
 

 

 

 

Heriot-Watt University 

Research Gateway 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

Large-scale join-idle-queue system with general service times

Citation for published version:
Foss, S & Stolyar, A 2017, 'Large-scale join-idle-queue system with general service times', Journal of
Applied Probability, vol. 54, no. 4, pp. 995-1007. https://doi.org/10.1017/jpr.2017.49

Digital Object Identifier (DOI):
10.1017/jpr.2017.49

Link:
Link to publication record in Heriot-Watt Research Portal

Document Version:
Peer reviewed version

Published In:
Journal of Applied Probability

Publisher Rights Statement:
© Cambridge University Press 2018. This is an Accepted Manuscript of an article published in the  Journal of
Applied Probability on 30 November 2017, available online: https://doi.org/10.1017/jpr.2017.49

General rights
Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and /
or other copyright owners and it is a condition of accessing these publications that users recognise and abide by
the legal requirements associated with these rights.

Take down policy
Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research
Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact open.access@hw.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 28. Aug. 2022

https://doi.org/10.1017/jpr.2017.49
https://doi.org/10.1017/jpr.2017.49
https://researchportal.hw.ac.uk/en/publications/19312d0d-063d-4ed6-859f-ce64a2810213


a
rX

iv
:1

6
0
5
.0

5
9
6
8
v
2
  
[m

a
th

.P
R

] 
 1

4
 F

e
b
 2

0
1
7

Large-scale Join-Idle-Queue system with general service times

Sergey Foss

Heriot-Watt University

EH14 4AS Edinburgh, UK

and

Novosibirsk State University

s.foss@hw.ac.uk

Alexander L. Stolyar

University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA

stolyar@illinois.edu

February 15, 2017

Abstract

A parallel server system with n identical servers is considered. The service time distribution has a finite
mean 1/µ, but otherwise is arbitrary. Arriving customers are be routed to one of the servers immediately
upon arrival. Join-Idle-Queue routing algorithm is studied, under which an arriving customer is sent to
an idle server, if such is available, and to a randomly uniformly chosen server, otherwise. We consider
the asymptotic regime where n → ∞ and the customer input flow rate is λn. Under the condition
λ/µ < 1/2, we prove that, as n → ∞, the sequence of (appropriately scaled) stationary distributions
concentrates at the natural equilibrium point, with the fraction of occupied servers being constant equal
λ/µ. In particular, this implies that the steady-state probability of an arriving customer waiting for
service vanishes.

Key words and phrases: Large-scale service systems; pull-based load distribution; Join-idle-queue, load
balancing; fluid limits; stationary distribution; asymptotic optimality

AMS 2000 Subject Classification: 90B15, 60K25

1 Introduction

We consider a parallel server system consisting of n servers, processing a single input flow of customers. The
service time of any customer by any server has the same distribution with finite mean 1/µ. Each customer has
to be assigned (routed) to one of the servers immediately upon arrival. (This model is sometimes referred to
as “supermarket” model.) We study a Join-Idle-Queue routing algorithm, under which an arriving customer
is sent to an idle server, if such is available; if there are no idle servers, a customer is sent to one of the
servers chosen uniformly at random.

We consider an asymptotic regime such that n → ∞ and the input rate is λn, where the system load
λ/µ < 1. Thus, the system remains subcritically loaded. Under the additional assumption that the service
time distribution has decreasing hazard rate (DHR), it is shown in [11] that the following property holds.

Asymptotic optimality: As n → ∞, the sequence of the system stationary distributions is such that the
fraction of occupied servers converges to constant λ/µ; consequently, the steady-state probability of an arriving
customer being routed to a non-idle server vanishes.

The results of [11] apply to far more general systems, where servers may be non-identical. However, the
analysis in [11] does rely in essential way on the DHR assumption on the service times; under this assumption
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the system process has monotonicity property, which is a powerful tool for analysis. Informally speaking,
monotonicity means that two versions of the process, such that the initial state of the first one is dominated
(in the sense of some natural partial order) by that of the second one, can be coupled so that this dominance
persists at all times.

When the service time distribution is general, the monotonicity under JIQ no longer holds, which requires
a different approach to the analysis. In this paper we prove the following

Main result (Theorem 2 in Section 2): The asymptotic optimality holds for an arbitrary service time
distribution, if the system load λ/µ < 1/2.

We believe that condition λ/µ < 1/2 is purely technical (required for the proof in this paper) and that our
main result in fact holds for λ/µ < 1, i.e. as long as the system is stable. This will be discussed in more
detail in Section 2.1.

