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Abstract We tackle the problems of semiautomatically

matching linked data sets and of linking large collections of

Web pages to linked data. Our system, ZenCrowd, (1) uses

a three-stage blocking technique in order to obtain the best

possible instance matches while minimizing both computa-

tional complexity and latency, and (2) identifies entities from

natural language text using state-of-the-art techniques and

automatically connects them to the linked open data cloud.

First, we use structured inverted indices to quickly find poten-

tial candidate results from entities that have been indexed in

our system. Our system then analyzes the candidate matches

and refines them whenever deemed necessary using com-

putationally more expensive queries on a graph database.

Finally, we resort to human computation by dynamically gen-

erating crowdsourcing tasks in case the algorithmic compo-

nents fail to come up with convincing results. We integrate

all results from the inverted indices, from the graph data-

base and from the crowd using a probabilistic framework in

order to make sensible decisions about candidate matches

and to identify unreliable human workers. In the following,

we give an overview of the architecture of our system and

describe in detail our novel three-stage blocking technique

and our probabilistic decision framework. We also report on

a series of experimental results on a standard data set, show-

ing that our system can achieve a 95 % average accuracy on
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instance matching (as compared to the initial 88 % average

accuracy of the purely automatic baseline) while drastically

limiting the amount of work performed by the crowd. The

experimental evaluation of our system on the entity linking

task shows an average relative improvement of 14 % over our

best automatic approach.

Keywords Instance matching · Entity linking ·

Data integration · Crowdsourcing · Probabilistic reasoning

1 Introduction

Semistructured data are becoming more prominent on the

Web as more and more data are either interweaved or serial-

ized in HTML pages. The linked open data (LOD) commu-

nity,1 for instance, is bringing structured data to the Web by

publishing data sets using the RDF formalism and by inter-

linking pieces of data coming from heterogeneous sources.

As the LOD movement gains momentum, linking traditional

Web content to the LOD cloud is giving rise to new possibil-

ities for online information processing. For instance, iden-

tifying unique real-world objects, persons, or concepts, in

textual content and linking them to their LOD counterparts

(also referred to as Entities), opens the door to automated text

enrichment (e.g., by providing additional information com-

ing from the LOD cloud on entities appearing in the HTML

text), as well as streamlined information retrieval and inte-

gration (e.g., by using links to retrieve all text articles related

to a given concept from the LOD cloud).

As more LOD data sets are being published on the Web,

unique entities are getting described multiple times by differ-

ent sources. It is therefore critical that such openly available

1 http://linkeddata.org/.
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data sets are interlinked to each other in order promote global

data interoperability. The interlinking of data sets describing

similar entities enables Web developers to cope with the rapid

growth of LOD data, by focusing on a small set of well-

known data sets (such as DBPedia2 or Freebase3) and by

automatically following links from those data sets to retrieve

additional information whenever necessary.

Automatizing the process of matching instances from het-

erogeneous LOD data sets and the process of linking entities

appearing in HTML pages to their correct LOD counterpart

is currently drawing a lot of attention (see the Sect. 2 below).

These processes represent however a highly challenging task,

as instance matching is known to be extremely difficult even

in relatively simple contexts. Some of the challenges that

arise in this context are (1) to identify entities appearing in

natural text, (2) to cope with the large-scale and distributed

nature of LOD, (3) to disambiguate candidate concepts, and

finally (4) to match instances across data sets.

This paper describes ZenCrowd, a system we have devel-

oped in order to create links across large data sets con-

taining similar instances and to semiautomatically identify

LOD entities from textual content. In a recent work [17],

we focused on the entity linking task, that is, on extracting

and identifying occurrences of LOD instances from textual

content (e.g., news articles in HTML format). In the present

work, we extend ZenCrowd to handle both instance match-

ing and entity linking. Our system gracefully combines algo-

rithmic and manual integration, by first taking advantage of

automated data integration techniques and then by improving

the automatic results by involving human workers.

The ZenCrowd approach addresses the scalability issues

of data integration by proposing a novel three-stage blocking

technique that incrementally combines three very different

approaches together. In a first step, we use an inverted index

built over the entire data set to efficiently determine poten-

tial candidates and to obtain an initial ranked list of poten-

tial results. Top potential candidates are then analyzed fur-

ther by taking advantage of a more accurate (but also more

costly) graph-based instance matching techniques (a simi-

lar structured/unstructured hybrid approach has been taken

in [45]). Finally, results yielding low confidence values (as

determined by probabilistic inference) are used to dynami-

cally create micro-tasks published on a crowdsourcing plat-

form, the assumption being that tasks in question do not need

special expertise to be performed.

