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Abstract

Background: Many large-scale studies analyzed high-throughput genomic data to identify altered pathways

essential to the development and progression of specific types of cancer. However, no previous study has been

extended to provide a comprehensive analysis of pathways disrupted by copy number alterations across different

human cancers. Towards this goal, we propose a network-based method to integrate copy number alteration data

with human protein-protein interaction networks and pathway databases to identify pathways that are commonly

disrupted in many different types of cancer.

Results: We applied our approach to a data set of 2,172 cancer patients across 16 different types of cancers, and

discovered a set of commonly disrupted pathways, which are likely essential for tumor formation in majority of the

cancers. We also identified pathways that are only disrupted in specific cancer types, providing molecular markers

for different human cancers. Analysis with independent microarray gene expression datasets confirms that the

commonly disrupted pathways can be used to identify patient subgroups with significantly different survival

outcomes. We also provide a network view of disrupted pathways to explain how copy number alterations affect

pathways that regulate cell growth, cycle, and differentiation for tumorigenesis.

Conclusions: In this work, we demonstrated that the network-based integrative analysis can help to identify

pathways disrupted by copy number alterations across 16 types of human cancers, which are not readily

identifiable by conventional overrepresentation-based and other pathway-based methods. All the results and

source code are available at http://compbio.cs.umn.edu/NetPathID/.

Background

Recent high-throughput technologies have enabled re-

searchers to identify genomic alterations that could re-

sult in activation of oncogenes or inactivation of tumor

suppressor genes, and thus disrupt pathways and bio-

logical processes known to contribute to tumor forma-

tion [1,2]. Many anticancer drugs have been developed

to target proteins that act in these cancer-related

pathways. Therefore, the precise identification and sys-

temic characterization of altered activities in cancer-

related pathways could accelerate the development of more

effective targeted therapies, and aid in tailoring treatment

to the genetic causes of an individual patient’s cancer [2].

Many large-scale genomic studies have been performed

to define the cancer genome [3-11]. This effort is

epitomized by The Cancer Genome Atlas [12-14] and

its umbrella group, the International Cancer Genome

Consortium [15]. Typically, in these studies, enrich-

ment analysis was performed to identify statistically

significant overlap between the list of altered genes and

pathways or predefined gene sets [16-19]. For example,

publications based on TCGA data have identified disrupted

pathways in many cancer types, and these studies

attempt to integrate sequence data, expression data,
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epigenetic data and copy-number data to get a wholistic

view of the cancer genome [12-14].

In more advanced network analysis, altered genes (e.g.

differentially expressed genes or mutated genes) are first

projected onto an interaction network, and then clus-

ters are found in this network. Ideker and colleagues

pioneered this approach [16] and later extended the

approach to identify network signatures (e.g. pathways,

subnetworks, or functional modules) [20-27]. Similarly,

pathway-based methods have been developed to incorp-

orate interactions of member genes in known bio-

logical pathways to measure activities of pathways. These

pathway-based methods were shown to be more ac-

curate at identifying cancer-related pathways compared to

overrepresentation-based enrichment analysis [22,28].

A limitation is that these current methods are not

designed to determine which pathways are disrupted

in particular cancer types, and which are commonly

disrupted across many types of human cancers. In this

study, we describe an integrative network-based ap-

proach to identify pathways disrupted by copy num-

ber alterations in 2,172 cancer patients across 16

different types of cancers. Our approach is based on

the assumption that copy number changes of a gene

will affect the activity of the gene itself and the genes

with which it interacts since amplification or deletion

of genes could alter expression (or functions) of its

neighbor genes in the networks [29]. We define a

disrupted pathway as one whose members (genes) are

directly altered, or they interact (based on the protein-

protein interaction network) with many altered genes

(Figure 1). Using an integrative analysis of copy num-

ber alterations and protein-protein interaction net-

works, our approach infers activity scores of all genes

in the networks and makes use of inferred gene activ-

ity scores to identify pathways that are disrupted. Im-

portantly, while overrepresentation-based enrichment

analysis ignores altered genes not annotated in the

specific pathway being analyzed, our method incorpo-

rates these genes using label propagation based on a

protein-protein interaction database.

In the experiments, we first show the limitation of the

enrichment analysis and current network-based analysis

on DNA copy number, and then demonstrate that, al-

though there are distinct patterns of copy number alter-

ation in specific types of cancer, our method can identify

common pathways disrupted in more than 10 different

types of cancers. Our analysis of common and cancer-

type specific disrupted pathways will lead to a better

understanding of cancer network modules, and suggest

potential therapeutic targets for cancer treatment. We

also provide a network view of disrupted pathways to

show how copy number alteration can disrupt core

pathways that are essential for cancer development and

progression.

Results

Limitation of enrichment analysis and current

network-based analysis on DNA copy number alterations

Although many efforts have been made to build gene set

databases (e.g. KEGG, Biocarta, Reactome, or the Gene

Ontology database), and significant work has been done

A B

Figure 1 Conceptual models for disrupted pathways. This figure describes two conceptual models for inferring activity of disrupted pathways.

