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Abstract Representations of probability measures in repro-
ducing kernel Hilbert spaces provide a flexible framework
for fully nonparametric hypothesis tests of independence,
which can capture any type of departure from independence,
including nonlinear associations and multivariate interac-
tions. However, these approaches come with an at least
quadratic computational cost in the number of observations,
which can be prohibitive in many applications. Arguably, it
is exactly in such large-scale datasets that capturing any type
of dependence is of interest, so striking a favourable trade-
off between computational efficiency and test performance
for kernel independence tests would have a direct impact
on their applicability in practice. In this contribution, we
provide an extensive study of the use of large-scale kernel
approximations in the context of independence testing, con-
trasting block-based, Nystrom and random Fourier feature
approaches. Through a variety of synthetic data experi-
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ments, it is demonstrated that our large-scale methods give
comparable performance with existing methods while using
significantly less computation time and memory.
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1 Introduction

Given a paired sample z = {(x;, y;)}/L with each (x;, y;) €
X x Y independently and identically following the joint
distribution Pyy on some generic domains A" and )/, the non-
parametric independence problem consists of testing whether
we should reject the null hypothesis Ho : Pxy = Px Py in
favour of the general alternative hypothesis H; : Pxy #
Px Py, where Py and Py are the marginal distributions
for X and Y, respectively. This problem is fundamental
and extensively studied, with wide-ranging applications in
statistical inference and modelling. Classical dependence
measures, such as Pearson’s product-moment correlation
coefficient, Spearman’s p, Kendall’s 7 or methods based on
contingency tables are typically designed to capture only
particular forms of dependence (e.g. linear or monotone).
Furthermore, they are applicable only to scalar random
variables or require space partitioning limiting their use to
relatively low dimensions. As availability of larger datasets
also facilitates building more complex models, dependence
measures are sought that capture more complex depen-
dence patterns and those that occur between multivariate and
possibly high-dimensional datasets. In this light, amongst
the most popular dependence measures recently have been
those based on characteristic functions (Székely et al. 2007;
Székely and Rizzo 2009) as well as a broader framework
based on kernel methods (Gretton et al. 2005, 2008). A

m
1

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11222-016-9721-7&domain=pdf
http://orcid.org/0000-0001-5465-7356

114

Stat Comput (2018) 28:113-130

desirable property of consistency against any alternative—
i.e. test power provably increasing to one with the sample
size regardless of the form of dependence, is warranted for
statistical tests based on such approaches. However, this
is achieved at an expense of computational and memory
requirements that increase at least quadratically with the
sample size, which is prohibitive for many modern appli-
cations. Thus, a natural question is whether a favourable
trade-off between computational efficiency and test power
can be sought with appropriate large-scale approximations.
As we demonstrate, several large-scale approximations are
available in this context and they lead to strong improvements
in power-per-computatonal unit performance, resulting in a
fast and flexible independence testing framework respon-
sive to all forms of dependence and applicable to large
datasets.

The key quantity we consider is the Hilbert—Schmidt
independence criterion (HSIC) introduced by Gretton et al.
(2005). HSIC uses the distance between the kernel embed-
dings of probability measures in the reproducing kernel
Hilbert space (RKHS) (Gretton et al. 2008; Zhang et al.
2011; Smola et al. 2007). By building on decades of research
into kernel methods for machine learning (Scholkopf and
Smola 2002), HSIC can be applied to multivariate obser-
vations as well as to those lying in non-Euclidean and
structured domains, e.g. Gretton et al. (2008) considers inde-
pendence testing on text data. HSIC has also been applied
to clustering and learning taxonomies (Song et al. 2007;
Blaschko and Gretton 2009), feature selection (Song et al.
2012), causal inference (Peters et al. 2014; Flaxman et al.
2015; Zaremba and Aste 2014) and computational linguistics
(Nguyen and Eisenstein 2016). A closely related dependence
coefficient that measures all types of dependence between
two random vectors of arbitrary dimensions is the distance
covariance (dCov) of Székely et al. (2007), Székely and
Rizzo (2009), which measures distances between empirical
characteristic functions or equivalently measures covari-
ances with respect to a stochastic process (Székely and
Rizzo 2009), and its normalised counterpart, distance corre-
lation (dCor). RKHS-based dependence measures like HSIC
are in fact extensions of dCov—Sejdinovic et al. (2013b)
shows that dCov can be understood as a form of HSIC
with a particular choice of kernel. Moreover, dCor can be
viewed as an instance of kernel matrix alignment of Cortes
et al. (2012). As we will see, statistical tests based on esti-
mation of HSIC and dCov are computationally expensive
and require at least O(m?) time and storage complexity,
where m is the number of observations, just to compute
an HSIC estimator which serves as a test statistic. In addi-
tion, the complicated form of the asymptotic null distribution
of the test statistics necessitates either permutation testing
(Arcones and Gine 1992) (further increasing the computa-
tional cost) or even more costly direct sampling from the
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null distribution, requiring eigendecompositions of kernel
matrices using the spectral test of Gretton et al. (2009), with
a cost of O(m>).! These memory and time requirements
often make the HSIC-based tests infeasible for practition-
ers.

In this paper, we consider several ways to speed up
the computation in HSIC-based tests. More specifically, we
introduce three fast estimators of HSIC: the block-based
estimator, the Nystrom estimator and the random Fourier
feature (RFF) estimator and study the resulting indepen-
dence tests. In the block-based setting, we obtain a simpler
asymptotic null distribution as a consequence of the cen-
tral limit theorem in which only asymptotic variance needs
to be estimated—we discuss possible approaches for this.
RFF and Nystrom estimators correspond to the primal finite-
dimensional approximations of the kernel functions and as
such also warrant estimation of the null distribution in linear
time—we introduce a novel spectral tests based on eigen-
decompositions of primal covariance matrices, which avoid
permutation approach and significantly reduce the com-
putational expense for the direct sampling from the null
distribution.

1.1 Related work

Some of the approximation methods considered in this paper
were inspired by their use in a related context of two-
sample testing. In particular, the block-based approach for
two-sample testing was studied in Gretton et al. (2012b, a),
Zaremba et al. (2013) under the name of linear time MMD
(maximum mean discrepancy), i.e. the distance between the
mean embeddings of the probability distributions in the
RKHS. The approach estimates MMD on a small block
of data and then averages the estimates over blocks to
obtain the final test statistic. Our block-based estimator
of HSIC follows exactly the same strategy. On the other
hand, The Nystrom method (Williams and Seeger 2001;
Snelson and Ghahramani 2006) is a classical low-rank ker-
nel approximation technique, where data are projected into
lower-dimensional subspaces of RKHS (spanned by so-
called inducing variables). Such an idea is popular in fitting
sparse approximations to Gaussian process (GP) regres-
sion models, allowing reduction in the computational cost
from O(m3) to O(n*m) where n <« m is the number of
inducing variables. To the best of our knowledge, Nystrom
approximation was not studied in the context of hypothe-
sis testing. Random Fourier feature (RFF) approximations

' An alternative approach applicable to scalar variables uses kernel-
based methods combined with a copula transformation (Péczos et al.
2012) can be used to tabulate the null distribution, but this approach
is not straightforward to generalise to modelling dependence between
random vectors.
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(Rahimi and Recht 2007), however, due to their relation-
ship with evaluations of empirical characteristic functions,
do have a rich history in the context of statistical testing—as
discussed in Chwialkowski et al. (2015), which also pro-
poses an approach to scale up kernel-based two-sample tests
by additional smoothing of characteristic functions, thereby
improving the test power and its theoretical properties. More-
over, the approximation strategy of MMD and two-sample
testing through primal representation using RFF have also
been studied in Zhao and Meng (2015), Sutherland and
Schneider (2015), Lopez-Paz (2016). In addition, Lopez-Paz
et al. (2013) first proposed the idea of applying RFF in order
to construct an approximation to a kernel-based dependence
measure. More specifically, they develop randomised canon-
ical correlation analysis (RCCA) (see also Lopez-Paz 2014,
2016) approximating the nonlinear kernel-based generalisa-
tion of the canonical correlation analysis (Lai and Fyfe 2000;
Bach and Jordan 2002) and using a further copula transfor-
mation, construct a test statistic termed RDC (randomised
dependence coefficient) requiring O (m log m) time to com-
pute. Under suitable assumptions, Bartlett’s approximation
(Mardia et al. 1979) provides a closed form expression for
the asymptotic null distribution of this statistic which fur-
ther results in a distribution-free test, leading to an attractive
option for large-scale independence testing. We extend these
ideas based on RFF to construct approximations of HSIC
and dCov/dCor, which are conceptually distinct kernel-based
dependence measures from that of kernel CCA, i.e. they mea-
sure different types of norms of RKHS operators (operator
norm vs Hilbert—Schmidt norm).