The key feature of the JIQ algorithm (as well as more general pull-based algorithms [1, 6, 10, 11]), is that it
does not utilize any information about the current state of the servers besides them being idle or not. This
allows for a very efficient practical implementation, requiring very small communication overhead between
the servers and the router(s) [6, 10, 11]. In fact, in the asymptotic regime that we consider, JIQ is much
superior to the celebrated “power-of-d-choices” (or Join-Shortest-Queue(d), or JSQ(d)) algorithm [3,4,7,12],
in terms of both performance and communication overhead (see [10, 11] for a detailed comparison). The
JSQ(d) algorithm routes a customer to the shortest queues among the d ≥ 1 servers picked uniformly at
random.

We note that when the service time distribution is general, there is no monotonicity under JSQ(d) (just
like under JIQ in our case), and this also makes the analysis far more difficult. Specifically, the result for
JSQ(d), which is a counterpart of our main result for JIQ, is Theorem 2.3 in [3], which shows the asymptotic
independence of individual server states. (Our main result also implies asymptotic independence of server
states; see formal statement in Corollary 3.) Theorem 2.3 in [3] imposes even stronger assumptions than
ours, namely a finite second moment of the service time and load λ/µ < 1/4 (for non-trivial values of d,
which are d ≥ 2); our Theorem 2 only requires a finite first moment of the service time and load λ/µ < 1/2.

In a different asymptotic regime, so called Halfin-Whitt regime (when the system capacity exceeds its load
by O(

√
n), as opposed to O(n)), and Markov assumptions (Poisson input flows and exponentially distributed

service times), JIQ has been recently analyzed in [5, 8]. These papers study diffusion limits of the system
transient behavior; Markov assumptions appear to be essential for the analysis. Finally, we mention a recent
paper [9], which proposes and studies a version of JIQ for systems with packing constraints at the servers.

Paper organization. Section 2 gives the formal model and main result, with Section 2.1 discussing the role
of condition λ/µ < 1/2. A uniform stochastic upper bound on the individual server workload in steady-state
is derived in Section 3. Properties of the the process fluid limits are established in Section 4. Section 5
contains the proof of the main result, which relies on the above upper bound and fluid limit properties.
Generalizations of the main result are presented in Section 6.

Basic notation. The following abbreviations are used to qualify a convergence of functions: u.o.c. means
uniform on compact sets, p.o.c. means convergence at points of continuity of the limit, and a.e. means
almost everywhere w.r.t. Lebesgue measure. We say that a function is RCLL if it is right-continuous with
left-limits. A scalar function f(t), t ≥ 0, we will call Lipschitz above if there exist a constant L > 0 such that
f(t2)−f(t1) ≤ L(t2− t1) for any t1 ≤ t2. The norm of a scalar function is ‖f(·)‖ .

= supw |f(w)|. Inequalities
applied to vectors [resp. functions] are understood componentwise [resp. for every value of the argument].
Symbol ⇒ signifies convergence of random elements in distribution. Indicator of event or condition B is
denoted by I(B). Abbreviation WLOG means without loss of generality.
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2 Model and main result

We consider a service system, consisting of n parallel servers. The system is homogeneous in that all servers
are identical, with the same customer service time distribution, given by the cdf F (ξ), ξ ≥ 0. This distribution
has finite mean, which WLOG can be assumed to be 1:

∫ ∞

0

F c(ξ) = 1, where F c(ξ)
.
= 1− F (ξ).

Otherwise, the cdf F (·) is arbitrary. The service/queueing discipline at each server is arbitrary, as long as it
is work-conserving and non-idling.

Customers arrive as a Poisson process. (This assumption can be relaxed to a renewal arrival process; see
Section 6.) The arrival rate is λn, where λ < 1, so that the system load is strictly subcritical.

The routing algorithm is Join-Idle-Queue (JIQ), which is defined as follows. (The JIQ algorithm can be
viewed, in particular, as a specialization of the PULL algorithm [10, 11] to a homogeneous system with
“single router.”)

Definition 1 (JIQ). An arriving customer is routed to an idle server, if there is one available. Otherwise,
it is routed to server chosen uniformly at random.

We consider the sequence of systems with n → ∞. From now on, the upper index n of a variable/quantity
will indicate that it pertains to the system with n servers, or n-th system. Let Wn

i (t) denote the workload,
i.e. unfinished work, in queue i at time t in the n-th system. Consider the following fluid-scaled quantities:

xn
w(t)

.
= (1/n)

∑

i

I{Wn
i (t) > w}, w ≥ 0. (1)

That is, xn
w(t) is the fraction of servers i with Wn

i (t) > w. Then xn(t) = (xn
w(t), w ≥ 0) is the system state

at time t; ρn(t) ≡ xn
0 (t) is the fraction of busy servers (the instantaneous system load).

For any n, the state space of the process (xn(t), t ≥ 0) is a subset of a common (for all n) state space X ,
whose elements x = (xw , w ≥ 0) are non-increasing RCLL functions of w, with values xw ∈ [0, 1]. This state
space X is equipped with Skorohod metric, topology and corresponding Borel σ-algebra.

