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Abstract—Polar sea ice characteristics provide important inputs
to models of several geophysical processes. Microwave scatterom-
eters are ideal for monitoring these regions due to their sensitivity
to ice properties and insensitivity to atmospheric distortions. Many
forward electromagnetic scattering models have been proposed to
predict the normalized radar cross section ( ) from sea ice char-
acteristics. These models are based on very small scale ice features
and generally assume that the region of interest is spatially homo-
geneous. Unfortunately, spaceborne scatterometer footprints are
very large (5–50 km) and usually contain very heterogeneous mix-
tures of sea ice surface parameters. In this paper, we use scatterom-
eter data in a large-scale inverse modeling experiment. Given the
limited data resolution, we adopt a simple geometric optics for-
ward-scattering model to analyze surface and volume scattering
contributions to observed Ku-band signatures. A model inversion
technique based on recursive optimization of an objective function
is developed. The result is a least squares estimate of three surface
parameters: the power reflection coefficient at nadir, the rms sur-
face slope, and the volume scattering albedo. Simulations demon-
strate the performance of the method in the presence of noise. The
inverse model is implemented using Ku-band image reconstructed
data collected by the National Aeronautics and Space Administra-
tion scatterometer. The results are used to analyze and interpret

phenomena occurring in the Antarctic and the Arctic.

Index Terms—Inverse modeling, National Aeronautics and
Space Administration (NASA) Scatterometer (NSCAT), scattering
models, sea ice, Special Sensor Microwave/Imager (SSM/I).

I. INTRODUCTION

T
HE CRYOSPHERE regions of the earth play a critical

role in many global geophysical processes. In particular,

polar sea ice packs are important in understanding weather pat-

terns and climate trends. Sea ice influences heat exchange, fresh

water exchange, and the absorption of solar radiation and is be-

lieved to be a sensitive indicator of long-term climate trends [1],

[2]. Consequently, the remote sensing community has great in-

terest in monitoring these important regions. The primary goal

of cryosphere remote sensing is the extraction of key sea ice sur-

face characteristics from the observed signatures.

A wide array of spaceborne instruments has been employed

in past and current efforts to study and monitor the cryosphere.

The various instruments cover a broad spectrum of frequencies,

polarizations, spatial resolutions, and measurement collection

schemes. Microwave remote sensing instruments have proven
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extremely valuable in observing the polar regions. Active mi-

crowave instruments exhibit low sensitivity to cloud cover, pre-

cipitation, and other forms of atmospheric distortion in the polar

regions, but significant sensitivity to sea ice characteristics. Be-

cause active weather patterns in the polar regions often result

in heavy cloud cover during a significant portion of the annual

weather cycle, and polar winters are characterized by long sea-

sons of continuous darkness, optical sensors can be difficult to

apply. Unlike optical instruments, microwave sensors do not de-

pend upon solar illumination to collect measurements.

Several satellite instruments have proven the utility of scat-

terometers in monitoring the Arctic and Antarctic regions. The

first was the Seasat-A Scatterometer (SASS). Though the SASS

mission was short, SASS data illustrated that Ku-band mea-

surements are sensitive to the presence of sea ice and show

valuable variations within the ice pack that relate to surface

features [3]–[6]. Later, the Active Microwave Instrumentation

(AMI) scatterometers aboard the European Remote Sensing 1

and 2 (ERS-1 and ERS-2) satellites demonstrated the value of

C-band active scatterometer data in monitoring sea and glacial

ice regions [4], [7], [8]. The National Aeronautics and Space

Administration (NASA) Scatterometer (NSCAT) flew aboard

the Advanced Earth Observation Satellite (ADEOS) platform

from approximately August 1996 through June 1997. Ku-band

NSCAT data have been used in a number of cryosphere studies

[4], [9]–[11]. When the NSCAT mission was prematurely ter-

minated due to a solar panel failure, the NASA-built SeaWinds

instrument aboard QuikSCAT filled the gap of active Ku-band

data in mid-1999. SeaWinds data is used to monitor sea ice

extent [12].

II. NSCAT INSTRUMENT AND IMAGE RECONSTRUCTION

Microwave signatures of sea ice contain important infor-

mation about surface characteristics [13]. The goal of inverse

modeling is to extract or estimate those parameters from

measurements. The observed signatures are also a function of

instrument design and measurement collection specifications

such as frequency, polarization, and incidence angle [14]–[18].

This section describes the instrument used in this paper for mea-

surement collection and the image reconstruction algorithms

that produce enhanced resolution imagery. These images func-

tion as inputs to the inverse model of Section IV.