In fact, the Nystrom and RFF approximations can also
be viewed through the lense of nonlinear canonical analysis
framework introduced by Dauxois and Nkiet (1998). This is
the earliest example we know where nonlinear dependence
measures based on spectra of appropriate Hilbert space oper-
ators are studied. In particular, the cross-correlation operator
with respect to a dictionary of basis functions in L> (e.g. B-
splines) is considered in Dauxois and Nkiet (1998). Huang
et al. (2009) links this framework to the RKHS perspective.
The functions of the spectra that were considered in Daux-
ois and Nkiet (1998) are very general, but the simplest one
(sum of the squared singular values) can be recast as the nor-
malised cross-covariance operator (NOCCO) of Fukumizu
et al. (2008), which considers the Hilbert—Schmidt norm of
the cross-correlation operator on RKHSs and as such extends
kernel CCA to consider the entire spectrum. While in this
work we focus on HSIC (Hilbert—Schmidt norm of the cross-
covariance operator), which is arguably the most popular
kernel dependence measure in the literature, a similar Nys-
trom or RFF approximation can be applied to NOCCO as
well—we leave this as a topic for future work.

The paper is structured as follows: in Sect.2, we first
provide some necessary definitions from the RKHS theory

and review the aforementioned Hilbert—Schmidt indepen-
dence criterion (HSIC) and discuss its biased and unbiased
quadratic time estimators. Then, Sect.2.3 gives the asymp-
totic null distributions of estimators (proofs provided in
Section A). In Sect.3, we develop a block-based HSIC esti-
mator and derive its asymptotic null distribution. Following
this, a linear time asymptotic variance estimation approach
is proposed. In Sects. 4.1 and 4.2, we propose Nystrom HSIC
and RFF HSIC estimator, respectively, both with the corre-
sponding linear time null distribution estimation approaches.
Finally, in Sect.5, we explore the performance of the three
testing approaches on a variety of challenging synthetic data.

2 Background

This section starts with a brief overview of the key con-
cepts and notation required to understand the RKHS theory
and kernel embeddings of probability distributions into the
RKHS. It then provides the definition of HSIC which will
serve as a basis for later independence tests. We review the
quadratic time biased and unbiased estimators of HSIC as
well as their respective asymptotic null distributions. As the
final part of this section, we outline the construction of inde-
pendence tests in quadratic time.

2.1 RKHS and embeddings of measures

Let Z be any topological space on which Borel measures can
be defined. By M (Z) we denote the set of all finite-signed
Borel measures on Z and by ML(Z) the set of all Borel prob-
ability measures on Z. We will now review the basic concepts
of RKHS and kernel embeddings of probability measures.
For further details, see Berlinet and Thomas-Agnan (2004),
Steinwart and Christmann (2008), Sriperumbudur (2010).

Definition 1 Let H be a Hilbert space of real-valued func-
tion defined on Z. A function k : Z x Z — R is called a
reproducing kernel of H if:

1. Vze Z,k(-,2) € H
2.Vz€ ZNVNf e H, {f k(.2 = f2).

If ‘H has a reproducing kernel, it is called a reproducing
kernel Hilbert space (RKHS).

As a direct consequence, for any x, y € Z,
k(x,y) = (k(, x), k(. Y))n. ey

In machine-learning literature, a notion of kernel is under-
stood as an inner product between feature maps (Steinwart
and Christmann 2008). By (1), every reproducing kernel is
a kernel in this sense, corresponding to a canonical feature
map x — k(-, x).
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For x, y € R”, some examples of reproducing kernels are

— Linear kernel: k(x, y) = xT y;

— Polynomial kernel of degree d € N: k(x,y) = T y
+ D%

— Gaussian kernel with bandwidth ¢ > 0: k(x,y) =
exp(— L,

— Fractional Brownian motion covariance kernel with
parameter & € (0,1): k(x,y) = 3 (IIx[I** + [[y]*"

—[lx — yI*")

Checking whether a given function £ is a valid reproduc-
ing kernel can be onerous. Fortunately, the Moore—Aronszajn
theorem (Aronszajn 1950) gives a simple characterisation:
for any symmetric, positive-definite functionk : Z x Z —
R, there exists a unique Hilbert space of functions H defined
on Z such that k is reproducing kernel of H (Berlinet and
Thomas-Agnan 2004). RKHS are precisely the space of
functions where norm convergence implies pointwise con-
vergence and are as a consequence relatively well behaved
comparing to other Hilbert spaces. In nonparametric test-
ing, as we consider here, a particularly useful setup will
be representing probability distributions and, more broadly,
finite-signed Borel measures v € M (Z) with elements of an
RKHS (Smola et al. 2007).

Definition 2 Let k& be a kernel on Z, and v € M(Z). The
kernel embedding of measure v into the RKHS Hy is
Uk (v) € Hy such that

/f(z)dv(z) = (fs kW), Vf € Hg. 2

It is understood from this definition that the integral of
any RKHS function f under the measure v can be evaluated
as the inner product between f and the kernel embedding
i (v) in the RKHS Hy . As an alternative, the kernel embed-
ding can be defined through the use of Bochner integral
ui(v) = f k(-, z)dv(z). Any probability measure is mapped
to the corresponding expectation of the canonical feature
map. By Cauchy—Schwarz inequality and the Riesz repre-
sentation theorem, a sufficient condition for the existence
of an embedding of v is that v € M,l/ Z(Z), where we
adopt notation from Sejdinovic et al. (2013b): Mz(Z) =
{veM(Z): [k (z,2)d|v|(z) < oo}, which is, e.g. satis-
fied for all finite measures if k is a bounded function (such
as Gaussian kernel).

Embeddings allow measuring distances between proba-
bility measures, giving rise to the notion of maximum mean
discrepancy (MMD) (Borgwardt et al. 2006; Gretton et al.
2012b).

Definition 3 Let k be a kernel on Z. The squared distance
between the kernel embeddings of two probability measures
P and Q in the RKHS,
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MMD; (P, Q) = [[ux(P) — ux(Q) 13, 3)

is called maximum mean discrepancy (MMD) between P
and Q with respect to k.

When the corresponding kernels are characteristic (Sripe-
rumbudur 2010), embedding is injective and MMD is a metric
on probability measures. The estimators of MMD are useful
statistics in nonparametric two-sample testing (Gretton et al.
2012b), i.e. testing if two given samples are drawn from the
same probability distribution. For any kernels ky and ky
on the respective domains X and ), it is easy to check that
k = kx ® ky given by

k(G ), (x'0y) = ka(x, xDky(y, ¥) “)

is a valid kernel on the product domain X x ). Its canon-
ical feature map is (x,y) — kx(-,x) ® ky(-,y) where
@x,y = kx(-,x) ® ky(-, y) is understood as a function on
X x Y, ie @c (&', y) = kx(x', x)ky(y’, y). The RKHS
of k = kx ® ky is in fact isometric to Hy, ® Hy,,, which
can be viewed as the space of Hilbert—Schmidt operators
between Hy,, and Hy,, (Lemma 4.6 of Steinwart and Christ-
mann (2008)). We are now ready to define an RKHS-based
measure of dependence between random variables X and Y.