(A) Three out of six member genes in the pathway are significantly altered by copy number changes. In this case, overrepresentation-based gene

set enrichment analysis and pathway-based analysis could identify the pathway as an enriched pathway with altered genes, since many member

genes in the pathway are altered in copy number changes. (B) No member gene in the pathway is altered by copy number changes, but

member genes in the pathway are interacting with many other altered genes in the protein-protein interaction network. Existing gene set

enrichment analysis and pathway-based analysis would fail to identify the pathway as a disrupted pathway, due to the lack of overlapping altered

genes with member genes in the pathway. However, by applying a machine learning method, which propagates the activity score of genes to

other genes by exploring cluster structures in the protein-protein interaction network, our approach could identify the pathway as a disrupted

pathway, since many member genes in the pathway are interacting with other altered genes (i.e. significantly altered genes in copy number

alterations could alter the activity (or function) of member genes through interactions).
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to expand the current knowledge of gene functions and

roles in cellular systems, many human genes are not yet

annotated in existing gene set databases. Most notably,

we observed that more than 70% of the genes that are

identified as significantly altered based on copy number

alterations (see Methods) are not annotated in current

pathway databases (Additional file 1: Figure S1). Due to

this low coverage of gene annotation in significantly al-

tered copy number regions, overrepresentation-based

enrichment analyses, and standard pathway-based ana-

lyses are omitting some of the most significantly altered

genes in their analyses. Hence, they provide a limited

analysis of pathway activity that is based on the small

non-representative fraction of altered genes that are cur-

rently annotated in pathway databases.

Previous network-based methods suffer less from in-

complete gene annotations for inferring pathway activity;

they also have difficulty in analyzing pathway activity

across cancers. This is primarily due to the diverse copy

number alteration patterns that exist in different human

cancers. By performing copy number alteration analysis

using Genomic Identification of Significant Targets in

Cancer (GISTIC) [30] in 16 types of cancers, we have

found a diverse spectra of copy number alteration pat-

terns, and show that only a few significantly altered gen-

omic regions are present across multiple cancer types

(Additional file 1: Figure S2). This lack of coherence in

copy number alterations across cancers could lead to the

failure of some network-based methods to identify com-

mon biological pathways affected by copy number alter-

ations. Our method introduced below overcomes this

limitation by using a label propagation technique along

with a protein-protein interaction network that includes

these unannotated gene products.

A network-based approach for discovering disrupted

pathways based on copy number alterations across

multiple cancer types

We developed an algorithm called NetPathID (NETwork

based method for PATHway IDentification) to discover

pathways disrupted by copy number alterations across

cancers (Figure 2). The aim of our approach is to inte-

grate copy number changes of genes with the protein-

protein interaction networks, and incorporate additional

biological knowledge (e.g. pathway databases and con-

served subnetworks across species) to discover disrupted

pathways across human cancers. Our approach assumes

that the activity of a pathway disrupted by copy number

alterations can be quantified by the average of its mem-

ber genes’ activity scores. Activity scores of genes are

computed by a label propagation technique [31] that uti-

lizes the global topological information in the protein-

protein interaction network. This allows us to use genes/

proteins of unknown function when initially assigning

activity scores, and through label propagation, these

scores will affect the activity scores of the annotated

genes/proteins. The label propagation algorithm overlays

the label information (i.e., activity score) on the vertices,

and iteratively propagates scores among the neighboring

vertices. The propagation process will finally converge

toward the unique global optimum minimizing a quad-

ratic criterion. Recently, label propagation and its vari-

ants have been successfully applied in many contexts

including gene function prediction, disease gene prio-

ritization, biomarker identification, and disease outcome

prediction [31-36].

An illustration of NetPathID is provided in Figure 2.

First, we collect a list of genes with significant copy

number alterations in each type of cancer by using

GISTIC. We use this list of altered genes to generate

initial gene activity scores based on the log2 ratio values

of copy number changes of altered genes (Step A in

Figure 2). Second, we overlay initial gene activity scores

on the protein-protein interaction networks, and apply

label propagation to assign activity scores to all other

genes in the protein-protein interaction networks. (Step

B in Figure 2). Finally, we summarize computed activity

scores of member genes in predefined pathways (or sub-

networks) to identify altered activities of the pathways in

each type of cancer (Step C in Figure 2). Larger activity

scores indicate that the pathways are highly disrupted

based on copy number alterations. We repeat these steps

to identify altered activities of pathways for all 16 types

of cancer. This allows us to generate a global map of

pathway activity across cancers (Figure 3). We also provide

a network view of disrupted pathways, which provides a

wholistic impression of how copy number changes influ-

ence core pathways essential for the development and pro-

gress of cancers.

We performed extensive evaluation of NetPathID by

comparing it with overrepresentation-based gene set en-

richment analysis using hypergeometric testing, the

method of Lee et al. [27,28] (Additional file 2). We

found that NetPathID can accurately identify cancer-

related pathways from negative controls (i.e., randomly

generated decoy pathways). We also confirmed that

commonly disrupted pathways identified by NetPathID

are related to cancer biology (see Additional file 2).

