using the padded
volumes provided by the challenge.

Training. We implemented and trained our network
using the CAFFE library on modestly augmented training
data for which we performed random rotations, transposi-
tions and flips, as well as elastic deformations. On the aniso-
tropic CREMI dataset, we further simulated missing sections
by setting intensity values to 0 (p ¼ 0:05) and low contrast
sections by multiplying the intensity variance by 0.5
(p ¼ 0:05). We used the Adam optimizer [17] with an initial
learning rate of a ¼ 10�4, b1 ¼ 0:95, b2 ¼ 0:99, and � ¼ 10�8.

Quantitative Results. On each of the investigated datasets,
we see a clear improvement in accuracy using our method,
compared to the current state of the art.We provide quantita-
tive results for each of the datasets individually, where we
compare our method (labeled U-NET MALA) against different
other methods.4 We also include a baseline (labeled U-NET)
in our analysis, which is our method, but trainedwithout the
constrained MALIS loss. In Table 1, we report the segmenta-
tion obtained on the best threshold found in the respective
training datasets. In Fig. 7, we show the split/merge curve
for varying thresholds of our agglomeration scheme.

For SEGEM, we do not use the metric proposed by Berning
et al. [15], as we found it to be problematic: The authors sug-
gest an overlap threshold of 2 to compensate for inaccura-
cies in the ground-truth, however this has the unintended
consequence of ignoring some neurons in the ground-truth
for poor segmentations. For the SEGEM segmentation (kindly
provided by the authors), 195 out of 225 ground-truth skele-
tons are ignored because of insufficient overlap with any
segmentation label. On our segmentation, only 70 skeletons
would be ignored, thus the results are not directly compara-
ble. Therefore, we performed a new IED evaluation using
TED [12], a metric that allows slight displacement of skele-
ton nodes (we chose 52 nm in this case) in an attempt to
minimize splits and merges. This metric reveals that our
segmentations (U-NET MALA) improve over both split and
merge errors, over all thresholds of agglomeration, includ-
ing the initial fragments (see Fig. 7c).

Qualitative Results. Renderings of 11 and 23 randomly
selected neurons, reconstructed using the proposed method,
are shown for the test regions of CREMI and FIB-25 in Figs. 9
and 10, respectively.

Dataset (an)isotropy. Save for minor changes in the net-
work architectures and the generation of initial fragments,
our method works unchanged on both near-isotropic block-
face datasets (FIB-25, SEGEM) as well as on highly anisotropic
serial-section datasets (CREMI). These findings suggest that

TABLE 1
Qualitative Results of our Method (U-NET MALA) Compared
to the Respective State of the Art on the Testing Volumes

of Each Dataset and a Baseline (U-NET)

Highlighted in bold are the names of our method and the best value in each
column. Measures shown are variation of information (VOI, lower is better),
CREMI score (geometric mean of VOI and adapted RAND error, lower is bet-
ter), and inter-error distance in mm (IED, higher is better) evaluated on traced
skeletons of the test volume. The IED has been computed using the TED metric
on skeletons [12] with a distance threshold of 52 nm (corresponding to the
thickness of two z-sections). CREMI results are reported as average over all test-
ing samples, individual results can be found in Fig. 8.

4. The presented results reflect the state of the CREMI challenge at the
time of writing, see [13].
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there is no need for specialized constructions like dedicated
features for anisotropic volumes or separate classifiers
trained for merging of fragments within or across sections.

Merge Functions. Our method for efficient agglomeration
allows using a range of different merge functions. In Table 3,
we show results for different choices of quantile merge func-
tions, mean affinity, and an agglomeration baseline proposed
in [18] on datasetsCREMI and FIB-25. Even across these very dif-
ferent datasets, we see best results for affinity quantiles
between 50 and 75 percent. All initial edge scores have been
set to one minus the maximum predicted affinity between the
regions. Theoretically, this is the ideal choice since the MALIS

training optimizes themaximin affinity between regions. Also
empirically we found this initialization to perform consis-
tently better than others (like themean or a quantile affinity).