Definition 4 Let X and Y be random variables on domains
X and Y (non-empty topological spaces). Let ky and ky be
kernels on X" and ) respectively. Hilbert—-Schmidt indepen-
dence criterion (HSIC) & 2y (X, Y) of X and Y is MMD
between the joint measure Pyy and the product of marginals
Px Py, computed with the product kernel k = ky ® ky, i.e.

Bty (X, Y) = || Exylkx (. X) @ ky(., Y)]
~Exkx(. X) @ Brky(. N3,
©)

HSIC is well defined whenever Px € /\/l,iX (X) and

Py € ./\/l,ly ()) as this implies Pxy € M,ifYZ@ky(X x ))

(Sejdinovic et al. 2013b). The name of HSIC comes from
the operator view of the RKHS Hj , gky,- Namely, the dif-
ference between embeddings Exyl[kx (., X) ® ky(.,Y)] —
Exkx (., X) ® Eyky(.,Y) can be identified with the cross-
covariance operator Cxy ’Hky —  Hy, for which
(f: Cxy&)Hy,, = Cov[f(X)g(N)]. Vf € Hiy.8 € Hiy
(Gretton et al. 2005, 2008). HSIC is then simply the squared
Hilbert—Schmidt norm ||Cxy ||%1 g of this operator, while dis-
tance correlation (dCor) of Székely et al. (2007), Székely and
Rizzo (2009) can be cast as [|Cxy 1%,5/1Cxx Il as|Cyyllus
(Sejdinovic et al. 2013b, Appendix A). In the sequel, we
will suppress dependence on kernels ky and ky, in notation
Elx ky (X, Y) where there is no ambiguity.
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Repeated application of the reproducing property gives
the following equivalent representation of HSIC (Smolaet al.
2007):

Proposition 1 The HSIC of X and Y can be written as:

E(X,Y) =ExyExykx (X, X)ky(,Y")
+ExExkx (X, X EyEyky(Y,Y")
—2Exy [Exkx (X, X)Eyky(Y, Y] (6)

2.2 Estimation of HSIC

Using the form of HSIC in (6), given an iid sample of z
= {(x;, y)}", from the joint distribution Pyy, an unbi-
ased estimator of HSIC can be obtained as a sum of three
U-statistics (Gretton et al. 2008):

(m —2)!
m!

> (Koij(Ky)ij
(i, j)ety
(m — 4)!

m!

Ey(z) =

Y (Kij(Kygr

(i.j.q.r)€eiy

|
—2—= > (Koij(Kyig. )

(i.j.q)eiy

where the index set i/ denotes the set of all r-tuples drawn
without replacement from {1, ..., m}, (Ky);j 1= kx (x;, x})
and (Ky);; := ky(y;, yj). Naive computation of (7) would
require O(m*) operations. However, an equivalent form
which needs O(m?) operations is given in Song et al. (2012)
as

— 1 2
CJM(Z) = m |:tr(KxKy)

17K 117K, 1 2
m—-—1)m-2) m-—2

17K, Iéy]l] (8)

where ng = K, — diag(Ky) (i.e. the kernel matrix with
diagonal elements set to zero) and similarly for K y.lisa
vector of 1s of relevant dimension.

We will refer to the above as the quadratic time estimator.
Gretton et al. (2008) note that the V -statistic estimator (or the
quadratic time-biased estimator) of HSIC can be an easier-to-
use alternative for the purposes of independence testing, since
the bias is accounted for in the asymptotic null distribution.
The V -statistic is given by

1 m 1 m
By (@) =—5 Y (Kij(K)ij + — 3 (Kij(Ky)gr
iJ ij.q.r

1 m
=25 ) (Kij(Kyig,

i,j.q

where the summation indices are now drawn with replace-
ment. Further, it can be simplified as follows to reduce the
computation:

Ep(z) = %Trace(KxHKyH) = LZ(HKXH, HK,H)
m m
&)
where H = I,,, — %]l]lT is an m X m centering matrix. (9)
gives an intuitive understanding of the HSIC statistic: it mea-
sures average similarity between the centred kernel matrices,
which are in turn similarity patterns within the samples.?

2.3 Asymptotic null distribution of estimators

The asymptotic null distribution of the biased HSIC statistic
defined in (9) computed using a given dataset converges in
distribution in Theorem 1 below. This asymptotic distribu-
tion builds the theoretical foundation for the spectral testing
approach (described in Sect.2.4.2) that we will use through-
out the paper.

Theorem 1 (Asymptotic null distribution of the biased

HSIC) Under the null hypothesis, let the dataset 7 =
i.i.d.

{Gas v YL, """ Pxy = PxPy, with Px € M%X (X) and

Py € M}, (), then

oo o0
- D
MBp k(@) = YD himj N, (10)
i=1 j=1

ii.d.
where N ; S N(0,1),Yi,j € Nand Al {T}j}(;il are
the eigenvalues of the integral kernel operators S i and S];P B

where the integral kernel operator S];P : L%,(Z) — L%)(Z)
is given by

S,;Pg(Z)=/Z/€P(Z, w)g(w)d P (w). Y

where k p(z, 7)) is the kernel centred at probability measure
P:

kp(z,7) = (k(z, ) —Ewk(W, ), k(z',.) — Ewk(W,.))
=k(z,7) +Ewwk(W, W) —Ewk(z, W)
— Ewk(Z, W), (12)

id.

with W, w' "= p.

2 A straightforward estimator of dCor (Székely et al. 2007; Székely
and Rizzo 2009) is then given by normalising &), (z) by the Frobenius

norms of HK,H and HKyH, i.e. @’(z) = %
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For completeness, the proof of this theorem, which is a con-
sequence of Lyons (2013, Theorem 2.7) and the equivalence
between distance-based and RKHS-based independence
statistics (Sejdinovic et al. 2013b) is given in Appendix. As
remarked by Sejdinovic et al. (2013b), the finite marginal
moment conditions imply that the integral operators St
and S,;y are trace class and hence Hilbert—Schmidt (Reed
and Simon 1980). Anderson et al. noted that the form of the
asymptotic distribution of the V statistics requires the inte-
gral operators being trace class but that of the U statistics
only requires them being Hilbert—Schmidt (Anderson et al.
1994; Sejdinovic et al. 2013b). Using the same notation as in
the case of the V-statistic, the asymptotic distribution of the
U-statistic in (7) can be written as:

(o oo o]
— D
MEu ki ky @) = Y D hin (N7 — 1) (13)
i=1 j=1

under the null hypothesis.

We note that Chwialkowski and Gretton (2014) (Lemma
2 and Theorem 1) proves a more general result, applicable
to dependent observations under certain mixing conditions
where the i.i.d. setting is a special case. Moreover, Ruben-
stein et al. (2015) (Theorem 5 and 6) provides another elegant
proof in the context of three-variable interaction testing from
Sejdinovic et al. (2013a). However, both Chwialkowski and
Gretton (2014) and Rubenstein et al. (2015) assume bound-
edness of ky and ky,, while our proof in Appendix assumes a
weaker condition of finite second moments for both ky and
ky, thus making the result applicable to unbounded kernels
such as the Brownian motion covariance kernel.

Under the alternative hypothesis that Py Py # Pxy, Gret-
ton et al. (2008) remarked that m&p k ,, k, (Z) converges to
HSIC with the corresponding appropriately centred and
scaled Gaussian distribution as m — oo:

(Ep oy ky (Z) — HSIC) 2 N(0, 0.2) (14)

where the variance O’uz =16(E;, (E;; 2, .2, (h,‘jqr))2 — HSIC)
and h;j4, is defined as

@,j,q,r)
=3 2 KoK+ KoKy

" (tu,v,w)

hijqr
+ (K (Ky)r (15)

with all ordered quadruples (¢, u,v,w) drawn without
replacement from (i, j, ¢, r) and assuming E(h?) < c0. In
fact, under the alternative hypothesis, the difference between
m&p(Z) (i.e. the V-statistic) and the U-statistic drops as 1/m
and hence asymptotically the two statistics converges to the
same distribution (Gretton et al. 2008).
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2.4 Quadratic time null distribution estimations

We would like to design independence tests with an asymp-
totic Type I error of o and hence we need an estimate of the
(1 — @) quantile of the null distribution. Here, we consider
two frequently used approaches, namely the permutation
approach and the spectral approach, that require at least
quadratic time both in terms of memory and computation
time. The biased V-statistic will be used because of its neat
and compact formulation.