ZenCrowd does not focus on the algorithmic problems

of instance matching and entity linking per se. However, we

make a number of key contributions at the interface of algo-

rithmic and manual data integration and discuss in detail how

to most effectively and efficiently combine scalable inverted

2 http://www.dpbedia.org.
3 http://freebase.org.

indices, structured graph queries and human computation in

order to match large LOD data sets. The contributions of this

paper include the following:

– a new system architecture supporting algorithmic and

manual instance matching as well as entity linking in

concert.

– a new three-stage blocking approach that combines

highly scalable automatic filtering of semistructured data

together with more complex graph-based matching and

high-quality manual matching performed by the crowd.

– a new probabilistic inference framework to dynamically

assess the results of arbitrary human workers operating

on a crowdsourcing platform and to effectively combine

their (conflicting) output taking into account the results

of the automatic stage output.

– an empirical evaluation of our system in a real deploy-

ment over different Human Intelligence Task interfaces

showing that ZenCrowd combines the best of both

worlds, in the sense that our combined approach turns

out to be more effective than both (a) pure algorithmic,

by improving the accuracy and (b) full manual match-

ing, by being cost-effective while mitigating the workers’

uncertainty.

The rest of this paper is structured as follows: We review

the state of the art in instance matching, entity linking, and

crowdsourcing systems in Sect. 2. Section 3 introduces the

terminology used throughout the paper. Section 4 gives an

overview of the architecture of our system, including its algo-

rithmic matching interface, its probabilistic inference engine,

and its templating and crowdsourcing components. Section

5 presents our graph-based matching confidence measure as

well as different methods to crowdsource instance matching

and entity linking tasks. We describe our formal model to

combine both algorithmic and crowdsourcing results using

probabilistic networks in Sect. 6. We introduce our evalua-

tion methodology and discuss results from a real deployment

of our system for the instance matching task in Sect. 7 and for

the entity linking task in Sect. 8, before concluding in Sect. 9.

2 Related work

2.1 Instance matching

The first task addressed by this paper is that of matching

instances of multiple types among two data sets. Thanks to

the LOD movement, many data sets describing instances have

been created and published on the Web.

A lot of attention has been put on the task of automatic

instance matching, which is defined as the identification of

the same real-world object described in two different data
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sets. Classical matching approaches are based on string sim-

ilarities (“Barack Obama” vs. “B. Obama”) such as the

edit distance [33], the Jaro similarity [27], or the Jaro-

Winkler similarity [50]. More advanced techniques, such

as instance group linkage [40], compare groups of records

to find matches. A third class of approaches uses seman-

tic information. Reference reconciliation [21], for example,

builds a dependency graph and exploits relations to propagate

information among entities. Recently, approaches exploiting

Wikipedia as background corpus have been proposed as well

[9,13]. In [26], the authors propose entity disambiguation

techniques using relations between entities in Wikipedia and

concepts. The technique uses, for example, the link between

“Micheal Jordan” and the “University of California, Berke-

ley” or to “basketball” on Wikipedia.

The number of candidate matching pairs between two data

sets grows rapidly (i.e., quadratically) with the size of the

data, making the matching task rapidly intractable in prac-

tice. Methods based on blocking [41,49] have been proposed

to tackle scalability issues. The idea is to adopt a computa-

tionally inexpensive method to first group together candidate

matching pairs and, as a second step, to adopt a more accurate

and expensive measure to compare all possible pairs within

the candidate set.

Crowdsourcing techniques have already been leveraged

for instance matching. In [48], the authors propose a hybrid

human–machine approach that exploits both the scalability

of automatic methods and the accuracy of manual matching.

The focus of their work is on how to best present the match-

ing task to the crowd. Instead, our work focuses on how

to combine automated and manual matching by means of a

three-stage blocking technique and a probabilistic network

able to identify and weight-out low-quality answers.

In idMesh [15], we built disambiguation graphs based on

the transitive closures of equivalence links for networks con-

taining uncertain information. Our present work focuses on

hybrid matching techniques for LOD data sets, combining

both automated processes and human computation in order

to obtain a system that is both scalable and highly accurate.