NSCAT has a number of characteristics that make it useful in

monitoring sea ice [10]. It is a dual-polarization Ku-band scat-

terometer operating at approximately 14 GHz. NSCAT employs

six v-pol and two h-pol fan beams that measure the normal-

ized radar cross section ( ) at various azimuth angles [19]. The

beams are further resolved through Doppler filtering, resulting

0196-2892/03$17.00 © 2003 IEEE
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Fig. 1. Sample ice-masked NSCAT AVE v-pol imagery for 1996 days 270–275. The images are, from Sleft to right, A , B , and C , respectively. The original
images contain 1940 � 1940 pixels with a nominal pixel spacing of 4.45 km.

in a number of measurement cells within each fan beam foot-

print. The cells have various incidence angles with a nominal

spatial resolution of about 25 km. Observations at multiple inci-

dence angles allow for the estimation of incidence angle depen-

dence—an important factor in determining surface characteris-

tics. Furthermore, dual-polarization measurements allow for the

determination of the polarization response of sea ice.

Multiple NSCAT passes over the polar regions are used to

reconstruct imagery. To improve the nominal resolution of

NSCAT measurements, resolution enhancement algorithms can

be applied to generate images. These methods rely upon a pa-

rameterization of the dependence of on incidence angles.

Various-order models can be used with increasing sensitivity to

noise as order is increased. In general, (in decibels) can be

modeled by

(dB) (1)

where is the incidence angle; is normalized to 40 ; is

the linear incidence angle dependence of ; is the quadratic

incidence angle dependence of , and so forth. For a limited

range of incidence angles of 20 and 60 , NSCAT is found

to have a nearly linear dependence on . Higher order models

can be used to more accurately represent the dependence though

the higher coefficients become increasingly sensitive to noise.

Several reconstruction methods exist for the generation of

scatterometer imagery. For this study, a polar stereographic pro-

jection was used in all image products. The first reconstruc-

tion method consists of binning measurements into 22.25

22.25-km grid cells. For each cell, a polynomial fit of a chosen

order is applied to model the dependence of . Hence,

binned images are produced where is the polynomial order.

Since the nominal NSCAT resolution is 25 km, this technique

does not improve measurement resolution but is less prone to

reconstruction artifacts and noise.

The AVE algorithm is another reconstruction technique for

scatterometer image production [20]. Like the binning method,

a polynomial fit is used for each pixel to estimate the pertinent

coefficients. However, the AVE method uses a higher resolution

4.45 4.45-km grid and produces images with an effective res-

olution of 12–15 km. For a particular pixel, the polynomial fit

measurement set consists of all the measurements whose spatial

footprint response include that pixel. AVE images are produced

for each polynomial coefficient. Sample ice-masked AVE im-

ages of the Antarctic during 1996, days 270–275 are shown in

Fig. 1 in which a second-order model was employed. The im-

ages are ice masked using an NSCAT-derived method described

in [9]. Significant detail relating to surface parameters is evident

in varying , , and pixel values. The images also demon-

strate that higher order terms are increasingly sensitive to mea-

surement and reconstruction noise.

The final image reconstruction method is the scatterometer

image reconstruction (SIR) algorithm [20]. SIR is a modified

multivariate multiplicative algebraic reconstruction technique

that uses multiple passes of a satellite instrument to increase

spatial resolution [21]. Like the AVE algorithm, a 4.45-km nom-

inal pixel spacing is used. SIR reconstructed images produce an

effective resolution of approximately 10 km instead of the nom-

inal 25–50-km resolution of the instrument [22]. SIR results in

increased reconstruction artifacts as well as increased resolu-

tion. For this reason, only the first-order versus model is

used for SIR imagery.

Each of the described reconstruction algorithms have inherent

strengths and weaknesses. The binning images have the lowest

resolution, but less noise in higher order coefficients. The AVE

images have medium resolution with somewhat higher noise

levels. The SIR reconstructed images have the highest resolution

but are more sensitive to noise in the high-order coefficients. For

the Antarctic and Arctic regions, all of these methods require

six days included in the image generation to achieve full v- and

h-pol coverage with a range of incidence angles in each pixel.

Ice motion during the imaging interval can cause blurring in the

final image products particularly in the AVE and SIR images.