Then, for any n, process xn(t), t ≥ 0 is Markov with state space X , and sample paths being RCLL functions
(with values in X ), which are in turn elements of (another) Skorohod space. (The Skorohod spaces that
we defined play no essential role in our analysis; we need to specify them merely to make the process
well-defined.)

Stability (positive Harris recurrence) of the process (xn(t), t ≥ 0), for any n, is straightforward to verify.
Indeed, as long as a server remains busy, it receives each new arrival with probability at most 1/n, and
therefore receives the new work at the average rate at most λ. (We omit the details of stability proof.) Thus,
the process has unique stationary distribution. Let xn(∞) be a random element whose distribution is the
stationary distribution of the process; in other words, this is a random system state in stationary regime.

The system equilibrium point x∗ ∈ X is defined as follows. Let Φc(w) denote the complementary (or, tail)
distribution function of the steady-state residual service time; the latter is the steady-state residual time of
a renewal process with renewal time distribution function F (·). We have

Φc(w) =

∫ ∞

w

F c(ξ)dξ, w ≥ 0.

Then,
x∗ = (x∗

w = λΦc(w), w ≥ 0) ∈ X .

In particular, the equilibrium point is such that “the fraction of occupied servers” x∗
0 = λ. Our main result

is the following
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Theorem 2. If λ < 1/2, then xn(∞) ⇒ x∗ as n → ∞.

The theorem shows, in particular, that if λ < 1/2, then as n → ∞ the steady-state probability of an arriving
customer waiting for service (or sharing a server with other customers) vanishes. Theorem 2 easily generalizes
to the case when: (a) arrival process is renewal, (b) some or all servers may have finite buffers, and (c) there
may be some bias in the routing when all servers are busy. (These generalizations are described in Section 6.)

Theorem 2 implies the following

Corollary 3. Assume λ < 1/2. Suppose that JIQ is completely symmetric with respect to the servers.
Specifically, if at the time of a customer arrival there are idle servers, the customer is routed to one of them
chosen uniformly at random. Then the states of individual servers in stationary regime are asymptotically
independent. Moreover, for any fixed m, the stationary distribution of (Wn

1 , . . . ,W
n
m) converges to that of

(W̃1, . . . , W̃m), with i.i.d. components such that P{W̃1 > w} = x∗
w = λΦc(w), w ≥ 0.

Indeed, by symmetry with respect to servers, the stationary distribution of (Wn
1 , . . . ,W

n
m), i.e. of the

residual work on the fixed set of servers 1, . . . ,m, is same as that on a set of m servers, chosen uniformly at
random. But, xn(∞), which describes the overall distribution of server workloads in the system, converges
in distribution to the non-random point x∗. This implies Corollary 3.

2.1 Discussion of condition λ < 1/2.

The approach we use to establish the convergence of stationary distributions in Theorem 2 is as follows. We
find a set A ∈ X and a fixed finite time T , such that, with high probability, for all large n, (a) xn(∞) ∈ A
and (b) xn(0) ∈ A implies that xn(T ) is close to x∗. Property (b) is key. When n is large, the trajectory
xn(t) is “almost deterministic.” (In fact, the problem reduces to the analysis of “fluid limit” trajectories,
which are the limits of xn(t) as n → ∞.) Then, informally speaking, property (b) above reduces to the
property (b’): trajectories xn(t) converge to x∗ as t → ∞. The absence of process monotonicity (described
in Section 1) makes proving (b’) difficult. We now describe – very informally – the key idea, which we use
in our proof of convergence (b’), and which relies on the condition λ < 1/2.

Suppose n is large. Consider an initial state xn(0), such that the total amount of (fluid-scaled, i.e. multiplied
by 1/n) unfinished work is upper bounded by C < ∞. Pick α such that α > λ and α + λ < 1; this can be
done if and only if λ < 1/2. Then, at some finite time τ , the system must reach a state with αn servers
being idle. (Otherwise, if at least (1 − α)n servers would continue to be busy as time goes to infinity, the
unfinished work would become negative, since 1− α > λ.) Denote by Sα the set of those αn servers, which
are idle at time τ . Starting time τ , WLOG, assume that all new arriving customers go to an idle server in
Sα, as long as there is one available. Consider the subsystem, consisting only of the servers in Sα; starting
time τ and until the (random) time when all servers in Sα become busy, the behavior of this subsystem is
obviously equivalent to that of the infinite-server system, M/GI/∞, with idle initial state. If n is large, the
behavior of xn(t) for such M/GI/∞ system is “almost deterministic” and such that the (scaled) number
of occupied servers xn

0 (t) in it is “almost monotone increasing, converging to λ < α” and, moreover, xn(t)
“converges” to x∗. But this means that after time τ the subsystem Sα will “always” have idle servers, which
in turn means that its state will “converge” to x∗ as t → ∞. Also, after time τ , the subsystem consisting
of the servers outside Sα will “never” receive any new arrivals and will “eventually” empty. Thus, xn(t) for
our entire system “converges” to x∗.