2.2 Entity linking

The other task performed by ZenCrowd is entity linking,

that is, identifying instances from textual content and linking

them to their description in a database. Entities, that is, real-

world objects described following a given schema/ontology,

have recently become first-class citizens on the Web. A large

amount of online search queries are about entities [42], and

search engines exploit entities and structured data to build

their result pages [25]. In the field of information retrieval

(IR), a lot of attention has been given to entities: At TREC,4

4 http://trec.nist.gov.

the main IR evaluation initiative, the task of Expert Finding,

Related Entity Finding, and Entity List Completion have been

studied [2,3]. Along similar lines, we have evaluated entity

ranking in Wikipedia at INEX5 recently [18].

The problem of assigning identifiers to instances men-

tioned in textual content (i.e., entity linking) has been widely

studied by the database and the semantic Web research com-

munities. A related effort has, for example, been carried out

in the context of the OKKAM project,6 which suggested the

idea of an entity name system (ENS) to assign identifiers to

entities on the Web [8]. The ENS could integrate techniques

from our paper to improve matching effectiveness.

The first step in entity linking consists in extracting entities

from textual content. Several approaches developed within

the NLP field provide high-quality entity extraction for per-

sons, locations, and organizations [4,12]. State-of-the-art

techniques are implemented in tools like Gate [16], the Stan-

ford Parser [30] (which we use in our experiments), and

Extractiv.7

Once entities are extracted, they still need to be disam-

biguated and matched to semantically similar but syntac-

tically different occurrences of the same real-world object

(e.g., “Mr. Obama” and “President of the USA”).

The final step in entity linking is that of deciding which

links to retain in order to enrich the entity. Systems per-

forming such a task are available as well (e.g., Open

Calais,8 DBPedia Spotlight [37]). Relevant approaches aim

for instance at enriching documents by automatically cre-

ating links to Wikipedia pages [38,44], which can be seen

as entity identifiers. While previous work selects uniform

resource identifiers (URIs) from a specific corpus (e.g.,

DBPedia, Wikipedia), our goal in ZenCrowd is to assign

entity identifiers from the larger LOD cloud9 instead.

The present work aims at correctly linking isolated enti-

ties to external entities using an effective combination of

algorithmic and manual matching techniques. To the best of

our knowledge, this paper is the first to propose a principled

approach based on crowdsourcing techniques to improve the

quality of automated entity linking algorithms.

2.3 Ad hoc object retrieval

Another task related to entity linking is ad hoc object retrieval

(AOR) [42], where systems need to retrieve the correct URIs

given a keyword query representing an entity. Such a task has

been evaluated in the context of the Semantic Search work-

5 https://inex.mmci.uni-saarland.de/.
6 http://www.okkam.org.
7 http://extractiv.com/.
8 http://www.opencalais.com/.
9 http://linkeddata.org/.
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shop in 201010 and 201111 using a set of queries extracted

from a commercial search engine query log and crowdsourc-

ing techniques to create the gold standard. Most of the pro-

posed systems for this task (see, for example, Blanco et al.

[7]) exploit IR indexing and ranking techniques over the RDF

data set used at the Billion Triple Challenge12 2009. Simi-

larly to such tasks, our data set is composed of a large set of

triples coming from LOD data sets, while our queries consist

of instance labels from the testset where the gold standard is

manually created by experts. In addition to those efforts, we

selectively exploit the crowd to improve the accuracy of the

task.

ZenCrowd adopts a hybrid architecture that combines

unstructured inverted indices together with a structured graph

database to optimize the task of instance matching. A similar

approach has been taken in our previous work [45] where

we combined structured and unstructured representations of

graph data to effectively address the task of ad hoc object

retrieval.

2.4 Crowdsourcing

ZenCrowd selectively adopts crowdsourcing to improve the

quality in data integration tasks. Crowdsourcing is a term

used to define those methods to generate or process data ask-

ing to a large group of people to complete small tasks. It

is possible to categorize different crowdsourcing strategies

based on the different types of incentives used to motivate

the crowd to perform such tasks. One of the most successful

example of crowdsourcing is the creation of Wikipedia, an

online encyclopedia collaboratively written by a large num-

ber of web users. The incentive to create articles in Wikipedia

is to help the community and to share knowledge with others.

An incentive that is often leveraged to get input from the

crowd is fun. Games with a purpose have studied how to

design entertaining applications that can generate useful data

to be processed by further algorithms. An example of a suc-

cessful game that at the same time generates meaningful data

is the ESP game [46] where two human players have to agree

on the words used to tag a picture. An extension of this game

is Peekaboom: a game that asks the player to detect and anno-

tate specific objects within an image [47].