III. LARGE-SCALE FORWARD MODELING OF

SEA ICE BACKSCATTER

Forward models of sea ice backscatter have been developed

that predict as a function of incidence angle and impor-

tant surface parameters. Various sea ice characteristics affect

observed signatures. For example, surface roughness reduces

specular reflections and increases backscatter. Geophysically,

this parameter is important in modulating wind shearing forces

on the ice pack and can be an indicator of internal stresses.
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Liquid water content also influences backscatter signatures. In-

creased water content results in less penetration by incident mi-

crowave pulses. Hence, the backscatter is dominated by the sur-

face scattering response. Snow cover adds another layer to the

multilayer structure. Very dry snow appears electrically trans-

parent at many microwave frequencies. However, as snow liquid

water content increases, the sea ice signature is increasingly

masked. In addition, sea ice salinity plays a role in determining

backscatter responses. Brine pockets increase the effective per-

mittivity and provide volume scattering elements. Since brine

pockets are commonly ellipsoidal in shape, the orientation of

these inclusions influences the polarization response. Both

snow cover and brine pocket distribution are closely related

to sea ice age. Older ice forms typically have greater accu-

mulated snow cover. Also, sea ice aging results in increased

brine drainage. Volume scattering air bubbles often remain in

the place of old brine inclusions.

A better understanding of scattering from sea ice enhances the

ability to estimate geophysical parameters through inverse mod-

eling. Current research in the field has focused on mathemati-

cally modeling the complex process of scattering from sea ice

on small scales as a function of the previously described param-

eters. The complexity is due in part to the anisotropic nature sea

ice permittivities. A particular source of anisotropy is the verti-

cally oriented brine pockets caught within the ice crystal lattice.

In addition, sea ice is a multilayer medium with rough surface

and volume scattering contributions to the backscatter signature.

Multilayer anisotropic scattering models have been proposed

using a dyadic Green’s function as well as the first-order Born

approximation to predict backscatter coefficients [23]. Tjuatja et

al. developed a scattering model for snow-covered sea ice using

radiative transfer theory [24]. While several radiative transfer

techniques have been proposed in the past, Tjuatja’s model is

considerably more robust by accounting for non-Rayleigh par-

ticle sizes and close spacing between scatterers. An example

of sea ice forward-scatter modeling is the work of Nghiem et

al. [25] in which a polarimetric backscattering model is de-

rived. Nghiem relates ice, brine, air, and salinity properties to

backscatter signatures.

Several factors limit the use of such models in large-scale in-

version studies. First, the wide seasonal and spatial variability in

the dielectric and large-scale surface roughness properties of the

ice hamper the interpretation of the backscatter maps. Second,

the detailed ice scattering models models assume the region of

interest has relatively homogeneous scattering properties. Some

randomness is allowed in the form of random surface height or

other parameters with specified variances but, in general, the

region is considered to be spatially homogeneous. This may be

appropriate for SAR imagery where the resolution is a few tens

of meters, but scatterometer footprints have 5–50-km resolution

and thus can often cover very heterogeneous regions. Also, the

detailed models are very computationally complex. Inversion of

the models on large fields of measurements is not computation-

ally feasible. Consequently, a model for use at the lower reso-

lution found in scatterometer imagery must be based on more

general, average, large-scale parameters. Computational com-

plexity of the forward model must be simple enough to allow for

inversions of large data sets in relatively short time frames. One

such simple model assumes that sea ice scattering consists of

incoherently summed surface and volume scattering responses

[26]–[28]

(2)

where

measured ;

surface scattering ;

volume scattering ,

measurement incidence angle;

plane wave power transmission coefficient at ;

number density of subsurface scattering elements;

per particle;

volume attenuation coefficient.

This bulk model does not require a detailed description of the

ice medium. Instead, several large-scale parameters are used to

represent the mean response in the region of interest. Following

Swift [27] three primary volume scattering parameters are com-

bined into one variable, the volume scatter albedo given by

(3)

Though it is a general parameter, is related to sea ice features

such as the number of volume scattering brine pockets and air

bubbles. It is also sensitive to the effective permittivity of the sea

ice layers below the surface. Highly saline brine pockets have

higher than air bubbles resulting in greater values for the

same number density, .

This simple volume scattering model assumes only single

scattering. While multiple scattering certainly occurs in a sea

ice medium, the model assumes these are negligible compared

to the direct backscatter response. Fig. 2 shows v-pol volume

backscatter as a function of incidence angle for various values.

The signatures exhibit low dependence on incidence angle. As

increases, the level of also rises. Volume scattering occurs

primarily in ice types containing numerous inhomogeneities and

low loss such as multiyear ice. Snow layers containing crystal-

lized structures can also result in strong volume scattering con-

tributions. Hence, in the model inversion, we expect multiyear

ice forms to have relatively high when compared with younger

ice types such as first-year ice.