Turning the key intuition, described above informally, into a formal proof is the subject of the rest of this
paper. Set A ∈ X is picked by using a constructed uniform in n upper bound on the stationary distribution
of the workload of an individual server. The states in A are such that the total (scaled) workload is not
necessarily upper bounded by a constant C (in fact, if the second moment of the service time is infinite, the
steady-state total workload in the system is infinite with probability 1); however, for states in A the (scaled)
workload is bounded by C on a close-to-1 fraction of servers – this suffices for the proofs. The property (b’)
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is proved uniformly for fluid limits starting from A – from here we obtain that (b) holds for the pre-limit
processes with high probability, uniformly for all large n.

As explained above, our proof of Theorem 2 relies in essential way on condition λ < 1/2. However, we
believe that this condition is purely technical, and Theorem 2 in fact holds for any λ < 1. Establishing this
fact will most likely require a different proof approach, although some elements of the analysis in this paper
may turn out to be useful for the proof of a more general result.

3 Uniform upper bound on a server workload distribution

Throughout this section, consider a fixed λ < 1. Consider an M/GI/1 system, with arrival rate λ and service
time distribution F (·). Let us view its workload process as regenerative with renewal points being time
instants when a customer arrives into idle system. For each w ≥ 0, denote by x∗∗

w the expectation of the
total time during one renewal cycle when the workload is greater than w. Clearly, x∗∗

w is non-increasing,
x∗∗
0 = 1/(1−λ) (the expected busy period duration) and x∗∗

w → 0, w → ∞. (We will not use the exact value
of x∗∗

0 . Also, x∗∗
w is continuous in w, but we will not use this fact either.)

Now consider our system with any fixed n. Consider a specific server i. Consider our Markov process sampled
at the “renewal” instants when there is an arrival into idle server i. Time intervals between the “renewal”
instants are “renewal cycles”. Of course, such “renewal cycles” are not i.i.d., the law of a cycle depends on
the state of the entire system at the renewal point from which the cycle starts. However, there are uniform
bounds that apply to any cycle. For a fixed w ≥ 0, the expected total time within one cycle when Wn

i > w, is
upper bounded by x∗∗

w ; indeed, as long as the server remains busy, the probability that a new arrival will be
routed to it is at most 1/n (either 1/n or 0); therefore, as long as the server remains busy, the instantaneous
arrival rate into it, is upper bounded by (λn)/n = λ. The mean duration of each cycle is lower bounded by
the mean service time of one customer, i.e. by 1. Therefore,

P{Wn
i (∞) > w} ≤ x∗∗

w , w ≥ 0, (2)

where, recall, x∗∗
w → 0, w → ∞. Bound (2) implies the following fact.

Lemma 4. Let λ < 1. Then, for any n, Exn
w(∞) ≤ x∗∗

w , w ≥ 0.

4 Fluid limits

In this section we introduce different types of the process fluid limits, which will be used later in the analysis.

We will assume that, given a fixed initial state xn(0), the realization of the process is determined by a common
(for all n) set of driving processes. Specifically, there is a common, rate 1, Poisson process, Π(t), t ≥ 0,; the
number of arrivals in the n-th system by time t is Π(nλt). There is also a common sequence of i.i.d. random
variables with distribution F (·), which determines the service times of arriving customers (in the order of
arrivals). Let Gn(t, w), t ≥ 0, w ≥ 0, be the number of customer arrivals in the n-th system, by time t,
with the service times greater than w. Let gn(t, w) = (1/n)Gn(t, w) and g(t, w)

.
= λtF c(w). Then, we have

the following functional strong law of large numbers (FSLLN):

‖gn(t, ·)− g(t, ·)‖ → 0, as n → ∞, u.o.c. (in t), w.p.1. (3)

Indeed, for any fixed t > 0, the total number of arrivals in [0, t], scaled by 1/n, converges to λt w.p.1; this
and Glivenko-Cantelli theorem (cf. [2], Theorem 20.6, page 269) imply that ‖gn(t, ·) − g(t, ·)‖ → 0, w.p.1.
But, all gn(t, w) and gn(t, w) are non-decreasing in t, and g(t, w) is continuous in t; this easily implies that
the convergence in (3) is uniform w.p.1.
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The routing of arriving customers to idle servers, when such are available, is completely arbitrary WLOG; it
will be specified later, in a way convenient for the analysis. The routing of arriving customers to the servers,
in cases when all servers are busy is determined by a sequence if i.i.d. random variables, uniformly distributed
in [0, 1); these random variables are used sequentially “as needed”; in the n-th system, a customer is routed
to server i if the corresponding random variable value is in [(i − 1)/n, i/n). (The specific construction of
routing to busy servers will not be important; we need to specify it somehow, to have the process well
defined.)