Finally, we found that NetPathID is robust with

regards to the bias in the protein-protein interaction

networks (see Additional file 2).

Patterns of disrupted pathways based on copy number

alterations across cancers

We applied our approach to copy number data from 16

types of human cancers, using information from protein-

protein interaction network and predefined annotated

pathway databases (see Methods). Statistical significance
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of the pathway score was assessed through permutation

(Additional file 1: Figure S7). Pathways with significant

Benjamini- Hochberg adjusted p-values were selected

by using a false discovery rate cutoff of 0.005 for

Biocarta, and 0.10 for both the KEGG and Reactome da-

tabases. In addition, to determine if a pathway was sig-

nificantly disrupted in the given cancer type, we further

filtered the selected pathways that were ranked in the

top 20% based on pathway activity scores in each cancer

type. Finally, 488, 456, and 855 (14%, 15%, and 12% of

the total) pathways from Biocarta, KEGG, and Reactome

pathway databases, respectively, were found to be sig-

nificant across 16 types of cancers, and used for further

analysis.

Co-disruption of pathways by copy number alterations in

human cancers

Biological pathways often function cooperatively to con-

tribute to phenotypes such as cancer. Thus, advances in

understanding these pathways and their interconnectiv-

ity will accelerate the development of molecular targeted

therapies that promise to change the practice of oncol-

ogy [37]. We first explored patterns of disrupted path-

ways by using two-way hierarchical clustering to identify

clusters of pathways that are statistically co-disrupted

(Figure 3A). Our analyses identified clear relationships

among disrupted pathways such as telomerase (TEL),

TGF-beta, RB, and P53 pathways. For example, the tel-

omerase pathway is co-disrupted with TGF-beta, ATM

signaling, and CTCF: First Multivalent Nuclear Factor

(CTCF) pathways (Figure 3B (1)). A recent study experi-

mentally validated that the TGF-beta signaling pathway

negatively regulates the telomerase pathway, and other

studies also reported that MDM2, which is a gene in the

ATM pathway, and CTCF both inhibit the expression of

telomerase [38-40]. Another interesting example of co-

disrupted pathways includes ARF, p53, and RB pathways

(Figure 3B (2)). Disruption of the RB pathways could ac-

tivate the ARF pathway, and the activation of ARF could

trigger the p53 pathway, which induces growth arrest

and/or apoptosis [41]. These consistent observations with

previous studies demonstrate that NetPathID is capable of

A

B

C

Figure 2 Overview of NetPathID. This figure describes steps to discover disrupted pathways across cancers. The aim of the approach is to

integrate the copy number data with protein-protein interaction networks to quantify pathway activity for discovering disrupted pathways across

cancers. (A) A list of significantly altered genes residing in copy number regions is generated using GISTIC. (B) We initialize activity scores of

these genes using their average log2 ratios of amplification or deletion in copy number data, and overlay initial gene activity scores on the

protein-protein interaction networks. To fully utilize network topological information, we apply a label propagation algorithm to assign gene

activity scores to all the genes in the protein-protein interaction networks (see “Methods” section). (C) Finally, pathway activity scores are

computed by average activity scores of member genes in each predefined pathway from prior knowledge (e.g. pathway database or conserved

subnetworks in the protein-protein interaction networks cross species). We repeat step (A) and (B) to generate a matrix containing pathway

activity scores from multiple cancer types.
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identifying valid patterns of co-disrupted pathways. Thus,

further analysis of co-disrupted pathways may help to pro-

vide novel insights into the nature of pathway associations.

Common and cancer-type specific disrupted pathways

based on copy number changes across cancers

We further attempted to identify common pathways

disrupted by copy number alterations across cancers.

We used the following strict criteria to define commonly

disrupted pathways: 1) Pathways must have significant

BH-adjusted p-values; 2) Pathways must be ranked

within the top 10% compared to other pathways in each

cancer study based on their activity scores, and; 3) Top

ranked pathways must be present in at least 10 different

types of cancer. Based on these criteria we found an

average of 14 commonly disrupted pathways from KEGG,

Biocarta, and Reactome (Figure 3, and Additional file 3:

Tables S1 and S2). Examples of commonly disrupted

pathways from the Biocarta pathway database include

telomerase, transforming growth factor beta (TGF-Beta)

signaling pathway, NTRK1 (TrkA) signaling and Cell

Cycle pathways. Some of these pathways were already

known to be altered broadly across many cancer types,

such as TGF-Beta [42], Cell Cycle [43] and telomerase

[44]. Other pathways, though, have only been impli-

cated in a few cancers. For example, TrkA signaling is

CB

A

Figure 3 Pathway activity view of cancers. (A) Heat map describing the two-way hierarchical clustering of inferred activity of 217 Biocarta

pathways across 16 types of cancers. Each row is a different type of cancer, and each column is a pathway. Color bar represents Z-score

transformation of the activity score of the pathway. Red indicates significantly disrupted pathways, and green indicates pathways that are not

disrupted by copy number alterations. (B) Heat map describing the correlation coefficient of pathway co-disruption (red: positive correlation,

green negative correlation). The top 30 ranked disrupted pathways across cancers are included in the heat map. (C) Zoom-in plots including

cancer-type specific and commonly disrupted pathways. For example, Cytokine, DC (“Dendritic cells in regulating TH1 and TH2 Development”),

and INFLAM (“Cytokines and Inflammatory Response”) pathways are only disrupted in acute lymphoblastic leukemia and myelodysplasia.