Surface scattering is also an integral component of the

backscatter model. Assuming that the surface can be modeled

as an ensemble of reflective facets with Gaussian slope distri-

butions, a geometric optics solution can be used [27], [29] so

that

(4)

where is the surface power reflection coefficient

at nadir and is the rms surface slope.The geometric optics so-

lution is derived under the assumption that the wavelength is

significantly smaller than the typical roughness dimensions. At

14 GHz, the corresponding wavelength is approximately 2.1 cm.

Hence, the model accounts for roughness features that are much

larger than this, while smaller roughnesses may not be fully ac-

counted for in the model. We expect that large surface roughness
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Fig. 2. Model-generated volume scattering v-pol � responses versus
incidence angle. Volume scattering responses as a function of � are shown in
the top frame. Surface scattering as a function of � = 2S is shown in the
middle assuming r(0) = 0:08 corresponding to a dielectric constant of 3.2.
The bottom frame illustrates three total scattering examples.

due to wave action, ice pack shearing forces, and ridges are well

within the bounds of this assumption. However, very small-scale

roughness due to such phenomena as wind roughening of open

water and melt ponds and very small surface inhomogeneities

are not accounted for in the model.

For the purposes of this paper, we define to simplify

the model inversion. Fig. 2 illustrates the theoretical v-pol scat-

tering responses for various values of . The plots show that as

surface slope increases, the response broadens in incidence

angle. For very smooth surfaces, a significant portion of the re-

sponse occurs below 20 incidence. Since 20 is used as the

lower cutoff for the NSCAT measurements used in the image

reconstructions, we expect that the inversion will have limited

capability in accurately identifying very low .

At Ku-band, surface scattering dominates young and

first-year ice responses that have relatively high water and brine

content. These types have significant conductivity and, hence,

high loss. Surface melting masks lower level volume scattering

and creates greater relative dependence on surface scattering

contributions. Inverse modeling of images should result in

relatively high in regions of significant surface deformation

and low values over smoother ice forms.

The two fundamental parameters in the surface scatter model,

and , are both related to important surface features. The

Fresnel reflectivity coefficient, , is directly related to the

effective permittivity of sea ice. It has been shown that lossless

sea ice permittivities are roughly between 3.0 and 4.5 [26], [30]

in the Ku-band portion of the spectrum resulting in values

within the range of 0.072–0.13. However, the forward model as-

sumes that the sea ice is lossless. While this applies reasonably

well for older ice forms such as ice bergs and multiyear ice in

winter, internal water content or surface melt introduces con-

ductivity and loss to the medium. Hence, dielectric constants

should not be directly computed from estimates of derived

from the inverse model described in the following section. Nev-

ertheless, can be used to obtain a general idea of effective

relative permittivities throughout the ice pack.

Fig. 2 shows the total scattering v-pol responses for sample

, , and values. The plots illustrate that the theoretical

versus signatures can not always be fit with a linear approxi-

mation between 20 and 60 . A linear model is appropriate for

plot a), but b) and c) clearly require higher order terms to ac-

curately represent the incidence angle dependence. In general,

the linear dependence assumption does not fit well in scenarios

with relatively low values. Swift was able to fit such plots

to SASS observations of multiyear ice in the Arctic [27],

demonstrating the ability to invert the model and estimate the

three fundamental parameters.

The three forward model parameters ( , , ) can be used

as proxy values in the interpretation of polar imagery. We expect

a close relationship to exist between these values and sea ice

type. Consequently, the parameter estimates can be used in ice

classification efforts.

IV. MODEL INVERSION METHODOLOGY

The theoretical scattering model parameters, , , and

can be estimated from observed NSCAT signatures given

sufficient incidence angle sampling. In this section, an auto-

mated inversion technique is presented for determining the three

parameters from NSCAT reconstructed imagery.

The inversion approach consists of the automated steepest de-

scent optimization of an objective function. The objective func-

tion provides a measure of the error between observed signa-

tures and estimated model parameters

(5)



REMUND AND LONG: LARGE-SCALE INVERSE Ku-BAND BACKSCATTER MODELING OF SEA ICE 1825

Fig. 3. Flowchart illustrating the inverse model simulation process.

where

total squared modeling error;

observed backscatter cross section at ;

modeled backscatter cross section at ;

vector of model parameters .

Hence, is a measure of the accuracy of the model

parameters in predicting the observed signature. The

response is computed given the versus variable-order poly-

nomial fit coefficients for a particular pixel in the reconstructed

imagery. Since total squared error is a sufficient statistic for

mean squared error, the inversion method is a minimum mean

squared error technique. Simulated three-dimensional objective

functions (given an observed signature) indicate that the

function has a well defined minimum within the range of

expected , , and . Hence, the optimal parameters are

found at the yielding minimum .

One method of automated optimization of an objective func-

tion is the steepest descent approach. Steepest descent locates

the minimum of a function in an iterative fashion through the

estimation of the local slope. The slope is obtained from the

partial derivatives of the objective function

(6)

where is the direction vector. The partial derivatives

in (6) are analytical functions of , , , and given any

location in the objective function. Consequently, can

be computed for any location vector and points in the direction

of steepest descent.