2.4.1 Permutation approach

Consider an iid sample z = {(x;, y;)}{"; with chosen kernels
kx and ky), respectively, the permutation/bootstrap approach
Arcones and Gine (1992) proceed in the following man-
ner. Suppose the total number of shuffles is fixed at N,
we first compute Ekx ky (2) using z, ky and ky,. Then, for
each shuffle, we fix the {x;}?” | and randomly permute the
{yi} to obtain z* = {(x;, y7)}_, and subsequently com-
pute E:x, &+, (z%). The one-sided p-value in this instance is
the proportion of HSIC values computed on the permuted
data that are greater than or equal to Zi, ., (2).

The computational time is O(number of shuffles xm?)
for this approach, where the number of shuffles determines
the extend to which we have explored the sampling distri-
bution. In other words, a small number of shuffles means
that we may only obtained realisations from the mode of
the distribution and hence the tail structure is not adequately
captured. Although a larger number of shuffles ensures the
proper exploration of the sampling distribution, the compu-
tation cost can be high.

2.4.2 Spectral approach

Gretton et al. have shown (Theorem 1 Gretton et al. 2009)
that the empirical finite sample estimate of the null distri-
bution converges in distribution to its population counterpart
provided that the eigenspectrums {y; }°2 | of the integral oper-
ator S;: Lg (Xx))—> Lg (X x ) is square root summable,
ie.

00 0o 00
Zﬂ: ZZ‘/ANH < .
r=1 i=1 j=I

Note, the integral operator S is the tensor product of the
operators S,;X and S,;X:

ke, Xk (v, ¥ g (', y)dO (X, )

X

Spg(x,y) =/
X

and the eigenvalues of this operator is hence the product of
the eigenvalues of these two operators.



Stat Comput (2018) 28:113-130

119

The spectral approach (Gretton et al. 2009; Zhang et al.
2011) requires that we first calculate the centred Gram matri-
ces EX = HKxH and Ey = H Ky H for the chosen kernel
kx and ky. Then, we compute the mZp x, k,, (2) statis-
tics according to (9). Next the spectrums (i.e. eigenvalues)
(A}, and {n;}7L, of Kyx and Ky are, respectively, calcu-
lated. The empirical null distribution can be simulated by
simulating a large enough i.i.d samples from the standard
Normal distribution (Zhang et al. 2011) and then generate the
test statistic according to (10). Finally, the p value is com-
puted by calculating the proportion of simulated samples that
are greater than or equal to the observed m &} 5, 1y, (2) value.

Additionally, Zhang et al. (2011) has provided an approxi-
mation to the null distribution with a two-parameter Gamma
distribution. Despite the computational advantage of such
an approach, the permutation and spectral approaches are
still preferred since there is no consistency guarantee for the
Gamma distribution approach.

3 Block-based HSIC

The quadratic time test statistics are prohibitive for large
dataset as it requires O (m?) time in terms of storage and
computation. Furthermore, one requires an approximation
of the asymptotic null distribution in order to compute the p
value. As we discussed in the previous section, this is usually
done by randomly permute the Y observations (i.e. the per-
mutation approach) or by performing an eigendecomposition
of the centred kernel matrices for X and Y (i.e. the spectral
approach). Both approaches are expensive in terms of mem-
ory and can be computationally infeasible. In this section, we
propose a block-based estimator of HSIC which reduce the
computational time to linear in the number of samples. The
asymptotic null distribution of this estimator will be shown
to have a simple form as a result of the central limit theorem
(CLT).

3.1 The block HSIC statistic

Let us consider that the sample is split into blocks of size

i b B
B < m:{x;, yi}i, S " Pxy becomes {{x ,y,()}l 1}'"/

(where we assumed for simplicity that m is divisible by B).
We follow the approach from Zaremba et al. (2013), Sejdi-
novic et al. (2014) and extend it to independence testing. We
compute the unbiased HSIC statistics (Eq.7) on each block

be{l,....,n})
T 4T )
. 1 b pmy . VKR
M = oo | WK KYY) +
B(B —3) (B—1)(B—2)
2 - -
—m]lTK)Eb)Ky’)]l} (16)

and average them over blocks to establish the block-based
estimator for HSIC:

m/B

== an (17)

Bx, ky =

3.2 Null distribution of block-based HSIC

For the block HSIC statistic, the asymptotic null distribu-
tion is a consequence of the central limit theorem (CLT)
under the regime where m — 0o, B — oo and % — 00.3
First of all, note that the linear time test statistic 7y is an
average of block-based statistics 7, for b € {1,..., %}
which are independent and identically distributed. Secondly,
we recall that E(n,) = 0 for 7, is an unbiased estimator
of HSIC. Finally, Var(fix) = 2Var(iy) = £ Var(W)
with W being the random variable distributed according to
> Z?OZ] )Linj(ij—1).Inthelimitasm — 00,B = o0
and  — oo:

~ D
VmBEj ky — N0, 0} ). (18)

where the variance ok2 o 1s the variance of the null distributions
in Expression (10) and (13), i.e. the variance of W and it is
given by

oto = ZZA?n? (19)
i=1 j=I
= 2B xx (kp, (X, X)Eyy (kp, (Y, Y")) (20)

3.3 Linear time null distribution estimation

Expression (18) guarantees the Gaussianity of the null dis-
tribution of the block-based statistic and, henceforth, makes
the computation of p—value straightforward. We simply return
the test statistic ~/mB U}

‘Tk 0

sponding quantile of A/(0, 1) which is the approach taken
in Gretton et al. (2012a), Zaremba et al. (2013), Sejdinovic
et al. (2014). Note that the resulting null distribution is actu-
ally a z-distribution but with a very large number of degrees
of freedom, which can be treated as a Gaussian distribution.

The difficulty of estimating the null distribution lies in
estimating a,i o We suggest two ways to estimate such vari-
ance (Sejdinovic et al. 2014): within-block permutation and
within-block direct estimation. These two approaches are at
most quadratic in B within each block which means that the
computational cost of estimating the variance is of the same
order as that of computing the statistic itself.

and compare against the corre-

3 For example, B = m® with & € (0, 1).
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Within-block permutation can be done as follows.
Within each block, we compute the test statistic using (16). At
the same time, we track in parallel a sequence 7 obtained
using the same formula but with {y; }g” | underwent a per-
mutation. The former is used to calculate the overall block
statistics and the latter is used to estimate the null variance
6,30 = BZVar[{ﬁ;}Z:/ lf] as the independence between the
samples holds by construction.

Within-block direct estimation can be achieved by
using (20) and the corresponding unbiased estimates of
Exx (lE%,X (X, X")) and Eyy/(l;%,Y (Y, Y’")) which can be cal-
culated as follows. For X, the estimate of the variance for
each block is given by Song et al. (2012):

T (B) 42
62 )0 = (RO Ry 4 (1" K,y"1)
kox B(B — 3) S (B—1)(B-2)
2 3
—mﬂT(Ki’”)Zn] 1)
Then, we compute
B m/B
Gln= "2 607, (22)
b=1

to obtain an unbiased estimate for Ex x/ (IE%,X (X, X')). Simi-
larly, replacing all x with y, we obtain an unbiased estimate
for Eyy: (k%y (Y, Y’)). The estimate of the variance is there-
fore:

A2 _ a2
Oi.0 = 20,05y (23)

Such block-based approach is trivially parallelisable: the
HSIC statistic defined in (16) as well as the variance esti-
mator of (21) can be computed separately for each block.
This may provide further computational efficiency gains. As
remarked in Sejdinovic et al. (2014), we note that under the
null hypothesis, the approach undertaken by Zaremba et al.
(2013) is to estimate the null variance directly with the empir-
ical variance of {ﬁb }ZL/ f. As the null variance is consistently
estimated under the null hypothesis, this ensures the correct
level of Type I error. However, without using the variance of
the “bootstrap samples”, such an estimate of the null variance
will systematically overestimate as B grows with m. Hence,
it will result in a reduced statistical power due to inflated p
values.