Cytokines and inflammatory response, as well as dendritic cells as modulators of immune responses in DC pathway are known for development

of acute lymphoblastic leukemia and myelodysplasia. In contrast to cancer-type specific disrupted pathways, there is a set of commonly disrupted

pathways across cancers. For example, TGFB (“TGF beta signaling”) pathway is one of commonly disrupted pathways across more than 10 types

of cancers. Other commonly disrupted pathways include TEL (“Telomeres, Telomerase, Cellular Aging, and Immortality”), TRKA (or NTRK1)

(“Trka Receptor Signaling Pathway”), CTCF (“First Multivalent Nuclear Factor”), and SPRY (“Sprouty regulation of tyrosine kinase signals”) pathways.
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known to play a role in neuronal cancers as well as a few

non-neuronal cancers such as medullary thyroid carcin-

oma, lung, pancreatic, ovarian and breast cancers [45].

However, TrkA signaling has not been functionally associ-

ated with cancers such as ALL, GIST, mesothelioma and

renal cancer, which were identified in our analysis. This

could have important implications because therapeutics

have been developed that target TrkA signaling [46].

As we expected, NetPathID identified cancer re-

lated pathways such as the KEGG annotated Pancreatic,

Colorectal, Glioma, Lung, Prostate and Bladder cancer

pathways. Likewise, using the Reactome annotated path-

ways our method identified well known cancer-related

pathways that regulate cell growth, death and proliferation

including the EGFR signaling pathway, NF-kb activation,

and Ras signaling pathway as commonly disrupted across

many types of cancers (Additional file 3: Table S1). Import-

antly, our method also identified pathways that were not

previously considered to be universally disrupted in can-

cers, such as the Adherens Junction and PECAM1 path-

ways [47]. Our analysis found these pathways to be

significant in all 16 cancer types in the KEGG annotated

pathways and Reactome annotated pathways (Additional

file 3: Table S1). These results support the idea of using

novel targeted therapies, such as the monoclonal antibody

targeting PECAM1 [48], in a wider array of cancer types.

In addition to pathways disrupted in the majority of

cancers, we also found that there are sets of pathways

that are only disrupted in specific types of human

cancers (Figure 3C). Some examples include Cytokine

Network (cytokines), Cytokines and Inflammatory Re-

sponse (INFLAM), Dendritic cells in regulating TH1

and TH2 Development (DC) pathways, which are all

only disrupted in acute lymphoblastic leukemia and

myelodysplasia. These disrupted pathways are widely

involved in T cell and B cell activities that are associ-

ated with immune responses, and activation and prolif-

eration of specific differentiated immune cells. Other

cancer-type specific disrupted pathways include the

Sonic Hedgehog/Patched1 (SHH) Receptor Ptc1 Regu-

lates cell cycle (PTC) pathway disrupted in renal and

glioma cancers, and Role of Ran in mitotic spindle

regulation (RANMS) pathway disrupted in colorectal

cancer (Additional file 3: Table S13). These findings are

supported by functional studies which have demon-

strated that inhibition of the Sonic Hedgehog signaling

pathway is known to induce renal cancer, and enhances

the efficacy of targeted therapy in glioma [49,50]. Ran,

which controls the cell cycle through the regulation of

mitotic spindle organization, was shown to be highly

expressed in many cancer types including gastric and

colorectal, and is known for its involvement in malig-

nant transformation and/or the enhanced proliferation

of cancer cells [51].

These observations suggest that commonly disrupted

pathways across many types of cancers could play a

major role in the development of cancers, while the set

of disrupted pathways that are specific to certain types

of cancers could help to characterize these types of can-

cers and provide options for different targeted therapies.

Current pathway databases cover only a small fraction

of human genes. Therefore, although the use of these

pathway databases as prior knowledge helps to define

and identify disrupted pathways, it is possible that there

are many more gene modules as yet undescribed that

contribute to cancer. To tackle this challenge, we obtained

4,620 protein-protein interaction subnetwork modules

that are conserved across different species, and use

them as additional pathway data [52]. The conserved

subnetworks were identified by PathBLAST [53] among

two (or more) species, and cover more than 8,558 pro-

teins (genes). We used NetPathID with these 4,620 sub-

network modules and identified 41 commonly disrupted

subnetworks that are present in at least 10 types of cancer

and are ranked within top 5% in each cancer study (see

Additional file 3: Table S1). This nicely illustrates how

NetPathID is not simply biased to genes in existing data-

bases, and is able to highlight modules of uncharacterized

genes that are worthy of further study.