A recursive algorithm for computing the model parameters,

and thus searching for the minimum of is given by

(7)

where

vector of step sizes for each model parameter;

Schur element by element vector product operator.

The step size can be chosen in a number of ways. Steepest

descent algorithms often use step sizes that are a function of the

objective function. Hence, smaller steps are taken closer to the

minimum. For this study, a fixed step size is used

(8)

yielding model parameter estimate resolutions of 0.001, 0.002,

and 0.002 for , , and , respectively.

The algorithm is initialized with arbitrary . Simulations

indicate that the minimum is found as long as is in the

Fig. 4. Comparison of inverse model-derived responses at various orders with
the true response from the three total scattering cases in Fig. 2. Case (a) (top),
case (b) (middle), case (c) (bottom).

range of possible sea ice parameter values. For a given image

set of polynomial fit coefficients, the algorithm is run for each

pixel. The resulting products are images of , , and used

in determining the spatial distribution of important surface

parameters.

The algorithm has various strengths that make it useful in

model inversion. First, the proposed algorithm is fully auto-

mated. Many previous inverse modeling studies focusing on fit-

ting observed and forward modeled signatures have relied on

user interaction to manually perturb the model parameters until

a satisfactory match is obtained. The technique presented in this
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TABLE I
INVERSE MODEL SIMULATION EXAMPLES IN THE ABSENCE OF NOISE AND WITH INCIDENCE ANGLE SAMPLING AT EACH DEGREE IN THE RANGE � 2 [20 ; 60 ]

paper requires no user interaction and quickly estimates model

parameters given an observed versus response. This facili-

tates the production of model parameter image sequences from

scatterometer imagery. In addition, if the incidence angle de-

pendence model is sufficient (of high enough order) the algo-

rithm finds the best parameters in the minimum mean squared

error sense.

The estimated parameters provide, in effect, the mean re-

sponses over the pixel region. These are useful on acroscopic

level when viewing entire sea ice packs. We note that the prod-

ucts of the inversion technique have limited utility on very small

scales. Because the model is based on a specific forward model,

the quality of the resulting parameter estimates are directly re-

lated to the quality of the original forward model. We expect

some error since the forward model does not account for such

things as complex sea ice permittivities and small-scale rough-

ness features.

V. INVERSE MODEL SIMULATIONS

To evaluate the capability of the inversion technique, simu-

lations are designed and implemented. The simulation method-

ology is outlined in Fig. 3. First, the “ground truth” model pa-

rameters , , and are run through the forward model to

produce a versus response. This signature is then sampled

in incidence angle between 20 and 60 to simulate scatterom-

eter measurement collection. At this point, Monte Carlo scat-

terometer noise is added to each measurement using the noise

model

(9)

where

noise-added at incidence angle ;

original noiseless ;

normally distributed random variable with stan-

dard deviation .

The noise-corrupted measurements are used to obtain polyno-

mial fit coefficients. Variable degree polynomials are used to

determine the effect of model order on the inversion. The coef-

ficients are then input to the inverse model resulting in surface

parameter estimates. Error analysis is performed with the orig-

inal parameter values and the inverse model results.

For the purposes of illustration, we consider model inversion

using the total scattering cases in Fig. 2. The inverse model is

first evaluated in the absence of noise with ideal incidence angle

sampling consisting of samples at each degree from 20 to 60 .

For each case, the simulation is implemented using polynomial

Fig. 5. “Truth” parameter images, r(0), �, and �, used in the model
simulations.

Fig. 6. Inverse model r(0) parameter estimates at various � versus � model
orders and noise levels.

Fig. 7. Inverse model � parameter estimates at various � versus � model
orders and noise levels.
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Fig. 8. Inverse model � parameter estimates at various � versus � model
orders and noise levels.

fit orders from one to four to illustrate the algorithm’s perfor-

mance. The first case to be inverted is example a) from Fig. 2.

Table I contains the resulting estimates for all three parame-

ters using different reconstruction model orders. These values

demonstrate that virtually all polynomial orders provide good

estimates of the true values. Since the response is close to linear

in the 20 to 60 range that the inverse model considers, even the

first-order model performs reasonably well. Fig. 4 shows a com-

parison of the true signature with the estimated signatures

at each of the considered orders. The vertical lines at 20 and

60 incidence angle bound the range over which the signature

matching is performed. The plots are virtually indistinguishable

demonstrating the proper performance of the algorithm.

The case (b) inversion illustrates the inverse model’s perfor-

mance with nonlinearities in the true versus signature.

In Table I it is evident that the first-order model performed

poorly. The estimate is particularly erroneous. However, at

order two and above, the estimates are close to the actual values.