A different type of crowdsourcing uses a monetary incen-

tive to motivate the crowd to perform some tasks. The most

popular paid crowdsourcing platform currently available is

Amazon MTurk13 where micro-tasks (called Human Intel-

ligence Tasks or HITs) are published by requesters and

selected by workers who perform them in exchange of a

10 http://km.aifb.kit.edu/ws/semsearch10/.
11 https://km.aifb.kit.edu/ws/semsearch11/.
12 http://challenge.semanticweb.org/.
13 http://www.mturk.com.

small monetary reward. We use the MTurk platform as a basis

for the ZenCrowd system. Other paid crowdsourcing plat-

forms use the approach of modeling worker skills to select

the right worker for a specific HIT [20]. This is beneficial

when the tasks are domain-specific and require workers hav-

ing some domain knowledge. In this paper, we use MTurk

as a crowdsourcing platform as we deal with well-known

general-domain entities. Alternative platforms could be used

for domain-specific data integration tasks like, for example,

linking entities described in scientific articles. ZenCrowd

uses paid crowdsourcing to enable fast scalability to large

amounts of data. This is possible thanks to the continuous

availability of human workers on crowdsourcing platforms

such as Amazon MTurk.

Paid crowdsourcing is a relatively recent technique that is

currently being investigated in a number of contexts. In the

IR community, crowdsourcing techniques have been mainly

used to create test collections for repeatable relevance assess-

ment [1,28,29]. The task of the workers is to judge the rele-

vance of a document for a given query. Studies have shown

that this is a practically relevant approach, which produces

reliable evaluation collections [6]. The database community

is currently evaluating how crowdsourcing methods can be

used to build RDMS systems able to answer complex queries

where subjective comparison is needed (e.g., “10 papers with

the most novel ideas”) [22,43]. Crowdsourcing can also be

used for basic computational operations such as sort and join

[36] as well as for sentiment analysis and image tagging [35].

In the context of entity identification, crowdsourcing has

been used by Finn et al. [23] to annotate entities in Twitter.

Their goal is simpler than ours as they ask human workers

to identify entities in text and assign a type (i.e., person,

location, or organization) to the identified entities. Our goal

is, instead, to assign entity identifiers to large numbers of

entities on the Web. The two approaches might be combined

to obtain high-quality results for both extraction and linking.

3 Preliminaries

As already mentioned, ZenCrowd addresses two distinct data

integration tasks related to the general problem of entity res-

olution [24].

We define Instance Matching as the task of identifying

two instances following different schemas (or ontologies) but

referring to the same real-world object. Within the database

literature, this task is related to record linkage [11], duplicate

detection [5], or entity identification [34] when performed

over two relational databases. However, in our setting, the

main goal is to create new cross-data set < owl : sameAs >

RDF statements. As commonly assumed for record linkage,

we also assume that there are no duplicate entities within the

same source and leverage this assumption when computing
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the final probability of a match in our probabilistic reasoning

step.

We define Entity Linking as the task of assigning a URI

selected from a background knowledge base for an entity

mentioned in a textual document. This task is also known as

entity resolution [24] or disambiguation [10] in the literature.

In addition to the classic entity resolution task, the objective

of our task is not only to understand which possible interpre-

tation of the entity is correct (Michael Jordan the basketball

player as compared to the UC Berkeley professor), but also

to assign a URI to the entity, which can be used to retrieve

additional factual information about it.

Given two LOD data set U1 = {u11, .., u1n} and U2 =

{u21, .., u2m} containing structured entity descriptions ui j ,

where i identifies the data set and j the entity URI, we

define instance matching as the identification of each pair

(u1i , u2 j ) of entity URIs from U1 and U2 referring to the

same real-world entity and call such a pair a match. An exam-

ple of match is given by the pair u11 = <http://dbpedia.org/

resource/Tom_Cruise> and u21 = <http://www.freebase.

com/m/07r1h> where U1 is the DBPedia LOD data set and

U2 is the Freebase LOD data set.

Given a document d and a LOD data setU1 ={u11, .., u1n},

we define entity linking as the task of identifying all entities

in U1 from d and of associating the corresponding identifier

u1i to each entity.