Commonly disrupted pathways across cancers correlate

with clinical outcomes

We investigated whether we could use disrupted path-

ways discovered by NetPathID to identify subgroups of

patients that correlate with different clinical outcomes,

such as survival. Specifically, we hypothesized that com-

monly disrupted pathways reflect molecular mechanisms

contributing to the biological/clinical behavior of cancers.

Thus, we could use member genes in disrupted pathways

as gene signatures to identify patient subgroups having

different clinical outcomes.

To test our hypothesis we collected gene expression

data with clinical information from four independent

microarray gene expression datasets [54-57]. The genes

used for clustering were the set of 331 genes in the 42

commonly disrupted subnetworks identified by NetPathID.

We identified patient subgroups by visual examination of

the clustering results, and generated Kaplan-Meier curves

for the subgroups (Figure 4). In the lung cancer data set

[56], we found three patient groups, with group C patients

having significantly worse survival outcomes than group A

(logrank test p-value < 0.0000198, Hazard ratio = 1.4910),

with a median survival time of 40 months for group A and

23 months for group C. Similarly, in a breast cancer data

set and two ovarian cancer data sets, we were able to parti-

tion the patients into different groups using the same gene

set, and noted that these patient groups have significantly

different survival profiles (Additional file 1: Figure S9).
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These results suggest that the analysis of top ranked

disrupted pathways may allow stratification of cancers

at the pathway level, which could have prognostic value

and possibly aid in diagnosis and treatment decisions.

Cancer-related genes are enriched in commonly disrupted

pathways

We also investigated the commonly disrupted pathways

in terms of their enrichment for known cancer-related

genes. We hypothesized that commonly disrupted path-

ways across many types of cancers have many cancer

“driver” genes as key components. More specifically, the

presence of known cancer-causing genes with well-

defined biological properties in a functional module can

be used to make reasonable guesses about other candi-

date “driver” genes in the same functional module. To

validate our hypothesis, we defined a functional module

as the union of our commonly disrupted pathways (i.e.,

ranked within top k% in each cancer study, and present

in more than 10 cancer types), and computed the frac-

tion of known cancer-causing genes based on the Cancer

Gene Census database from the Sanger Institute in the

functional module. A higher cancer gene fraction for the

functional module indicates more enrichment for cancer-

causing genes. For comparison, we use the Lee et al.

method [22,28] that overlays gene scores obtained from ag-

gregated and pooled analyses to pathways, and then ranked

them to identify the top-ranked disrupted pathways.

We observed a significantly higher fraction of known

cancer-causing genes in functional modules from our

commonly disrupted pathways and subnetworks than

random, aggregated or pooled analyses. On average, the

fraction of known cancer genes was 2-fold higher than

the control groups. For example, Figure 5(A) shows the

fraction of known cancer causing genes in the functional

modules from the Biocarta pathway database. Reassur-

ingly, the fraction of known cancer genes in our func-

tional modules were consistently higher than the fraction

in the two baseline datasets when analyzing the top 1 to

5% of the disrupted pathways (see Additional file 2). In

three of four of our functional modules, the fraction

remained higher even when including up to 20% of the

top disrupted pathways.

The higher fraction of known cancer-causing genes in

functional modules from our commonly disrupted path-

ways is consistent with our hypothesis that commonly

disrupted pathways across many types of cancers would

have many cancer “driver” genes. Thus, we predict that

the other genes in these functional modules could also

be cancer “drivers” and warrant further study.

An example of a disrupted signaling pathway: TGF-beta

signaling pathway

Using NetPathID, we identified the TGF-beta signaling

pathway as one of the commonly disrupted pathways

from the Biocarta, KEGG, and Reactome pathway data-

bases. To visualize our findings, we generated a network

view of the TGF-beta signaling pathway from Biocarta,

and displayed the pathway in colorectal cancer and ovar-

ian cancer in Figure 6. We also present a network view

of the TGF-beta signaling pathway across all cancers

(Additional file 1: Figure S3).

It is evident from the network visualization that many

of the annotated genes in TGF-beta signaling pathway

have a relatively low recurrent frequency, which would

imply that the pathway is only disrupted in a small cohort

of cancer patients. However, by including interacting

genes it becomes apparent that many genes that directly

interact with members of the TGF-beta signaling path-

way are altered in a significant percentage of cancer

types. We also noted that the interacting partners are dif-

ferent for different cancer types. For example, in colorec-

tal cancer, MAPRE1 binds to the tumor suppressor

protein APC which is often mutated in familial and spor-

adic forms of colorectal cancer. MAPRE1 is also involved

in processes including cell migration and adhesion, tran-

scriptional activation, and apoptosis. In our data, the

copy number of APC is not significantly altered by copy

Figure 4 Commonly disrupted pathways across cancers correlate with clinical outcomes. (A) Two-way hierarchical clustering of lung