Fig. 4 offers a graphical interpretation of the inversion case. The

plots clearly show the poor performance of the first-order model

values.

The true response in case (c) exhibits extreme nonlinearities.

While we do not expect such a case to be common, it is included

to show the inverse model’s performance in extreme circum-

stances. For this scenario, third or fourth-order model coeffi-

cients are required as inputs to the inverse model to provide rea-

sonable estimates of the surface parameters. Fig. 4 illuminates

the situation further. These plots show the difficulty encountered

by first and second-order inputs in matching the true signature.

The sharp “elbow” in the response can only be accounted for

by third– or fourth-order polynomial fits. A greater range of in-

cidence angles included in the model would conceivably yield

better estimates at all orders. Unfortunately, scatterometers like

NSCAT do not collect measurements over such a broad range

of viewing angles.

These three simulations demonstrate that the inverse model

performs properly in the absence of noise given sufficient inci-

dence angle sampling and satisfactory polynomial fit coefficient

Fig. 9. Median absolute error of (top) r(0), (middle) �, and (bottom) �
estimates as a function of measurement noise parameter k and model order.

inputs. In actual scatterometer image reconstructions, such ideal

incidence angle sampling is not common. For six-day NSCAT

images generated at the SIR and AVE spatial resolutions of

4.45 km, average pixel regions usually encounter at least ten

hits. Hence, for the remaining simulations, incidence angle sam-

pling is performed randomly from a uniform distribution be-

tween 20 and 60 with ten samples for each realization. In ad-

dition, measurement noise is simulated using (9) and various

values. Typical NSCAT levels are in the range 0 to 0.1. In

fact, for the NSCAT Antarctic v-pol data collected from 1996

days 270–275, 97% of the values are below 0.1 and 86% are

below 0.05.

To offer more comprehensive simulations that consider a

broad range of ( , , ) triplet combinations, synthetic

“ground truth” images are constructed of each parameter that

represent all possible sample combinations of the parameters

within the ranges
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Fig. 10. Ice-masked NSCAT Antarctic A SIR image series.

These values represent ranges that cover typical sea ice surface

parameters. The images are generated using 25 evenly spaced

samples of each parameter resulting in 25 combinations. Fig. 5

shows the truth images that are used in the simulation process.

Noise-corrupted polynomial coefficient images are simulated,

which become inputs to the inverse model.

The simulations are run using the incidence angle sample

scheme described previously. Noise levels ( ) are considered

at 0.02 increments from 0 to 0.1. The results are summarized

graphically in Figs. 6–8. In Fig. 6, the estimates are shown

with values of 0, 0.04, and 0.08. The image frames demon-

strate increasing ability in the algorithm to accurately repre-

sent the left-to-right increasing gradient as the model order in-

creases. Nearly all images show that the algorithm has difficulty

in areas corresponding with very low values. As previously

noted, extremely low correspond to scattering responses that

are primarily contained below the 20 incidence angle limit for

NSCAT data. The images also exhibit that higher order models

are increasingly sensitive to noise as evident by the speckling in

the estimate frames. Thus, a trade off exists between ability to

estimate parameters accurately (on average) and sensitivity to

measurement noise.

The performance of the algorithm in estimating is shown in

Fig. 7. The image panels reveal that first-order coefficients are

not sufficient to accurately represent the surface roughness in-

duced characteristics of the forward-scattering model. The first-

order frames are nearly constant in value. In contrast, the second

to fourth-order models are much more successful in reproducing

the upward gradients in the truth image. Like , the es-

timates are increasingly sensitive to noise as order increases.

Estimates of the final parameter, , are shown in Fig. 8. Sim-

ilar trends with order exist for estimates as with the previous

two. The first-order model has difficulty generating the con-

stant frames in the truth image. However, all of the higher order

models appear to perform relatively well.

In order to provide a quantitative measure of algorithm per-

formance over all the possible parameter combinations, the me-

dian absolute error is used. This metric is computed for each

parameter as the median of the ensemble of absolute errors over

the entire truth image. The estimate images have few very large

errors caused by poor sampling or extreme noise. However, the

few outliers can skew an average error metric. The median abso-

lute error is used to reduce the confusing effects of these outliers.

Fig. 9 illustrates the error metric for the three forward-scat-

tering model parameter estimates as a function of . All of the

plots indicate that parameter estimate error is lower for higher

order models in the absence of noise. However, as rises, the

second or third-order estimates have the lowest median absolute

error. The curves also show that higher order models are increas-

ingly sensitive to , evident in steeper slopes in the error plots.