It will be convenient for every n, in addition to the actual system with n servers, to consider the corresponding
infinite server system; in such system all arrivals always go to idle servers. For a given n, for the infinite
server system the fluid-scaled quantities xn

w(t) are still defined by (1), i.e. as the total number of servers
with Wn

i > w, multiplied by 1/n.

For every t ≥ 0, let us define x↑(t) = (x↑
w(t), w ≥ 0) ∈ X ,

x↑
w(t) =

∫ t

0

F c(w + t− θ)λdθ =

∫ w+t

w

F c(ξ)λdξ.

Clearly, x↑
w(t) is non-decreasing in t, and

x↑
w(t) ↑ x∗

w, t → ∞, ∀w.

As functions of w, all x↑
w(t) and x∗

w are non-negative, continuous, non-decreasing and converging to 0 as
w → ∞; therefore, the above pointwise convergence implies uniform convergence

‖x↑(t)− x∗‖ → 0, t → ∞.

The following Lemma 5 is a standard fact. Informally speaking, it states that x↑(·) is the “fluid limit”, in
n → ∞, of xn(·) for the infinite-server system, starting from idle initial state. We state this fact in a form
that is convenient for our analysis, and since it easily follows from (3), we give a proof as well.

Lemma 5. Fix arbitrary λ ≥ 0. (Here λ ≥ 1 is allowed.) Let xn(·) be the process describing the infinite-
server system, starting from idle initial state, that is, xn

0 (0) = 0. Then, w.p.1,

‖xn(t)− x↑(t)‖ → 0, u.o.c. (4)

Proof. Fix t and w. By definition, xn
w(t) is the scaled number of customers in the system, having the residual

service time greater than w. A customer arriving at time θ ∈ [0, t] counts into that number if and only if its
service time is greater than t+ w − θ. Let points 0 = t0 < t1 < . . . < tκ = t partition the interval [0, t) into
κ subintervals [tk, tk+1). (W.p.1 there are no arrivals at t.) Then,

κ−1∑

k=0

[gn(tk+1, t+ w − tk)− gn(tk, t+ w − tk)] ≤ xn
w(t) ≤

κ−1∑

k=0

[gn(tk+1, t+ w − tk+1)− gn(tk, t+ w − tk+1)].

By (3), w.p.1 the lower and upper bounds converge to

κ−1∑

k=0

λ[tk+1 − tk]F
c(t+ w − tk) and

κ−1∑

k=0

λ[tk+1 − tk]F
c(t+ w − tk+1),

respectively. Considering a sequence of partitions with maximum subinterval size vanishing, and taking into
account that F c is non-increasing, we obtain probability 1 convergence xn

w(t) → x↑
w(t). Since x↑

w(t) and all
xn
w(t) are non-negative non-increasing in w, x↑

w(t) is continuous in w, and x↑
w(t) → 0 as w → ∞, we obtain

probability 1 convergence ‖xn(t) − x↑(t)‖ → 0, for any t; since x↑
w(t) is continuous non-decreasing in t, this

convergence is u.o.c. in t. ✷

Sometimes, it will be convenient to divide the set of servers into two or more subsets, and keep track of the
workloads in those subsets separately. For example, suppose at time 0 the set of all servers, let us call it
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S, is divided (for each n) at time 0 into two non-intersecting subsets, S1 and S2, and these subsets do not
change with time. Then, for ℓ = 1, 2, (ℓ)xn

w(t) is the fraction of servers (out of the total number n) which are
in Sℓ and have workload Wn

i > w, w ≥ 0; (ℓ)ρn(t) = (ℓ)xn
0 (t). Of course, x(t) = (1)x(t) + (2)x(t). However,

often we will consider (ℓ)x(t) for only one of the subsets Sℓ.

The following fact is a corollary of Lemma 5.

Lemma 6. Let 0 ≤ λ < 1 and let λ < α < 1. Consider the finite server system. Assume that for all n, the
initial states are such that xn

0 (0) = ρn(0) ≤ 1 − α. For each n, consider the subset S1 = S1(n), consisting
of αn servers that are initially idle. Assume WLOG that any new arrival will go to an idle server in S1, if
there is one available. Then, w.p.1, the following holds:

‖(1)xn(t)− x↑(t)‖ → 0, u.o.c., (5)

and for any fixed t, for all sufficiently large n, all new arrivals in [0, t] will go to idle servers in S1.