Regarding the choice of B, Zaremba et al. (2013) dis-
cussed that the null distribution is close to that guaranteed
by the CLT when B is small, and hence, the Type I error
will be closer to the desired level. However, the disadvan-
tage is the small statistical power for each given sample
size. Conversely, Zaremba et al. (2013) pointed out that a
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larger B results in a lower variance empirical null distri-
bution and hence higher power. Hence, they suggested a
sensible family of heuristics is to set B = |[m?” | for some
0 < y < 1. As aresult, the complexity of the block-based
testis O(Bm) = O(m'17).

4 Approximate HSIC through primal
representations

Having discussed how we can construct a linear time HSIC
test by processing the dataset in blocks, we now move on to
consider how the scaling up can be done through low-rank
approximations of the Gram matrix. In particular, we will
discuss Nystrom type approximation (Sect.4.1) and random
Fourier features (RFF) type approximation (Sect.4.2). Both
types of approximation act directly on the primal representa-
tion of the kernel hence provide finite representations of the
feature maps.

Recall that the definition of HSIC of X and Y in (6) can
also be written in terms of the cross-covariance operator Cxy:

E(X,Y) = ”CXY”%ikX@Hky (Gretton et al. 2005, 2008).

Given a data set z = {(x;, y;)}i.,; withx; € RPx and y; €
RPy forall i, consider the empirical version of &y, x, (X, Y)
with kernels ky and ky, for X and Y, respectively:

é'k;(,ky(X, Y)

1 m 1 m
- ZkX(" X)) ®@ky(, yi) — (% ;ké’((', xi))

i=1

m 2
1
® <;Zky(',yi)> (24)
i=1

= 1i ke (- xi) — iiu(- )
n i=1 - n r=1 o
1 — ?

® (kyc, ¥i) = — > ky(, y») (25)

r=1

where the Hilbert—Schmidt norm is taken in the product space
Hir ® Hky. Note, this empirical cross-covariance operator
is infinite dimensional. However, when approximate feature
representations are used, the cross-covariance operator is
a finite-dimensional matrix and hence the Hilbert—Schmidt
norm is equivalent to the Frobenius norm (F).

If we let ¢(x;)) = kx(.x) — L~ 3" ky(,x) and
V(i) = ky(, i) — % > ky(-, yr), the above expres-
sion can be further simplified as

é'kx,ky(X, Y)

1 m m ~ _ ~ _
=32 Be) @Y. dN® V() (20)
i=1 j=1
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1 m m _ B _ _

= —5 2 2 BG), SO T ), ¥ () 27
i=1 j=1

= #Trace(HKxHHKyH). (28)

Hence, we obtain the expression in (9). If instead, we replace
#(x;) and ¥ (y;) by the corresponding low-rank approxima-
tions ¢(x;) = ka (-, xi) — o 2L k(- xp) and ¥ (i) =
lzy(~, vi) — % Yo lgy(-, ¥r), we can obtain the approxi-
mated HSIC statistics. The details of which are provided in
the following sections.

4.1 Nystrom HSIC

In this section, we use the traditional Nystrom approach
to provide an approximation that consider the similarities
between the so-called inducing variables and the given
dataset. We will start with a review of Nystrom method and
then we will provide the explicit feature map representation
of the Nystrom HSIC estimator. To finish, we will discuss
two null distribution estimation approaches that cost at most
linear in the number of samples.

The reduced-rank approximation matrix provided by Nys-
trom method (Williams and Seeger 2001) represents each
data point by a vector based on its kernel similarity to
the inducing variables and the induced kernel matrix. The
approximation is achieved by randomly sample n data points
(i.e. inducing variables) from the given m samples and com-
pute the approximate kernel matrix K ~ K as:

K = KnnK, hKum (29)

n,n

where each of K, ; can be think of as the r x s block of the
full Gram matrix K computed using all given samples.
Further, we can write Eq. (29) as:

1 _I\T

o7

K

(30)

Hence, an explicit feature representation of K is obtained.
Note that Snelson and Ghahramani (2006) further relaxed
the setting and propose to use inducing points that are not
necessarily a subset of the given data but only need to explain
the dataset well for a good performance.

4.1.1 The Nystrom HSIC statistic

To further reduce computation cost, we propose to approxi-
mate this reduced-rank kernel matrix K with the uncentered
covariance matrix C thatis n x n:

(@}

Il
A/
=

3
=
=
S
= -
N——
~
o
=
=
S
= -

3D

B

éT

Let us denote C'X = qﬁ;qsx and C‘y = d;;(iy. In order
to approximate the biased HSIC estimator (Eq.9) using this
explicit feature map representation, the @y and ®y needed
to be centred. We suggest centre each column separately by
subtractmg its mean for both @y and Py, i.e. denote (D =
(In—111")d = H®. € R™" for X and Y, respectlvely.

Using the methods described above, we can substitute
approximated kernel functions ky = ®x and l%y = by
into the empirical version of Z, iy, (X, Y) (24):

Ny kx ky (X, Y)

1 & . s o7
— Y dx(x)Dy ()
m

i=1

2

m m T
1 A 1 -
- —Z@x(x,»)> (—Z@(m) (32)
(m i=1 n i=1 F
1 - - 2
- H_q>§q>y (33)
m F

where @x (x;) € R™ and &y (y;) € R™ can both be com-
putedinlinear time in m. This is the biased Nystrom estimator
of HSIC. Essentially, we approximate the cross-covariance
operator Cxy by the Nystrom estimator C Xy = —@Ttby €
R"+>"y which only requires O (n,n,m). In essence, the HSIC
statistic computed using Nystrom as we described here is
a HSIC statistic computed using a different kernel. As a
remark, we note that it is not immediately clear how one
can choose the inducing points optimally. For the synthetic
data experiments in Sect.5, we simulate the inducing data
from the same distribution as data X. But, we will leave the
more general case as further work.

4.1.2 Null distribution estimations

Having introduced the biased Nystrom HSIC statistics, we
will now move on to discuss two null distribution estima-
tion methods, namely the permutation approach and the
Nystrom spectral approach. The permutation approach is
exactly the same as Sect.2.4.1 with Ekx ky (2) replaced by
Z Ny oy (z). It is worth noting that for each permutation,
we need to simulate a new set of inducing points for X and Y
such that ny, ny, < m with m being the number of samples.

Likewise, the Nystrom spectral approach is similar to
that described in Sect.2.4.2 where eigendecompositions of
the centred Gram matrices are required to simulate the
null distribution. The difference is that we approximate
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the centred Gram matrices using Nystrom method and the
HSIC V-statistic is replaced by the Nystrom HSIC estima-

tor &, Vi ky (z). So, the null distribution is then estimated

using the eigenvalues from the covariance matrices & § Dy
and (D;be. In such a way, the computational complexity
is reduced from the original Om3) to (’)(ni + ni + (n% +
ng)m + nynym) i.e. linear in m.

4.2 Random Fourier feature HSIC

So far, we have looked at two large-scale approximation
techniques that are applicable to any positive-definite kernel.
If the corresponding kernel also happens to be translation
invariant with the moment condition in (39); however, an
additional popular large-scale technique can be applied: ran-
dom Fourier features of Rahimi and Recht (2007) which is
based on Bochner’s representation. Note that many other ker-
nels though not translational invariant, e.g. arc-cosine kernel,
are also universal and approximable by random features (Cho
and Saul 2009). In this section, we will first review Bochner’s
theorem and subsequently build up to how random Fourier
features can be used to approximate large kernel matrices.
Utilising it in the context of independence testing, we pro-
pose the RFF HSIC estimator and further consider two null
distribution estimation approaches.