Throughput. Table 4 shows the throughput of our method
for each dataset, broken down into affinity prediction

TABLE 2
Overview of Used Datasets

Name Imaging Tissue Resolution Training Data Testing Data

CREMI ssTEM Drosophila 4� 4� 40 nm 3 volumes of 1250� 1250� 125 voxels 3 volumes of 1250� 1250� 125 voxels
FIB-25 FIBSEM Drosophila 8� 8� 8 nm 520� 520� 520 voxels 13.8 gigavoxels
SEGEM SBEM mouse cortex 11� 11� 26 nm 279 volumes of 100� 100� 100 voxels 400� 400� 350 voxels (skeletons)

Fig. 7. (a-c) Split merge curves of our method (lines) for different thresholds on the CREMI, FIB-25, and SEGEM datasets, compared against the best-
ranking competing methods (dots). (d) Performance comparison of a naive agglomeration scheme (priority queue, Oðnlog ðnÞÞ) versus our linear-
time agglomeration (bucket queue, OðnÞ).

TABLE 3
Results for Different Merge Functions of Our Method Compared

with the Agglomeration Strategy Proposed in [18]

We show the results at the threshold achieving the best score in the respective
dataset (CREMI score for CREMI, VOI for FIB-25). Note that, for this analysis,
we used the available training datasets which explains deviations from the
numbers shown in Table 1.

TABLE 4
Throughput of our Method for Each of the Investigated Datasets

in Seconds Per Megavoxel

dataset U-NET watershed agglomeration total

CREMI 3.04 0.23 0.83 4.10
FIB-25 0.66 0.92 1.28 2.86
SEGEM 2.19 0.25 0.14 2.58
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Fig. 8. Comparison of the proposed method against competing methods on the CREMI testing datasets A+, B+, and C+. Shown are (from left to right)
variation of information (VOI, split and merge contribution), Rand index (RAND, split and merge contribution), and the total VOI (split and merge com-
bined). Baseline U-NET is our method, but without MALIS training (i.e., only minimizing the euclidean distance to the ground-truth affinities during train-
ing) For U-NET MALA, the red dot indicates the best threshold found on the training data.

Fig. 9. Reconstructions of 11 randomly selected neurons of the 100 largest found in the CREMI test volume C+.
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(U-NET), fragment extraction (watershed), and fragment
agglomeration (agglomeration). For CREMI and SEGEM, most
time is spent on the prediction of affinities. The faster pre-
dictions in FIB-25 are due to less feature maps used in the
network for this dataset.

To empirically confirm the theoretical speedup of using a
bucket queue for agglomeration, we show in Fig. 7d a speed
comparison of the proposed linear-time agglomeration
against a naive agglomeration scheme for volumes of differ-
ent sizes.

Fig. 10. Reconstructions of 23 randomly selected neurons of the 500 largest found in the FIB-25 test volume.
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4 DISCUSSION

A remarkable property of the MALA method is that it
requires almost no tuning to operate on datasets of differ-
ent characteristics, except for minor changes in the size of
the receptive field of the U-NET, training data augmenta-
tion to model dataset specific artifacts, and initial frag-
ment generation. This suggests that there is no need for
the development of dedicated algorithms for different EM
modalities. Across all datasets, our results indicate that
affinity predictions on voxels are sufficiently accurate to
render sophisticated post-precessing obsolete. It remains
an open question whether fundamentally different appro-
aches, like the recently reported flood-filling network [19],
also generalize in a similar way. At the time of writing,
neither code nor data were publicly available for a direct
comparison.

Furthermore, the U-NET is the only part in our method
that requires training, so that all training data can (and
should) be used to correctly predict affinities. This is an
advantage over current state-of-the-art methods that require
careful splitting of precious training data into non-overlap-
ping sets used to train voxel-wise predictions and an
agglomeration classifier (or accepting the disadvantages of
having the sets overlap).

Although linear in runtime and memory, correct paralle-
lization of hierarchical agglomeration is not trivial and will
require further research. However, as demonstrated on the
FIB-25 dataset, naive block-based agglomeration followed
by empirical stitching based on region overlap generates
very satisfying practical results.
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