Proof. The behavior of the system restricted to subset S1 of servers is equivalent to that of the infinite server
system starting from idle state, as long as there are idle servers in S1. By Lemma 5, w.p.1 the trajectory of
the (scaled) infinite-server system converges (u.o.c.) to the trajectory x↑(t), such that the (scaled) number
of occupied server increases and converges to λ < α. This implies that w.p.1. the following holds for the
system restricted to subset S1: for any fixed time t ≥ 0, for all sufficiently large n, subset S1 will have idle
servers in the entire interval [0, t], and then the system behavior coincides with that of the infinite-server
system. This property implies (5), and contains the last statement of the lemma. ✷

Let (ℓ)Wn(t) denote the total (fluid-scaled) unfinished work at time t within a given subset Sℓ of servers:

(ℓ)Wn(t) =

∫ ∞

0

(ℓ)xn
w(t)dw.

The case Sℓ = S is allowed.

Denote by (ℓ)W a,n(t) and (ℓ)W d,n(t) the amount of (fluid-scaled) work that, respectively, arrived into and
processed by subset Sℓ in the interval [0, t]. Denote by (ℓ)ρa,n(t) the (fluid-scaled) number of arrivals in [0, t]
into Sℓ, that went into idle servers; such arrivals, and only they, cause +1/n jumps of (ℓ)ρn. Analogously, let
(ℓ)ρd,n(t) denote the (fluid-scaled) number of times in [0, t] when a customer service completion occurred in
Sℓ, that left a server idle; such departures, and only they, cause −1/n jumps of (ℓ)ρn. Functions (ℓ)W a,n(t),
(ℓ)W d,n(t), (ℓ)ρa,n(t) and (ℓ)ρd,n(t) are non-decreasing by definition, equal to 0 at t = 0. The following
relations obviously hold for all t ≥ 0:

(ℓ)Wn(t) = (ℓ)W a,n(t)− (ℓ)W d,n(t), (ℓ)ρn(t) = (ℓ)ρa,n(t)− (ℓ)ρd,n(t), (6)

(ℓ)W d,n(t) =

∫ t

0

(ℓ)ρn(ξ)dξ. (7)

For future reference let us also note the obvious fact that if there were no new arrivals into Sℓ in some time
interval (t1, t2], then

(ℓ)Wn(t2)− (ℓ)Wn(t1) = −( (ℓ)W d,n(t2)− (ℓ)W d,n(t1)) = −
∫ t2

t1

(ℓ)ρn(ξ)dξ. (8)

Lemma 7. Let λ ≥ 0. Consider the finite server system. For each n consider a subset S1 = S1(n), consisting
of σn servers, 0 ≤ σ ≤ 1. (The case σ = 1 is when S1 = S.) Consider a fixed sequence (in n) of initial
states, such that (1)Wn(0) ≤ C < ∞, ∀n. Then, w.p.1, for any subsequence of n, there exists a further
subsequence, along which the following holds:

(1)Wn(t) → (1)W (t), u.o.c., (9)

where (1)W (·) is a Lipschitz continuous function with (1)W (0) ≤ C;

(1)ρn(t) → (1)ρ(t), p.o.c., (10)
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where (1)ρ(·) is a RCLL function, which is Lipschitz above and (1)ρ(t) ∈ [0, σ], ∀t;
(1)W ′(t) ≤ λ− (1)ρ(t), a.e. (11)

Proof. Within this proof, when we say that a function is Lipschitz continuous (resp., Lipschitz above), we
always mean that it is Lipschitz continuous (resp., Lipschitz above) uniformly in n.

From FSLLN (3) we have the following fact. W.p.1, for any subsequence of n, there exists a further
subsequence, along which

(1)ρa,n(t) → (1)ρa(t), (1)W a,n(t) → (1)W a(t), u.o.c., n → ∞.

where (1)ρa(·) and (1)W a(·) are Lipschitz continuous non-decreasing, with Lipschitz constant equal λ. Also,
clearly, all functions (1)W d,n(·) are non-decreasing Lipschitz continuous, so that we can choose a further
subsequence, if necessary, along which

(1)W d,n(t) → (1)W d(t), u.o.c., n → ∞,

where (1)W d(·) is Lipschitz continuous non-decreasing. This implies (9) with (1)W (t) = (1)W a(t)− (1)W d(t).

To show (10), observe that non-decreasing functions (1)ρd,n(t) are uniformly bounded on any finite interval
(because functions (1)ρa,n(t) and (1)ρn(t) are, along the chosen subsequence). Then, we can choose a further
subsequence, if necessary, such that

(1)ρd,n(t) → (1)ρd(t), p.o.c., n → ∞, (12)

where (1)ρd(·) is RCLL non-decreasing. (Here we use a version of Helly’s selection theorem; cf. [2], Theorem
25.9, page 336.) This proves (10) with (1)ρ(t) = (1)ρa(t)− (1)ρd(t).