4.2.1 Bochner’s theorem

Through the projection of data into lower-dimensional ran-
domised feature space, Rahimi and Recht (2007) proposed
a method of converting the training and evaluation of any
kernel machine into the corresponding operations of a lin-
ear machine. In particular, they showed using a randomised
feature map z : R? — R we can obtain

k(x, ) = (k(, x), k(. y)) = 2(0) " 2(y) (34)

where x,y € RY. More specifically, Rahimi and Recht
(2007) demonstrate the construction of feature spaces that
uniformly approximate shift-invariant kernels with D =
O(de 2 log Eiz) where € is the accuracy of approximation.
However, as we will see later certain moment conditions need
to be satisfied.

Bochner’s theorem provides the key observation behind
such approximation. This classical theorem (Theorem 6.6 in
Wendland 2005) is useful in several contexts where one deals
with translation-invariant kernels &, i.e. k(x, y) = k(x — y).
As well as constructing large-scale approximation to kernel
methods (Rahimi and Recht 2007), it can also be used to
determine whether a kernel is characteristic, i.e. if the Fourier
transform of a kernel is supported everywhere then the kernel
is characteristic (Sriperumbudur 2010).
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Theorem 2 Bochner’s theorem (Wendland 2005) A contin-
uous transition-invariant kernel k on R% is positive definite
if and only if k(8) is the Fourier transform of a non-negative
measure.

For a properly scaled transition-invariant kernel k, the
theorem guarantees that its Fourier transform I"(w) is a non-
negative measure on R¢. Without loss of generality, I" is a
probability distribution. Since we would like to approximate
real-valued kernel matrices, let us consider the approxima-
tion which uses only real-valued features. « (x — y) can be
written as:

Ku—y>=/)ewawa—y»mww> (35)
R
= / ) cos(wT (x = y)) +isin(w’ (x — yHdrw) (36)
R
=f cos(w’ (x — y)dI" (w) 37)
Rd
= / / {cos(wa) cos(w’ y) + sin(w’x) sin(wTy)} dr(w)
R(
(38)
provided that
Ep(wTw) < Q. (39)

Note, (37) follows because kernels are real valued and (38)

uses the double-angle formula for cosine. The random fea-

. dd.
tures can be computed by first sampling {w j}JD:1 hr

and then for x; € R with j € {1,...,n}, setting z(x;) =
\/%(cos(wlij), sin(wlij), e, cos(wﬁxj), sin(wﬁxj))
for j e {1,...,n). ’ ’

Here, we deal with explicit feature space and apply linear
methods to approximate the Gram matrix through the covari-
ance matrix Z(x)T Z(x) of dimension D x D where Z(x)
is the matrix of random features. Essentially, (39) guaran-
tees that the second moment of the Fourier transform of this
translational invariant kernel & to be finite and hence ensure
the uniform convergence of z(x)” z(y) to k (x — y) (Rahimi
and Recht 2007).

4.2.2 RFF HSIC estimator
The derivation of the biased RFF HSIC estimator follows

in the same manner as Sect.4.1.1. However, with the RFF
approximations of the kernel matrices, (24) becomes:

SRFF.kx.ky (z)

1 — r
— " Z(xi)Zy ()
mn i=1
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m m r :
1 1
- (Z ) zx(x,o) (; > Zy(yi)> (40)
i=1 i=1 F
1 2
_ H_Z*THZy (1)
m F

where Z, € R"*Dx gpd Zy € R™*Dy Hence, when RFF
estimators are substituted, the cross-covariance operator is
simply a D, x D, matrix. In the same way as the Nystrom
HSIC estimator, the HSIC statistic computed using RFF is a
HSIC statistic computed using a different kernel, i.e. one that
is induced by the random features. It is worth noting that the
analysis of convergence of such estimator can possibly be
done similarly to the analysis by Sutherland and Schneider
(2015) for MMD. However, we will leave this for future work.

To use the RFF HSIC statistic in independence testing,
the permutation approach and spectral approach in the pre-
vious section can be adopted for null distribution estimation
with EAJNyJ;XJ;y (z) replaced by éRFF,/EX,lEy (z). Just as the

case with inducing points, the {w j}jD; | should be sampled
each time independently for X and Y when the RFF approx-
imations Z, and Z, needed to be computed. As a remark,
the number of inducing points and the number of w;s plays
a similar role in both methods which controls the trade-off
between computational complexity and statistical power. In
practice, as we will demonstrate in the next section, such
number can be much smaller than the size of the dataset
without compromising the performance.

S Experiments

In this section, we present three synthetic data experiments to
study the behaviour of our large-scale HSIC tests. The main
experiment is on a challenging nonlinear low signal-to-noise
ratio dependence dataset to assess the numerical performance
amongst the large-scale HSIC tests. To investigate the perfor-
mance of these test in a small scale, we further conduct linear
and sine dependence experiments to compare with currently
established methods for independence testing. Throughout
this section, we set the significance level of the hypothesis test
tobe o = 0.05. Both Type I and Type Il errors are calculated
based on 100 trials. The 95% confidence intervals are com-
puted based on normality assumption, i.e. 1 +1.96,/ %,
where ji is the estimate for the statistical power. Unless oth-
erwise stated, HSIC, RFF and Nystrom approaches are all
using Gaussian kernel with median heuristic.

5.1 Simple linear experiment

We begin with an investigation of the performance of
our methods on a toy example with a small number of

observations, in order to check the agreements between
large-scale approximation methods we proposed and the
exact methods where they are still feasible. Towards this
aim, we consider a simple linear dependence experiment,
but where the dependence between the response Y and the
input X is in only a single dimension of X. In particular,

X~N@©,1I;) and Y =X+ Z

where d is the dimensionality of data vector X and X
indicate the first dimension of X. The noise Z is indepen-
dent standard Gaussian noise. We would like to compare
methods based on HSIC to a method based on Pearson’s cor-
relation which is explicitly aimed at linear dependence and
should give strongest performance. However, as the latter
cannot be directly applied to multivariate data, we consider
a SubCorr statistic: SubCorr = % Z?Ll Corr(Y, X;)* where
Corr(Y, X;) is the Pearson’s correlation between Y and the
i'" dimension of X . In addition, we will also consider SubH-
SIC statistic: SubHSIC= % Zflzl HSIC(Y, Xi)Z. For these
two methods, we will use a permutation approach as their
distributions are not immediately clear.

In Fig.1, the dimension of X is set to be 10. Both the
number of random features in RFF and the number of induc-
ing variables in Nystrom are set to 10. We do not use the
block-based method as the sample sizes are small. From
Fig. 1 (right), we see that SubCorr yields the highest power as
expected. HSIC and SubHSIC with Gaussian median heuris-
tic kernels perform similarly though, with all three giving
the power of 1 at the sample size of 100. On the other hand,
Fig. 1 (left) shows that the two large-scale methods are still
able to detect the dependence at these small sample sizes,
even though there is some loss in power in comparison to
HSIC and they would require a larger sample size. As we
will see, this requirement for a larger sample size will be
offset by a much lower computational cost in large-scale
examples.

5.2 Nonlinear experiments

In this section, we consider two nonlinear experiments: one
with relatively small sample sizes (up to 4000 samples) and
a large-scale scenario (with number of samples from 1000 to
107). For both experiments, we investigate the power versus
time trade-off of the introduced large-scale approximate tests
and compare their performance to quadratic time ones. A
summary of the methods investigated here is illustrated in
Table 1.

In addition to HSIC and its large-scale versions, we
will also consider a normalisation of HSIC: dCor (Székely
et al. 2007; Székely and Rizzo 2009) which can be for-
mulated in terms of HSIC using a Brownian Kernel with
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é—¢ Nystrom

| 4 HSIC ¥ RFF|

1.0F

Power (1-Type Il error)

number of samples

| 4 HSIC é—& SubHSIC

1.0F

¥—Y SubCorr

Power (1-Type Il error)

10! 10?

number of samples

Fig. 1 Simple linear experiment for d = 10. Left comparing HSIC spectral approach with Nystrom spectral method and RFF spectral method.