These two tasks are highly related: Instance matching

aims at creating connections between different LOD data

sets that describe the same real-world entity using different

vocabularies. Such connections can then be used to run link-

ing on textual documents. Indeed, ZenCrowd uses existing

< owl : sameAs > statements as probabilistic priors to

take a final decision about which links to select for an entity

appearing in a textual document.

Hence, we use in the following the term entity to refer to

a real-world object mentioned in a textual document (e.g.,

a news article), while we use the term instance to refer to

its structured description (e.g., a set of RDF triples), which

follows the well-defined schema of a LOD data set.

Our system relies on LOD data sets for both tasks. Such

linked data sets describe interconnected entities that are com-

monly mentioned in Web content. As compared to traditional

data integration tasks, the use of LOD data may support inte-

gration algorithms by means of its structured entity descrip-

tions and entity interlinking within and across data sets

(Fig. 1).

In our work, we make use of Human Intelligence at scale

to, first, improve the quality of such links across data sets

and, second, to connect unstructured documents to the struc-

tured representation of the entities they mention. To improve

the result for both tasks, we selectively use paid micro-task

crowdsourcing. To do this, we create HITs on a crowdsourc-

ing platform. For the entity linking task, a HIT consists of

asking which of the candidate links is correct for an entity

extracted from a document. For the instance matching task,

a HIT consists in finding which instance from a target data

set corresponds to a given instance from a source data set.

See Figs. 2, 3, and 4, which give examples of such tasks.

Paid crowdsourcing presents enormous advantages for

high-quality data processing. The disadvantages, however,

potentially include the following: high financial cost, low

availability of workers, and poor workers’ skills or honesty.

To overcome those shortcomings, we alleviate the financial

cost using an efficient decision engine that selectively picks

tasks that have a high improvement potential. Our present

assumption is that entities extracted from HTML news arti-

cles could be recognized by the large public, especially

when provided with sufficient contextual information. Fur-

thermore, each task is shown to multiple workers to balance

out low-quality answers.

4 Architecture

ZenCrowd is a hybrid platform that takes advantage of both

algorithmic and manual data integration techniques simul-

taneously. Figure 1 presents a simplified architecture of our

system. We start by giving an overview of our system below

in Sect. 4.1 and then describe in more detail some of its com-

ponents in Sects. 4.2–4.4.

4.1 System overview

In the following, we describe the different components of the

ZenCrowd system focusing first on the instance matching and

then on the entity linking pipeline.

4.1.1 Instance matching pipeline

In order to create new links, ZenCrowd takes as input a pair

of data sets from the LOD cloud. Among the two data sets,

one is selected as the source data set and one as the target

data set. Then, for each instance of the source data set, our

system tries to come up with candidate matches from the

target data set.

First, the label used to name the source instance is used

to query the LOD Index (see Sect. 4.2) in order to obtain a

ranked list of candidate matches from the target data set. This

can efficiently, and cheaply, filter out numerous clear non-

matches out of potentially numerous (in the order of hundreds

of millions for some LOD data sets) instances available. Next,

top-ranked candidate instances are further examined in the

graph database. This step is taken to obtain more complete

information about the target instances, both to compute a

more accurate matching score and to provide information to

the Micro-Task Manager (see Fig. 1), which has to fill the
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Fig. 1 The architecture of ZenCrowd: For the instance matching
task (green pipeline), the system takes as input a pair of data sets
to be interlinked and creates new links between the data sets using
< owl : sameAs > RDF triples. ZenCrowd uses a three-stage block-
ing procedure that combines both algorithmic matchers and human

workers in order to generate high-quality results. For the entity link-
ing task (orange pipeline), our system takes as input a collection of
HTML pages and enriches them by extracting textual entities appear-
ing in the pages and linking them to the linked open data cloud (color
figure online)

Fig. 2 Label-only instance matching HIT interface, where entities are
displayed as textual labels linking to the full entity descriptions in the
LOD cloud

HIT templates for the crowd (see Sect. 4.5, which describes

our three-stage blocking methodology in more detail).

At this point, the candidate matches that have a low con-

fidence score are sent to the crowd for further analysis. The

Decision Engine collects confidence scores from the previ-

ous steps in oder to decide what to crowdsource, together

with data from the graph database to construct the HITs.

Fig. 3 Molecule instance matching HIT interface, where the labels of
the entities as well as related property-value pairs are displayed

Fig. 4 Entity linking HIT interface

Finally, we gather the results provided by the crowd into to

the Probabilistic Network component, which combines them
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to come up with a final matching decision. The generated

matchings are then given as output by ZenCrowd in the form

of RDF < owl : sameAs > links that can be added back to

the LOD cloud.