Note that the p.o.c. convergence in (12) implies a.e. (in t) convergence. Then, by taking limit in (7), we
obtain

(1)W d(t) =

∫ t

0

(1)ρ(ξ)dξ.

This and the fact that (1)W a(·) is Lipschitz continuous with Lipschitz constant λ, imply (11). ✷

5 Proof of Theorem 2

Here we only consider the finite systems (with n servers in n-th system). Consider a fixed λ < 1/2.

By Lemma 4, for each n we have Exn
w(∞) ≤ x∗∗

w , where x∗∗
w is non-increasing and limw→∞ x∗∗

w = 0. Then
for any δ1 > 0 we can choose a sufficiently large b, such that Exn

b (∞) ≤ δ1. This in turn implies that for any
ǫ > 0 and any δ > 0 we can pick sufficiently large b > 0, such that

P{xn
b (∞) ≤ δ} ≥ 1− ǫ, ∀n. (13)

For each n consider the stationary version of process xn(·); then, for any t, xn(t) is equal in distribution to
xn(∞) (by the definition of the latter). Choose δ > 0 small enough so that λ + δ < 1/2. For this δ and
arbitrarily small fixed ǫ > 0, choose b > 0 such that (13) holds. Then, (13) implies

P{condition (15) holds} ≥ 1− ǫ, ∀n, (14)

xn(0) is such that ∃ a subset S2 = S2(n) of (1− δ)n servers, each with workload at most b. (15)

Then, to complete the proof of Theorem 2, it suffices to prove the following
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Lemma 8. For any δ2 > 0 there exists T > 0, which depends on ǫ, δ, b, such that, uniformly on fixed initial
states xn(0) satisfying (15),

P{‖xn(T )− x∗‖ ≤ δ + δ2 | xn(0)} → 1, n → ∞. (16)

Indeed, if Lemma 8 holds, then for δ, ǫ, b, δ2, T chosen as specified above, and arbitrarily small ǫ2 > 0, for all
sufficiently large n, uniformly on xn(0) satisfying (15),

P{‖xn(T )− x∗‖ ≤ δ + δ2 | xn(0)} ≥ 1− ǫ2.

This and (14) imply that for all sufficiently large n

P{‖xn(T )− x∗‖ ≤ δ + δ2} ≥ (1− ǫ)(1− ǫ2).

But, δ, δ2, ǫ, ǫ2 can be chosen arbitrarily small, and recall that xn(T ) is equal in distribution to xn(∞). This
proves Theorem 2.

Proof of Lemma 8. To establish (16) it will suffice to show that for some fixed T the following holds for
any fixed sequence of initial states xn(0), satisfying (15): the process can be constructed in such a way that
w.p.1 for all sufficiently large n,

‖xn(T )− x∗‖ ≤ δ + δ2. (17)

Fix τ > 2b/(λ+ δ/2). Fix T > τ . (The choice of T will be specified later.) For each n, at initial time 0, fix
a subset of servers S2 as in condition (15); let S1 = S \ S2 be the complementary subset of servers – its size
is δn. Clearly, for each n,

(2)Wn(0) ≤ b, (1)ρn(t) ≤ δ, ∀t.
Consider Markov (stopping) time τn, defined as the smallest time t in [0, τ ], such that (2)ρn(t) ≤ λ+ δ/2; if
there is no such t, then τn = ∞ by convention. The construction of the process in [0, T ] will be as follows:
in the interval [0, τn] it is driven by one set of driving processes, and in (τn, T ] it is driven by a different,
independent set of driving processes with the same law. (However, these two sets of driving processes are
common for all n.) In other words, at time τn the process is “restarted,” with the state at τn serving as
initial state and with a new independent set of driving processes. By convention, if τn = ∞, the process is
not restarted.

We see that w.p.1 for all sufficiently large n,
τn < τ. (18)

Indeed, if we apply Lemma 7 to (2)xn(t) starting time 0, we see that any fluid limit ((2)W (·), (2)ρ(·)) that
can arise is such that (2)W (0) ≤ b and there exists t′ ≤ τ/2 such that (2)ρ(t′) ≤ λ+ δ/2. (Otherwise (2)W (t)
would become negative.) This implies (18).