Right HSIC spectral approach with SubHSIC and SubCorr

Table 1 Summary of the methods compared in the nonlinear depen-
dence experiments

Gaussian kernel Brownian kernel

Exact O(m?) Approximate Exact O(m?) Approximate
O(mn) O(mn)
(G)HSIC Block BHSIC Block
RFF RFF?
Nystrom Nystrom
GdCor RFF (B)dCor RFF?
Nystrom Nystrom

Letters in the parentheses indicate the default kernel (G: Gaussian; B:
Brownian). Note that the random Fourier feature approach is not directly
applicable to the Brownian kernel (as it is not shift invariant)

parameter & = 0.5 (Sejdinovic et al. 2013b, Appendix A).
For clarity and consistency of comparison, methods using
the same kernel will be compared with each other. In
particular, we will compare HSIC and its large-scale approx-
imations with GdCor (dCor using Gaussian kernel with
median heuristic bandwidth parameter) and its corresponding
large-scale approximations. As the asymptotic null distri-
bution for GdCor is unclear, a permutation approach (see
Sect. 2.4.1) will be used for p value computations. Simi-
lar comparison will be done for the Brownian kernel with
h =0.5.

Note that random Fourier feature approaches cannot be
directly applied to the Brownian kernel as it is not transla-
tional invariant. In addition, we will not use the block-based
approach in the small-scale nonlinear experiment as the
asymptotic normality assumption for the null distribution
requires large sample size—i.e. large number of blocks as
well as a large number of samples per block.
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5.2.1 Small-scale nonlinear experiment

Consider a sine dependence experiment to investigate time
versus power trade-offs of large-scale tests. The dataset con-
sists of a sample of size m generated i.i.d. according to:

X ~N(,1;) and Y =20sin(4m(X? + X3)) + Z

where d is the dimensionality of data vector X, X; indicates
the i dimension of X and Z ~ N0, 1). For this experi-
ment, the dependency can be detected with a relatively small
number of samples. Figure 2 illustrates the power as a func-
tion of the sample size when d = 2; the number of random
Fourier features and inducing variables are here both set to
50.

From Fig. 2, dCor clearly outperforms all the other meth-
ods with its Nystrom approximation giving the closest
performance in terms of power. Reassuringly, all the six
methods using Gaussian kernel give very similar power per-
formance. Although dCor and its large-scale approximation
give superior power performance, the performance of HSIC
and its large-scale approximations seems to be indifferent to
the kernel used. Figure 3, however, tells a much more inter-
esting story—the large-scale methods all reach the power of
lin a test time which is several orders of magnitude smaller,
demonstrating the utility of the introduced tests.

5.2.2 Large-scale nonlinear experiment

Now, we would like to compare the performance of the pro-
posed large-scale HSIC tests with each other—at sample
sizes where standard HSIC/dCor approaches are no longer
feasible. Gaussian kernel with median heuristic bandwidth
will be used throughout this section contrasting the block-
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BEHSIC @-@Nystrom ¥-YRFF #-€GdCor -9GdCor Nystrom #—%GdCor RFFl

Power (1-Type Il error)
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0.0

102 10°
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Fig. 2 Nonlinear sine dependency experiment for d = 2. Left All methods using Gaussian kernel with median heuristic bandwidth. Right All

methods using Brownian kernel with 2 = 0.5
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1.0

0.8
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Fig. 3 Corresponding average testing time plot for the sine dependence experiment for d = 2

based spectral approach, RFF spectral approach and the
Nystrom spectral approach. The other approximate meth-
ods listed in Table 1 require costly permutation approaches
to compute the null distribution, and we therefore do not
examine them in this subsection.

We consider a challenging nonlinear and low signal-to-
noise ratio experiment, where a sample of size m is generated
i.i.d. according to:

X ~N(,1;) and

a2
/2 .
Y = EZSIgn(XZj_lXZjNZjl+Z%+1

j=1

where d is the dimensionality of the data set X and Z ~
N, I d +1)- Note that ¥ is independent of each individual

dimension of X and that the dependence is nonlinear. For
d = 50 and 100, we would like to explore the relationship
between the test power across a different number of samples
m={10°,2x10°,5x 107, 10°,2 x 10°, 5 x 10°, 107}. The
number of random features, inducing variables and block
size are all set to 200 so that their computational cost is
comparable. Gaussian RBF kernel with median heuristic is
used in all cases. For RFF and Nystrom methods, we used
the spectral approach to estimate the null distribution.
Figure4 is a plot of the test power against the num-
ber of samples whereas Fig.5 is a plot of the test power
against average testing time. In the computational time com-
parison plot, we also present baseline experiments which
simply apply the quadratic time HSIC spectral approach
on a subset of the available data (with a subset size be in
{100, 200, 500, 1000, 2000, 4000}). For the considered com-
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Fig. 4 Large-Scale Experiment: The statistical power comparison
between the three large-scale independence testing methods based on
100 trials. Dotted line d = 50; solid line d = 100. The 95% con-
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Fig. 5 Large-Scale Experiment: The average testing time comparison
between the three large-scale independence testing methods for sam-
ples size m = {10°,2 x 10,5 x 10°,10°,2 x 10°,5 x 10°, 107}.

putation budgets, it is clear that this approach is unable to
detect the dependence.

It is clear in Fig.4 that for both d = 50 and d = 100, the
RFF method gives the best performance in power for a fixed
number of samples, followed by the Nystrom method and
then by the block-based approach. Although parallel comput-
ing could be employed for the block-based HSIC method, as
we observed, RFF and Nystrom methods will be preferred for
achieving higher statistical power at any given samples size.
The RFF method is able to achieve zero type II error (i.e. no
failure to reject a false null) with 5x 10* samples for d = 50
and 5x 107 samples for d = 100, while the Nystrom method
has a 80% false negative rate at these sample sizes. The power
versus time plot in Fig. 5 gives a similar picture as Fig. 4 con-
firming the superiority of the RFF method on this example.

5.2.3 Real data experiment

In this section, we examine the performance of the three pro-
posed large-scale HSIC tests on real data—a subset of the

@ Springer
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Quadratic time HSIC spectral method is also used on subset of data
of size {100, 200, 500, 1000, 2000, 4000} as baseline comparison for
similar testing time. Dotted line d = 50; solid line d = 100

Million Song Dataset (MSD) (Bertin-Mahieux et al. 2011).
The dataset consists of 515,345 observations with each song
X represented by 90 features, of which 12 features are tim-
bre average (over all segments) of the song, and 78 features
are timbre covariance. The aim is to detect the dependence
between X and the year of release Y which ranges from 1922
to 2011. As such dependency is rather easy to detect (Jitkrit-
tum et al. 2016), we jitter each entry of the X matrix with
independent Gaussian noise with mean 0 and variance 1000.
The significance level is set at « = 0.05 and we repeat for
200 trials where each time a subset of the data is randomly
sampled. The number of random Fourier features, inducing
points and block size are all set to be 10. Figure 6 shows
the power performance across a range of sample sizes. For
this dataset, Nystrom spectral approach provides the best
power performance followed by RFF spectral approach. Sim-
ilar to the previous experiment, the Block-based method
gives the least power for any fixed number of samples.
The power versus average testing time plot gives a similar
picture.
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Fig. 6 Real Data Experiment:
(left) power versus sample size;
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6 Discussion and conclusions

We have proposed three large-scale estimators of HSIC, a
kernel-based nonparametric dependence measure—these are
the block-based estimator, the Nystrom estimator and the
RFF estimator. We subsequently established suitable inde-
pendence testing procedures for each method—by taking
advantage of the normal asymptotic null distribution of the
block-based estimator and by employing an approach that
directly estimates the eigenvalues appearing in the asymp-
totic null distribution for the Nystrom and RFF methods.
All three tests significantly reduce computational complex-
ity in memory and time over the standard HSIC-based test.
We verified the validity of our large-scale testing meth-
ods and its favourable trade-offs between testing power and
computational complexity on challenging high-dimensional
synthetic data. We have observed that RFF and Nystrom
approaches have considerable advantages over the block-
based test. Several further extensions can be studied: the
developed large-scale approximations are readily applica-
ble to three-variable interaction testing (Sejdinovic et al.
2013a), conditional independence testing (Fukumizu et al.
2008) as well as application in causal discovery (Zhang
et al. 2011; Flaxman et al. 2015). Moreover, the RFF HSIC
approach can be extended using the additional smoothing
of characteristic function representations similarly to the
approach of Chwialkowski et al. (2015) in the context of
two-sample testing. Furthermore, one can also consider the
robustness of the proposed approaches in the case where het-
erogeneous datasets are considered, or when some form of
within-sample dependence is introduced, e.g. when testing
for independence between time series (Chwialkowski and
Gretton 2014).

average testing time
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ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix: Proof of Theorem 1

We note that Lyons (2013) gives a proof to a similar theorem
(Theorem 2.7 in Lyons 2013) regarding generalised versions
of distance covariance (dCov). We closely follow the steps
given in Proposition 2.6 and Theorem 2.7 of Lyons (2013).
However, the proof provided here is tailored to the kernel
view of HSIC/dCov duality (Sejdinovic et al. 2013b) and it
is slightly more general in that it applies to any semimetric
(rather than metric) of negative type. Unless stated other-
wise, the notation follows that used in the main part of this
paper.