The first-order model is relatively insensitive to in all three

figures since this model performs the most averaging. From the

results in Fig. 9, we conclude that the second- or third-order

versus polynomial coefficients provide the best inputs to the

inverse model in the presence of noise. Since both offer similar

error characteristics, the second-order model is used with actual

NSCAT data as presented in the following section.

VI. RESULTS

The inversion method is applied to second-order NSCAT re-

constructed v-pol AVE imagery ( , , and ) to study the

behavior of the technique and to interpret phenomena observed

in the reconstruction images. First, the inversion is performed

on Antarctic image sequences. Three six-day Antarctic SIR im-

ages are shown in Fig. 10. While the inversion is performed on

third-order AVE imagery, enhanced resolution SIR images

are shown here for illustrative purposes. The differences be-

tween the SIR and AVE algorithm products are discussed above.

The images are ice masked using an NSCAT-derived ice edge

algorithm [9]. The three frames each show significant detail

within the ice pack. The goal of the inversion is to extract useful

surface features from these variations and to provide maps of

them. However, in this discussion we restrict ourselves to a few

general observations in supplement to other studies, e.g., [31].

An interesting phenomenon illustrated by this image sequence

is the “blooming” of values near the ice perimeter. That is,

the values increase significantly in a very short period of
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Fig. 11. Inverse model estimates of Antarctic. (Left column) r(0). (Center column) �. (Right column) �.

time in localized regions. An example is shown near the ice edge

in the outer Weddell Sea. The location of the Weddell Sea and

the Ronne Ice Shelf (to be discussed below) are indicated in the

first frame of Fig. 1. The values in this region during the day

279–284 image are significantly higher than the previous two

images. Special Sensor Microwave/Imager (SSM/I) radiometer

brightness temperatures drop significantly in the bloom area. As

described below, the inverse model is used to provide a physical

interpretation of this phenomenon.

The inverse model is implemented for the Antarctic AVE

image sets corresponding to the images in Fig. 10. Fig. 11 shows

the spatial distribution of estimates for each time interval.

Several large ice bergs with very high values are clearly

observed in the images such as B10A in the lower-left quadrant

of the image and several grounded ice bergs near the eastern

limit of the Ronne Ice Shelf. First-year ice dominates much of

the Antarctic ice pack. These regions have typically low

levels compared with ice bergs and several regions near the ice

edge. The Weddell Sea bloom is evident in increased indi-

cating an increase in the effective permittivity.

The estimates in Fig. 11 are visually more noisy than .

Areas of very smooth first-year ice have low values in the
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Fig. 12. Ice-masked NSCAT Arctic A SIR image series.

images. One example is near the western edge of the Ronne ice

shelf, which is a region of new ice growth as older ice forms are

drawn northward along the peninsula by the Weddell Gyre. The

area surrounding the previously discussed grounded bergs have

high consistent with sea ice deformations caused as the ice

pack collides with the bergs. The bloom area does not indicate

any obvious change in this parameter.

The parameter images are also shown in Fig. 11. The

highest volume scattering albedo values are found in pixels

covering ice bergs. Since ice bergs are composed of glacial ice,

they have virtually no salinity and, thus, low loss. Microwave

frequency pulses, therefore, are sensitive to scattering from

subsurface inhomogeneities. A small region of multiyear ice

near the tip of the peninsula also appears very bright in the

image. A narrow stream of older deformed ice with medium

values is also evident running through the middle of the

Weddell Sea parallel to the Ronne Ice Shelf. This line is created

by the Weddell Gyre motion pulling ice debris away from the

grounded ice bergs near the shelf. Much of the remaining ice

pack, consisting primarily of various forms of first-year ice,

have low volume scattering albedo. The only exceptions to this

are in various bloom regions. In the final image, increased

in the Weddell bloom area is accompanied by a sudden rise in

. A local refreezing event could cause the observed change in

volume scattering.

The inversion method is also applied to Arctic data. A four

AVE image set series representing the onset of Arctic summer is

used as inverse model inputs. The SIR ice-masked image series

corresponding to the AVE imagery actually used in the inversion

is illustrated in Fig. 12. As with the Antarctic case, SIR images

are shown though AVE imagery are used in the inversion. The

reconstructed SIR images exhibit greater detail in the and

images, but are more susceptible to imaging artifacts that make

them less desirable than their AVE counterparts for use in the

inversion. The Arctic ice pack is characterized by large regions

of multiyear ice exhibiting high values near the centers of

the images. Younger forms of ice have lower signatures. The

phenomenon examined in this sequence is the annual drop in

observations due to the passage of warm fronts over the ice pack

inducing significant surface melting. While the first images have

high multiyear signatures differentiating this ice type from

lower first-year ice, by the end of the image sequence the

two types are indistinguishable.