4.1.2 Entity linking pipeline

The other task that ZenCrowd performs is entity linking, that

is, identifying occurrences of LOD entities in textual content

and creating links from the text to corresponding instances

stored in a database. ZenCrowd takes as input sets of HTML

pages (that can, for example, be provided by a Web crawler).

The HTML pages are then passed to Entity Extractors that

inspect the pages and identify potentially relevant textual

entities (e.g., persons, companies, places, etc.) mentioned in

the page. Once detected, the entities are fed into Algorithmic

Linkers that attempt to automatically link the textual entities

to semantically similar instances from the LOD cloud. As

querying the Web of data dynamically to link each entity

would incur a very high latency, we build a local cache (called

LOD Index in Fig. 1) to locally retrieve and index relevant

information from the LOD cloud. Algorithmic linkers return

lists of top-k links to LOD entities, along with a confidence

value for each potentially relevant link.

The results of the algorithmic linkers are stored in a

Probabilistic Network and are then combined and analyzed

using probabilistic inference techniques. ZenCrowd treats

the results of the algorithmic linkers in three different ways

depending on their quality. If the algorithmic results are

deemed excellent by our decision engine, the results (i.e.,

the links connecting a textual entity extracted from an HTML

page to the LOD cloud) get stored in a local database directly.

If the results are deemed useless (e.g., when all the links

picked by the linkers have a low confidence value), the results

get discarded. Finally, if the results are deemed promising

but uncertain (for example, because several algorithmic link-

ers disagree on the links, or because their confidence values

are relatively low), they are then passed to the Micro-Task

Manager, which extracts relevant snippets from the original

HTML pages, collects all promising links, and dynamically

creates a micro-task using a templating engine. An example

of micro-task for the entity linking pipeline is shown in Fig. 4.

Once created, the micro-task is published on a crowdsourcing

platform, where it is handled by collections of human work-

ers. When the human workers have performed their task (i.e.,

when they have picked the relevant links for a given textual

entity), workers results are fed back to the probabilistic net-

work. When all the links are available for a given HTML

page, an enriched HTML page—containing both the origi-

nal HTML code and RDFa annotations linking the textual

entities to their counterpart from the LOD cloud—is finally

generated.

4.2 LOD index and graph database

The LOD index is a declarative information retrieval engine

used to speedup the entity retrieval process. While most LOD

data sets provide a public SPARQL interface, they are in prac-

tice very cumbersome to use due to the very high latency

(from several hundreds of milliseconds to several seconds)

and bandwidth consumption they impose. Instead of query-

ing the LOD cloud dynamically for each new instance to

be matched, ZenCrowd caches locally pertinent information

from the LOD cloud. Our LOD index engine receives as

input a list of SPARQL endpoints or LOD dumps as well

as a list of triple patterns, and iteratively retrieves all cor-

responding triples from the LOD data sets. Using multiple

LOD data sets improves the coverage of our system, since

some data sets cover only geographical locations, while other

data sets cover the scientific domain or general knowledge.

The information thus extracted is cached locally in two ways:

in our efficient analytical graph query engine [51]—offering

a SPARQL interface—and in an inverted index to provide

efficient support for unstructured queries.

After ranked results are obtained from the LOD index, a

more in-depth analysis of the candidate matches is performed

by means of queries to a graph database. This component

stores and indexes data from the LOD data sets and accepts

SPARQL queries to retrieve predicate value pairs attached to

the query node. This component is used both to define the

confidence scoring function by means of schema matching

results (Sect. 5.1) and to compute confidence scores for can-

didate matches and to show matching evidence to the crowd

(Sect. 5.2).

4.3 Probabilistic graph and decision engine

Instead of using heuristics or arbitrary rules, ZenCrowd sys-

tematizes the use of probabilistic networks to make sensi-

ble decisions about the potential instance matches and entity

links. All evidences gathered from both the algorithmic meth-

ods and the crowd are fed into a scalable probabilistic store

and used by our decision engine to process all entities accord-

ingly. Our probabilistic models are described in detail in

Sect. 6.