Recall from the main part of this paper that the existence
of the HSIC statistics Z  k,,(2) defined in (6) requires the
marginal distributions to have finite first moment with respect
to the kernels, i.e. Py € M,ICX (X) and Py € M}cy (). By
Proposition 20 of Sejdinovic et al. (2013b), this translates
directly into finite first moment conditions with respect to
the semimetrics: Py € Mcltx (X) and Py € Mclly ()) when
kx generates d, and ky generates dy.

More specifically, a valid semimetric d of negative type
on Z generated by a non-degenerate kernel k on Z can be
written as d(z,7') = k(z,z) + k(z', Z) — 2k(z, Z’) (Corol-
lary 16 Sejdinovic et al. 2013b). Then, such semimetric d,
centred at the probability measure Py defined on X is

dpy (x,x") :=dy(x,x") — /dx(x,x’)dPX(x’)
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—/dx(x’,x)dpx(x)+/dx(x,x’)dp§(x,x’) 42)

Similarly, dp, (y, ') is the semimetric centred at the proba-
bility measure Py defined on ). If we substitute the kernel
representation of the semimetric for X and Y, respectively,
into dp, (x, x") and dp, (y, y'), we obtain the following:

dpy (x,x") = —2kp, (x,x) and dp, (y,y') = —2kp, (v, y)
43)

where kp, (x, x) and kp, (v, y') are defined in (12).
Let (Xi, Yi) ~ 6@ be independent fori € {1,2, ..., 6}, we
introduce the “core” defined in Lyons (2013),

(X', YY), (X2 YY), ..., (x5, Y%)
=X, X% X3, xhH o', v2 v, v% (44)

where forz; e X orz; € Y-

f(z1. 22,23, 24)
=d.(z1,22) —d.(21,23) —d.(22,24) +d.(23,24) (45)

= —2[k.(z1, 220) — k.(z1,23) — k.(22, z4) + k.(z3, 24)]
(46)

The second line follows from the relationship between d and
k where kp, is used for z; € X and kp, forz; € V.

In fact, we can prove that the expectation of (44) is four
times the HSIC of X and Y. To see this, we first need to
show that such expectation is well defined. Indeed, note that
for a valid semimetric d of negative type on Z, \/d(z, 7)) =
[lk(-, z) — k(., z")||7, then the following inequality holds:

d(x,y) <d(x,z) +d(y,2) +2/d(x,2)d(y, 2)
Vx,y,z€ 2 47)

It then follows that

[f(z1, 22, 23, 24)]
< 2d(z2,23) +2/d(z1, 23)d (22, 23) + 2V/d (22, 23)d (22, 24)
< 2d(z2,z3) +2max{d(z1, 23), d(z2, 23)}
+ 2 max{d(z2, 23), d(z2, 24)}
< 41k(z2, z3) + max{k(z1, z3), k(z2, 23)}
+ max{k(z2, 23), k(z2, z4)}]
= 81(z1,22, 23, 24)

A

and that

| f(z1, 22,23, 24)|
<2d(z1.24) +2V/d(22.24)d (21, 24) + 2V/d (21, 23)d (21 24)
< 2d(z1,z4) + 2max{d(zp, z4), d(z1, 24)}

@ Springer

+ 2max{d(zy, z3), d(z1, z4)}

< 4[k(z1, z4) + 2 max{k(zy, z4), k(z1, z4)}
+2max{k(z1, 23), k(z1, 24)}]

= 82(21, 22,23, 24)

Hence, replacing the z; in g; with X’ and the z; in g» with
Yi,

(X', YY), (X2 72, .. (X8, Y0
<ga X', X2 X3, xHe !, Y2 Y3, v°).

Since the marginal distributions have finite first moments
with respect to the kernels, then each of the terms in g; and g3
is integrable and hence g; and g, are integrable. Moreover,
since the marginal distributions have finite second moments
with respect to the kernels, then the joint distribution satisfies
Pxy € Mi&x®ky (X x )). Therefore, & is integrable. Sub-
sequently, by taking the expectation and utilising Fubini’s
theorem, we obtain that

Eh(x', Y, (X2, 7?),..., (X% Y%))

= 4B (kpy (X, X'Vkp, (Y, Y")) (48)
= 4Ey ky (2) (49)
which is 4 times the HSIC.

In order to use the theory of degenerate V-statistics to
obtain the asymptotic distribution, we need to consider the
symmetrised version of /2, which we define as follows

(X', YY), (X0, 7))
1
=g D h(xe® yoMy, L (x7©, ¥y

‘oA

where A denotes the set of all permutations of {1, ..., 6}.
Then, under the null hypothesis of independence Pyy =
Px x Py,

ha((x, ), (X', ¥))
= E[A((x,y), ¢, y), (X3, 7%, ... (X8, 7o)

4 - INTL /
= Bkﬂ(x’x )kv()’» )’)

If we fix the first two positions to be {1, 2} and randomly per-
mute the rest, we obtain 24 different combinations. Similarly
if we fix the first two positions to be {2, 1}, we also obtain 24
different combinations. Some algebraic manipulation shows
that these are the combinations that gives the expectation of &
to be 12,1 (x, x)ky(y, ¥'). In fact, these are the only combina-
tions as when either {1} or {2} or both are not in the first two
positions, the expectation of 4 is zero and all terms cancel
out.
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Another important condition to check is that /25 has finite
second moment. It was shown earlier that 4 ((X 1 Yl), R
(X5, Y%)) of (44)isintegrable. Subsequently, f (X!, X%, X3,
X4) has finite second moment. Hence, h((X!, Y1), ...,
(X°, Y%)) has finite second moment under the null hypoth-
esis. Additionally, by Jensen’s inequality, E(h2((X,Y),
(X, YD) < (E((ha((X, V), (X, VINH? < 0.

Hence, by Theorem B in Chap. 6 of Serfling (2002), which
says

8

1 O D
m\ =5 Y (i v, g y)) | = Y owZ}
i,j r=1

as the sample size m — 0o, we obtain that

1 - - p &
m WZkPX(xi,Xj)kpy(yi,yj) = > wzl (50)
ij r=1
with Z, Hd- N(0, 1) Vr and {y,}°2 are the eigenvalues of
the operator Sj: Lg(X X)) — Lg (X x )) defined as:

S:g(x. y) =/

X x

N kpy (x, xkp, (v, Y g(x', y)dO(x', )

Under the null hypothesis Pxy = Px x Py, the above
operator is given by the tensor product of SIZP and S];P
X Y

(Remark 2.9 Lyons 2013). Therefore, {y,} 72 are the prod-
ucts of the eigenvalues of these two operators. Recall that & y
is equivalent to kp, and ky is equivalent to kp, in the sense
of Sejdinovic et al. (2013b). By noting that &} x iy, (Z) is
invariant under the change of kernel within the class of equiv-
alent kernels, # Zi,j Isz (x;, .Xj)lzpy(yi, v;) is the highest
order term in the V-statistics and thus determine its asymp-
totic null distribution.
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