Fig. 13 contains the image estimates of Arctic . We

note that the noisy values near the pole are due to insufficient

incidence angle sampling caused by satellite orbit geometry

and the NSCAT measurement collection configuration. Un-

satisfactory sampling of the incidence angle spectrum results

in poor estimates of polynomial fit coefficients in the image

reconstruction. Consequently, very low confidence is placed on

the near-pole parameter estimates. For comparison, SSM/I-de-

rived multiyear and first-year ice concentration images are

presented in Fig. 14 for the first Arctic image in the set (1997

days 138–143). These were produced by the NASA Team

algorithm and were obtained from the National Snow and Ice

Data Center (NSIDC). The general trend in the imagery

consists of relatively high and low values for multiyear and

first-year sea ice, respectively. The melt event causes to

drop quickly over the entire multiyear area.

The distribution of surface roughness values are shown

in Fig. 13. Comparison with the ice concentration imagery of

Fig. 14 illustrates that multiyear ice has typically high levels

in contrast to lower observations over first-year ice. Newer ice

forms are typically less deformed than old ice that has been sub-

jected to wave deformation, ice pack shearing, and large-scale

roughness caused by melt/refreeze cycles. As the sequence pro-

gresses, values drop until nearly the entire multiyear region

appears similar to the first-year observations. The source of

the change may be due to surface smoothing of features due to

melting and the creation of melt ponds, [6], [10].

The estimate images of Arctic volume scattering albedo

shown in Fig. 13 illustrate the intense volume scattering con-

tributions characteristic of multiyear ice. Varying levels of

within multiyear regions can be related to the number density

of volume scatterers and mean volume scattering element cross

sections. Areas of younger ice have much lower due to higher

salinity and dielectric loss. The image progression shows de-

creasing as temperature rises and surface melting occurs. In

the last image frame, volume scattering has been almost com-

pletely masked by increased water content that reduces penetra-

tion depth. Such signatures masking makes the various ice types

completely indistinguishable at Ku-band.
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Fig. 13. Inverse model estimates of Arctic (Left column) r(0). (Center column) �. (Right column) �.

These results illustrate the utility of the inverse model in in-

terpreting the sources of scattering phenomena observed in re-

constructed NSCAT imagery. Since the model inversion method

is fully automated, large ensembles of measurements can be in-

verted providing estimates of the spatial distribution and magni-

tude of important surface parameters. These parameters can then
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Fig. 14. NSIDC SSM/I-derived multiyear (left) and first-year (right) Arctic sea ice concentration images for 1997 days 138–143.

be related to sea ice types as previously described. In general,

older ice types such as multiyear ice exhibit very high and

values in the absence of significant surface melt. In contrast,

first-year ice and other relatively young ice types have much

lower and . Smoother ice types have typically lower

levels. Temporal variations in the parameters can be used to un-

derstand the evolution of scattering mechanisms within the var-

ious ice types as considered in this section.

VII. CONCLUSION

This study has presented an inversion technique applied to

a simple, but robust forward-scattering model. The method is

fully automated requiring no user interface. Consequently, large

scatterometer polynomial fit coefficient images representing the

incidence angle dependence of can be used as inputs to the

inverse model. The algorithm is used to determine the spatial

distribution of three important surface parameters: the power

reflection coefficient at nadir, , the rms surface slope,

(represented by in the inverse model), and the volume

scattering albedo, .

Simulations of the method demonstrate the capability of the

algorithm. Higher order incidence angle dependence models

yield better estimates of the surface parameters in the absence of

noise. When noise is introduced, a trade-off exists between the

capability to estimate a wide range of possible parameter combi-

nations and sensitivity to noise. The first-order model performs

reasonably well for and estimation but cannot effectively

reproduce true values. A good balance is found in using a

second-order model.

The inverse model is applied to NSCAT Antarctic and Arctic

image sequences. The results show that the parameter images

have consistent spatial distributions. The image products are

used to interpret “blooming” phenomena in the Antarctic.

An increase in and is observed in the bloom regions with

little change in . The method is also used to analyze drastic

decreases over multiyear ice in the Arctic as the summer season

begins. The accompanying surface melt causes all three param-

eters to decrease abruptly. Surface roughness appears to be re-

duced and increased water content masks the volume scattering

contribution that give multiyear ice its characteristically high

signature.

The results of this study demonstrate the utility of one tech-

nique in inverting simple forward-scattering models for sea ice

surfaces. Validation data of surface roughness parameters, di-

electric properties, and volume scattering element characteris-

tics are needed to accurately measure the algorithm’s effective-

ness. Unfortunately, access to suitable validation data over such

large areas for this initial study was very limited and thus further

work is required. Regardless, the method can aid in the interpre-

tation of important polar geophysical phenomena.
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