4.4 Extractors, algorithmic linkers, and algorithmic

matchers

The extractors and algorithmic linkers are used exclusively

by the entity linking pipeline (see Fig. 1). The entity extrac-

tors receive HTML as input, and extract named entities

appearing in the HTML content as output. Entity extraction

is an active area of research and a number of advances have

recently been made in that field (using for instance third-party

information or novel NLP techniques). Entity extraction is
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not the focus of our work in ZenCrowd. However, we support

arbitrary entity extractors through a generic interface in our

system and union their respective output to obtain additional

results.

Once extracted, the textual entities are inspected by algo-

rithmic linkers, whose role is to find semantically related

entities from the LOD cloud. ZenCrowd implements a num-

ber of state-of-the-art linking techniques (see Sect. 8 for more

details) that take advantage of the LOD index component to

efficiently find potential matches. Each matcher also imple-

ments a normalized scoring scheme, whose results are com-

bined by our decision engine (see Sect. 6).

4.5 Three-stage blocking for crowdsourcing optimization

For the instance matching pipeline, a naive implementation

of an algorithmic matcher would check each pair of instances

from two input data sets. However, the problem of having to

deal with too many candidate pairs rapidly surfaces. More-

over, crowdsourcing all possible candidate pairs is unreal-

istic: For example, matching two data sets containing just

1,000 instances each would cost $150,000 if we crowdsource

1,000,000 possible pairs to 3 workers paying $0.05 per task.

Instead, we propose a three-stage blocking approach.

A common way to deal with the quadratic number of

potential comparisons is blocking (see Sect. 2). Basically,

blocking groups promising candidate pairs together in sets

using a computationally inexpensive method (e.g., cluster-

ing) and, as a second step, performs all possible comparisons

within such sets using a more expensive method (e.g., string

similarity).

ZenCrowd uses a novel three-stage blocking approach that

involves crowdsourcing as an additional step in the block-

ing process (see the three stages in Fig. 1). Crowdsourcing

the instance matching process is expensive both in terms of

latency and financially. For this reason, only a very limited set

of candidate pairs should be crowdsourced when matching

large data sets.

Given a source instance from a data set, ZenCrowd con-

siders all instances of the target data set as possible matches.

The first blocking step is performed by means of an inverted

index over the labels of all instances in the target data set.

This allows to produce a list of instances ranked by a scoring

function that measures the likelihood of matching the source

instance very efficiently (i.e., in the order of milliseconds).

As a second step, ZenCrowd computes a more accurate but

also more computationally expensive matching confidence

for the top-ranked instances generated by the first step. This

confidence value is computed based on schema matching

results among the two data sets and produces a score in [0, 1].

This value is not computed on all instances of the target data

set but rather for those that are likely to be a good match as

given by the first blocking step (see Sect. 5.1).

This hybrid approach exploiting the interdependence of

unstructured indices as well as structured queries against a

graph database is similar to the approach taken in our previ-

ous work [45] where, for the task of ad hoc object retrieval,

a ranked list of results is improved by means of an analysis

of the result vicinity in the graph.

The final step consists in asking the crowd about candi-

date matching pairs. Based on the confidence score com-

puted during the previous step, ZenCrowd takes a decision

about which HITs to create on the crowdsourcing platform.

As the goal of the confidence score is to indicate how likely

it is that a pair is a correct match, the system selects those

cases where the confidence is not already high enough so

that it can be further improved by asking the crowd. Possi-

ble instantiations of this step may include the provision of

a fixed budget for the crowdsourcing platform, which the

system is allowed to spend in order to optimize the qual-

ity of the results. Generally speaking, the system produces a

ranked list of candidate pairs to be crowdsourced based on

the confidence score. Then, given the available resources, top

pairs are crowdsourced by batch to improve the accuracy of

the matching process. On the other hand, improving the task

completion time can be obtained by increasing the reward

assigned to workers.

4.6 Micro-task manager

The micro-task manager is responsible for dynamically cre-

ating human computation tasks that are then published on

a crowdsourcing platform. Whenever a match is deemed

promising by our decision engine (see below for details),

it is sent to the crowd for further examination. The micro-

task manager dynamically builds a Web page to be published

on the crowdsourcing platform using three resources: i) the

name of the source instance, ii) some contextual information

generated by querying the graph database, and iii) the current

top-k matches for the instance from the blocking process.

Once created and published, the matching micro-tasks can

be selected by workers on the crowdsourcing platform, who

are then asked to select the relevant matches (if any) for

the source instance, given its name, the contextual infor-

mation from the graph database, and the various candidate

matches described as in the LOD cloud. Once performed,

the results of the micro-matching tasks are sent back to the

micro-task manager, which inserts them in the probabilistic

network.