cancer patients using member genes in commonly disrupted pathways. (B) Kaplan-Meier survival plots for the clusters of patient subgroups from

lung cancer microarray gene expression dataset. Colors (Red, Black and Blue) indicate patient subgroups used for Kaplan-Meier analysis.
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number, but our network view indicates that amplifica-

tion of MAPRE1 could affect pathways and processes in-

volved in APC regulation. In a similar manner, other

highly amplified genes that are not annotated with the

TGF-beta signaling pathway are interacting with genes in

the TGF-beta signaling pathway, and thus, those highly

amplified genes could affect activity of the TGF-beta sig-

naling pathway. Another example is the relationship be-

tween HNF4a and colorectal cancer (Additional file 1:

Figure S13a). HNF4A, a transcription factor regulated by

TGF-beta signaling [58], is associated with diabetes and

HCC, but has only recently been linked to intestinal tract

pathology including ulcerative colitis [59] and Crohn’s

disease [60]. Our results indicate it may also be playing a

role in colorectal cancer,

In ovarian cancer, the annotated genes in the TGF-beta

pathway also have a relatively low recurrent frequency,

while genes that directly interact with these annotated

genes are altered in a high percentage of cancers. Interest-

ingly, the interacting genes are not the same interacting

genes found in the colorectal cancer network. In ovarian

cancer, a few of the interesting interacting genes include

MYC, a well-known oncogene and TRIB1, a novel

regulator of the MAP kinase pathway recently linked

to leukemogenesis [61].

These network views provide biologically meaningful

insights into how copy number alterations in different

genes, among different types of cancers could affect com-

mon pathways. The illustrations also demonstrate the use-

fulness of an integrative analysis to discover disrupted

pathways, which contain many member genes each having

low significance with respect to copy number changes.

Discussion
Despite the success of our approach, there are limita-

tions to the method. First, we use both amplified and de-

leted genes without distinguishing the two types. Thus,

it would not be straightforward to interpret the effect on

the activity of the pathways across cancers, because the

disruption may be caused by either amplified or deleted

genes. It would be possible to extend the method by sep-

arating amplification and deletion, but this could limit

the ability to identify pathways with both amplified and

deleted genes. In fact, we found many pathways disrupted

by both amplified and deleted genes. Thus, one promising

direction for further improvement of the method would be

to incorporate other complementary genomic datasets to

determine the role of disrupted pathways. For example, we

could include datasets measuring expression of genes

downstream of the pathways to determine the effect of

copy number alterations on the pathways.

Another limitation in our analysis is the relatively

sparse coverage of current protein-protein interaction

databases. Instead of using the protein-protein interaction

Figure 5 Cancer-related genes are enriched in commonly disrupted pathways. Fraction of known cancer genes in top k% ranked disrupted

pathways based on pathway activity score using pathway information from (A) Biocarta, (B) Reactome, (C) KEGG, and (D) conserved protein-protein

interaction subnetworks.
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databases we could, instead, use functional linkage net-

works, which have more comprehensive coverage of a

broad variety of gene relationships, and could allow for

more sensitive discovery of network signatures under vari-

ous conditions of interest [62]. While existing network-

based methods cannot handle the high density of these

large-scale functional networks, the label propagation-

based methods were successfully applied to functional link-

age networks in a recent study [62]. Thus, it would be

interesting to use functional linkage networks to discover

robust and reliable disrupted pathways across cancers.

As with all studies that use annotated pathways, there

is the problem of overlap between pathways and the de-

cision to include/exclude proteins when the pathway is

annotated. For example, ERK1/2 and AKT are members

of many of the annotated pathways such as TGF-beta,

TRKA, and Telomerase that were identified in our

study, yet the pathways specifically named “MAPK” or

“AKT” by the annotating organization did not register as

significantly altered. Our findings suggest that these

pathways as a whole are not commonly dysregulated,

but only specific aspects of these pathways are co-opted

by cancer.

In this work, we have presented analysis using input

from GISTIC with default settings. To test the robustness

of NetPathID we tested different cutoff levels using

GISTIC to see if the list of disrupted pathways would

change. We found that NetPathID was remarkably ro-

bust even when the cutoff values were raised from the

default setting of 0.1 to 0.3 or 0.5. Most of the rankings

of commonly disrupted pathways and the rankings of

pathways that were specific to one type of cancer re-

mained constant (see Additional file 2 and Additional file 3:

Tables S15–S21).

Another possible bias could arise from the inclusion

of whole chromosome arm deletions or amplifications

(e.g., 11q is clearly lost for neuroblastoma in Additional

file 1: Figure S3), because it is likely that the majority of

the genes on the chromosome arm are not driving tumor

growth. We adapted NetPathID so that we could run the

analysis with or without including whole chromosome

arm gains and losses. Again, surprisingly, most of the

rankings did not change significantly (see Additional file 2

and Additional file 3: Tables S15–S21).