Similarly we see that w.p.1 for all sufficiently large n,

(2)Wn(τn) ≤ b1
.
= b + 2λτ. (19)

Now, consider any fixed sequence of τn < τ and fixed states at τn, satisfying (18) and (19). (Recall that
starting τn, the process is controlled by a new independent set of driving processes.) Starting time τn we
keep the subset S1 as it was, but split S2 into two subsets S3 and S4 as follows: S4 will consists of (1/2)n idle
(at τn) servers (which exist by (18)), and S3 = S2\S4 will include the remaining [(1−δ)−1/2]n = (1/2−δ)n
servers from S2. Clearly, (3)Wn(τn) = (2)Wn(τn) ≤ b1. To summarize, starting τn, the set of servers S is
divided into three subsets, S1, S3 and S4, with sizes δn, (1/2− δ)n and (1/2)n, respectively. Also, WLOG
we assume that starting τn all new arrivals go to subset S4, as long as there are idle servers in it. Applying
Lemma 6, we obtain that w.p.1 for all sufficiently large n, in the interval [τn, T ], all new arrivals go to subset
S4.
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We now specify the choice of T . It has to satisfy two conditions. First, it has to be large enough, so that for
any t ≥ T − τ , ‖x↑(t)− x∗‖ ≤ δ2/3. Second, it has to be large enough so that

T − τ > b1/(δ2/3).

Then applying Lemma 6 and (8), we obtain that w.p.1 for all sufficiently large n,

‖(4)xn(T )− x∗‖ < δ2/2,

(3)ρn(T ) < δ2/2;

this in turn implies (17). ✷

6 Generalizations

6.1 Renewal arrival process

The assumption that the arrival process is Poisson is made to simplify the exposition. Our main result,
Theorem 2, and the analysis easily generalize to the case when the arrival process is renewal; in the n-th
system the interarrival times are i.i.d., equal in distribution to A/n, where A is a positive random variable,
EA = 1/λ. (Mild assumptions on the interarrival time distribution are needed to make sure that the process
is positive Harris recurrent. For example, it suffices that this distribution has an absolutely continuous
component.) The common process state space contains an additional scalar variable u, which is the residual
interarrival time; clearly un(∞) ⇒ 0 as n → ∞. The more general form of Theorem 2 is as follows:

If λ < 1/2, then (un, xn)(∞) ⇒ (0, x∗).

The construction of the uniform stochastic upper bound on a single server workload generalizes as follows.
For each n the arrival process into a server, when it is busy, is dominated by a renewal process which is the
thinned with probability 1/n arrival process into the system. (In other words, as before, the dominating
arrival process into a server, as long as the server remains busy, is such that every new arrival into the system
goes to this server with probability 1/n.) The interarrival times of this renewal process are i.i.d. with the
distribution equal to that of a random variable An; its mean is EAn = 1/λ for any n, but the distribution
depends on n. However, as n → ∞, the distribution of An converges to the exponential distribution. (This
is a well known property that a thinned with probability 1/n and sped up in time by factor n renewal
process converges to Poisson process. And it is easy to check directly, since An is a sum of the geometrically
distributed, with mean n, number of independent instances of A/n.) Then, for arbitrarily small δ > 0, there
exists a non-negative random variable Aδ, such that 1/λ − δ ≤ EAδ < 1/λ, and the distribution of Aδ is
dominated by that of An for all sufficiently large n. (For example, if Ã has exponential distribution with
mean 1/λ, we can choose Aδ = ((Ã ∧ C) − ǫ) ∨ 0, where C > 0 is large, ǫ > 0 is small, and ∧, ∨ denote
minimum and maximum, respectively.) We fix δ > 0 such that 1/λ− δ > 1, and then EAδ > 1. For all large
n, the renewal arrival process with interarrival times distributed as Aδ (and then the arrival rate 1/EAδ < 1),
dominates (pathwise, using natural coupling) the arrival process into an individual server, as long as the
server remains busy. Therefore, the workload during the busy period under interarrival times Aδ, dominates
that under interarrival times An. The rest of the construction of the uniform stochastic upper bound on a
single server workload is same. And after this bound is established, the rest of the proof of the main result
remains essentially same as well, with slight adjustments.

6.2 Biased routing when all servers busy

Examination of the proof of Theorem 2 shows that the specific rule – uniform at random – for routing
arriving customers when all servers are busy, is only used to obtain the process stability (positive Harris
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recurrence) and the uniform stochastic upper bound on a single server workload. In the rest of the proof,
this specific rule is not used; we only use the fact that customers must go to idle servers if there are any.
But, for the stability and workload upper bound, it suffices that the arrival rate into a server when it is busy
is upper bounded by some λ̄ < 1, not necessarily by λ < 1/2. This shows that Theorem 2 holds as is, even if
routing when all servers are busy is biased in arbitrary way, as long as the probability that a server receives
an arrival does not exceed (1/n)(λ̄/λ) for some λ̄ < 1.

6.3 Finite buffers

The main result, Theorem 2, holds as is if we allow some or all servers to have finite buffers (of same or
different sizes). If a server has finite buffer of size B ≥ 1, and already has B customers, any new customer
routed to to this server is blocked and leaves the system. It should be clear that our proof of Theorem 2
works for this more general system; additional “losses” of arriving customers do not change the stochastic
upper bound on a steady-state server workload; and the rest of the proof remains essentially unchanged,
except a more cumbersome state space description.
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