One possible explanation for the robustness of

NetPathID is that NetPathID is not limited to the set of

genes in the genomic regions detected by GISTIC. The

gene set is expanded using our label propagation method

which results in pathway activity scores based on a larger

gene set. In addition, NetPathID is initiated using the

A B

Figure 6 Network view of TGF-beta signaling pathway alterations in colorectal and ovarian cancer. (A) Network view of genes altered by

copy number changes in colorectal cancer in the TGF-beta signaling pathway (diamond nodes) or genes directly interacting with TGF-beta

signaling genes (circular nodes) based on the protein-protein interaction database. (B) The same network view for ovarian cancer. Size of node

represents frequency of amplification or deletion in patient population. Color of node indicates whether gene is amplified (red), deleted (green),

or unchanged (gray). Lines indicate interactions. Blue dotted line separates genes within the pathway from genes that interact with the pathway

based on the protein-protein interaction database.
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average log2 ratio of the amplified or deleted gene

detected by GISTIC. Therefore, genes with low log2 ratios

will have less of an effect than genes with high log2 ratios.

Finally, although our study focused on the discovery of

disrupted pathways from datasets of copy number alter-

ations, the algorithm is general and can be readily ap-

plied to other types of genomic data, including, gene

expression, mutation, and methylation.

Conclusions
We have described a network-based integrative method

for discovering disrupted pathways based on copy num-

ber alterations in human cancers. NetPathID integrates

copy number data and the protein-protein interaction

networks to quantify activity scores of pathways. Specif-

ically, NetPathID effectively utilizes information in the

protein-protein interaction network and copy number

changes with label propagation to quantify altered activ-

ities of pathways. This approach has the potential to un-

cover disrupted pathways that cannot be discovered by

using overrepresentation and pathways-based methods,

which rely on a limited number of annotated genes.

Thus, NetPathID is uniquely suitable for providing a glo-

bal analysis of disrupted pathways across cancers.

We applied our approach to copy number data from 16

types of cancers, and discovered commonly disrupted

pathways and pathways that are only disrupted in specific

types of cancer. Functional enrichment analysis of com-

monly disrupted pathways demonstrated that many cancer

types share common biological processes that define the

malignant state, including self-sufficiency in growth signal-

ing, insensitivity to antigrowth signals, inactivation of

apoptosis, and genomic instability. Of particular signifi-

cance, we identified a patient subpopulation with poor

survival using member genes in disrupted pathways, im-

plying the potential of these disrupted pathways to serve

as a guide to therapy in a subgroup of patients.

Methods

Copy number data preparation

The copy number data from 16 human cancer types were

collected from a recent study after removing cell lines and

datasets with fewer than 15 patients samples (Sept. 2010)

[63] (http://www.broadinstitute.org/tumorscape/pages/por

talHome.jsf). Copy-number measurements were obtained

using the Affymetrix 250 K SNP arrays. For the details of

preprocessing and segmentation of copy number dataset,

please refer to [63]. To detect significantly altered copy

number regions, we use GISTIC with default settings, with

exceptions indicated in the text [30].

Human protein-protein interaction and pathway data

We obtained the protein-protein interaction network

from the Human Protein Reference Database (May

2010) [64]. This network contained 9,667 proteins and

76,132 binary edges. We obtained KEGG, Biocarta, and

Reactome gene sets from MsigDB (Sept. 2010) [18] and

4,620 conserved subnetworks in the human protein-

protein interaction network from [52]. To reduce bias to

disease proteins in the protein-protein interaction net-

work, we use the extended protein-protein interaction

network suggested by [65]. The extended protein-

protein interaction network is generated by combining

the HPRD, OPHID, BIND, and MINT database, and has

a similar degree of interactions for both disease and

non-disease proteins. For details of network preparation

and statistics, please refer to [65].

NetPathID algorithm

The algorithm identifies pathways disrupted by genes

with copy number alterations. Disrupted pathways are

found based on high pathway activity scores across can-

cers. There are three main steps in NetPathID:

1. Collecting altered genes based on copy number

alterations

Our approach requires lists of genes with copy

number alterations, and corresponding gene scores

representing the log2 ratio of copy number changes.

We use GISTIC as a filter to identify recurrently

altered regions in each type of cancer. The genes

within these regions define a seed gene set of

frequently amplified and deleted genes, and Gamp

where gi is a frequently amplified or deleted gene if

gi ∈Gamp or Gdel, respectively.

2. Computing gene score

After collecting a seed gene set based on GISTIC, the

next step is to compute gene activity scores. We use a

label propagation algorithm to compute gene scores,

and this label propagation takes two inputs: 1) an

adjacency matrix describing the gene network, and

2) an initial gene activity score vector. We define the

adjacency matrix of the gene network to be G(n×n)

where n is the number of genes in the protein-protein

interaction networks. We generate an initial gene score

vector g = [g1, g2,…, gn]
T denoting the average log

ratio of a frequently amplified or deleted gene in each

dataset, where g i ¼
∑

m

j¼1Si;jamp

m
if gi ∈Gamp,

or g i ¼
∑

m

j¼1
Si;jdelj j

m
if gi ∈Gdel, otherwise gi = 0, and

n and m represent the number of genes and patients

in dataset, and Si;jamp
, and Si;jdel represent log ratio of

an amplified and deleted gene gi in j th patient in

dataset. Specifically, we compute the average log2

ratio of each amplified or deleted gene across patient

samples to use it as an initial gene activity score to

Hwang et al. BMC Genomics 2013, 14:440 Page 10 of 13

http://www.biomedcentral.com/1471-2164/14/440

http://www.broadinstitute.org/tumorscape/pages/portalHome.jsf
http://www.broadinstitute.org/tumorscape/pages/portalHome.jsf


compute its final gene activity score. To fully utilize

the network topological information to compute the

final gene activity score, we generate �G, the graph

Laplacian of the gene network G(n×n), to use to

propagate initial gene activity scores to genes in the

network. Here �G ¼ D
−1
2

GGD
−1
2

G , and DG is a diagonal

matrix with diagonal elements DG = ∑ jGi,j. A vector
~g for final gene activity scores is derived from the

following optimization problem [35].

ming̃∑i;j
�Gi;j ~g i−~g j

� �2

þ
1−α

α

∑
i

~g i−g i
� �2

ð1Þ

In equation (1), the first term is a smoothness

penalty, which forces connected genes to receive

similar activity scores, and the second term ensures

the consistency with the initial gene scores. Label

propagation combines the neighboring information

in the network with the consistency with the initial

gene activity scores to provide global activity scores

to genes in the network. Parameter α ∈(0,1)

balances contributions from two penalties. Note that

we use 0.5 for our parameter in this work (see

Additional file 1: Figure S11 for the effects of

different parameter choices of the alpha). The closed

form solution of equation (1) is ~g ¼ 1−αð Þ
I−α�Gð Þ

−1
g. Empirically, to avoid computing the

inverse of I−α�Gð Þ, an iterative algorithm can

efficiently compute the closed-form solution with

the following update rule at each time step t,
~g t ¼ 1−αð Þg þ α

�G~g t−1:

3. Computing the pathway activity score

After computing activity scores of genes in each type

of cancer, we summarize activity scores of the

member genes in the pathways to compute activity

scores of pathways as

Pathway score ¼ Mjk ¼
∑i∈NMj

~g ik

NMj

�

�

�

�

;

where Mjk is activity score of the jth pathway in kth

type of cancers, and NMj is the member genes in

pathway Mj [52].

Pooled and aggregated analysis

To perform the pooled analysis, we first incorporate all of

the copy number data from 2,172 patients into one

dataset. Then, we run GISTIC to identify the set of genes

with significant copy number alterations. To discover

disrupted pathways enriched with this set of genes, we

rank genes based on –log10(qval) from GISTIC, and then

select the top k% genes to perform overrepresentation-

based analysis using hypergeometric testing. To perform

the aggregated analysis, we run GISTIC to calculate the

significance of the altered genes in each cancer type. After

running GISTIC on all datasets, we summarize –log10

(qval) for each gene across all datasets. Then we rank

genes based on aggregated –log10(qval), and select the top

k% genes to perform overrepresentation-based analysis

using hypergeometric testing. Note that if one gene has a

qval from GISTIC for both amplification and deletion, we

select the more significant qval for the gene.

Significance of pathway scores

To assess significance of the pathway score, we

performed the analysis on random datasets. To con-

struct these control datasets we randomly shuffled initial

gene activity scores and pathway member assignments

10,000 times to generate a background distribution of

pathway scores. From this control dataset we were able

to derive the empirical p-value of the actual scores.

Analysis of patterns of disrupted pathways

In each cancer type, pathway activity scores were Z-

score transformed. Then, we perform two-way hierarch-

ical clustering using Cluster 3 with complete linkage to

analyze patterns of pathway co-disruption based on the

inferred pathway activity for each cancer type in the

dataset. To validate the correlation between clustered

pathways, we use the Matlab corrcoeff function. Then,

two-way hierarchical clustering was performed to plot

the heat map describing the correlation coefficient of

pathway co-disruption.

Network view of disrupted pathways

To generate the network view of the pathway, we col-

lected annotated genes in the pathway, and genes that

directly interact with one of the annotated genes based

on the protein-protein interaction database. Interacting

genes were only included in the network if their

GISTIC-q-value was among the top 500 values out of

18,932 ranked genes.

Microarray gene expression data preparation, and

clustering

Four microarray gene expression datasets were used for

the identification of patient subgroups. The lung cancer

dataset was downloaded from [56]. We downloaded

two ovarian cancer datasets (GSE9891, GSE3149) and

one breast cancer dataset (GSE2034) from Gene Ex-

pression Omnibus (GEO). All datasets were RMA nor-

malized, log transformed, and expression values were

median centered. To perform unsupervised hierarchical

clustering, we use Matlab clustergram function with

average linkage.
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