5 Effective instance matching based on confidence

estimation and crowdsourcing

In this section, we describe the final steps of the blocking

process that assure high-quality instance matching results.
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Table 1 Top-ranked schema element pairs in DBPedia and Freebase for the person, location, and organization instances

DBPedia Freebase

Organization

http://www.w3.org/2000/01/rdf-schema#label http://rdf.freebase.com/ns/type.object.name

http://dbpedia.org/property/established http://rdf.freebase.com/ns/education.educational_institution.founded

http://dbpedia.org/property/foundation http://rdf.freebase.com/ns/business.company.founded

http://dbpedia.org/property/companyName http://rdf.freebase.com/ns/type.object.name

http://dbpedia.org/property/founded http://rdf.freebase.com/ns/sports.sports_team.founded

Person

http://www.w3.org/2000/01/rdf-schema#label http://rdf.freebase.com/ns/type.object.name

http://dbpedia.org/ontology/birthdate http://rdf.freebase.com/ns/people.person.date_of_birth

http://dbpedia.org/property/name http://rdf.freebase.com/ns/type.object.name

http://dbpedia.org/property/dateOfBirth http://rdf.freebase.com/ns/people.person.date_of_birth

http://dbpedia.org/property/dateOfDeath http://rdf.freebase.com/ns/people.deceased_person.date_of_death

http://dbpedia.org/property/birthname http://rdf.freebase.com/ns/common.topic.alias

Location

http://www.w3.org/2000/01/rdf-schema#label http://rdf.freebase.com/ns/type.object.name

http://dbpedia.org/property/establishedDate http://rdf.freebase.com/ns/location.dated_location.date_founded

http://dbpedia.org/ontology/demonym http://rdf.freebase.com/ns/freebase.linguistic_hint.adjectival_form

http://dbpedia.org/property/name http://rdf.freebase.com/ns/type.object.name

http://dbpedia.org/property/isocode http://rdf.freebase.com/ns/location.administrative_division.iso_3166_2_code

http://dbpedia.org/property/areaTotalKm http://rdf.freebase.com/ns/location.location.area

We first define our schema-based matching confidence mea-

sure, which is then used to decide which candidate match-

ings to crowdsource. Then, we present different approaches

to crowdsourcing instance matching tasks. Specifically, we

compare two different HIT designs where different con-

text information about the instances is presented to the

worker.

5.1 Instance-based schema matching

While using the crowd to match instances across two data

sets typically results in high-quality matchings, it is often

infeasible to crowdsource all potential matches because of

the very high financial cost associated. Thus, as a second

filtering step, we define a new measure that computes the

confidence of a matching as generated by the initial inverted

index blocking step.

Formally, given a candidate matching pair (i1, i2), we

define a function f (i1, i2) that creates a ranked list of can-

didate pairs such that the pairs ranked at the top are the most

likely to be correct. In such a way, it is possible to selectively

crowdsource candidate matchings with lower confidence to

improve matching precision with a limited cost.

The matching confidence measure used by ZenCrowd is

based on schema matching information. The first step in the

definition of the confidence measure consists in using a train-

ing set of matchings among the two data sets.14 Given a train-

ing pair (t1, t2), we retrieve all predicates and values for the

instances t1 and t2 and perform an exact string match com-

parison of their values. At the end of such process, we rank

predicate pairs by the number of times an exact match on their

values has occurred. Table 1 gives the top-ranked predicate

pairs for the DBPedia and Freebase data sets. We observe that

this simple instance-based schema mapping technique yields

excellent results for many LOD schemas, for instance, for the

entity-type person in Table 1, where ‘birthdate’ from DBPe-

dia is correctly matched to ‘date_of_birth’ from Freebase.

After the list of schema elements have been matched

across the two data sets, we define the confidence measure

for an individual candidate matching pair. To obtain a confi-

dence score in [0, 1], we compute the average Jaccard sim-

ilarity among all tokenized values of all matched schema

elements for the two candidate instances u1 and u2. In the

case where a list of values is assigned to a schema element

(e.g., a DBPedia instance may have multiple labels that repre-

sent the instance name in different languages), we retain the

maximum Jaccard similarity value in the list for that schema

element. For example, the confidence score of the following

matching pairs is as follows:

14 In our experiments, we use 100 ground truth matchings that are
discarded later when evaluating the proposed matching approaches.
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u1 u2

rdfs:label barack h. obama fb:name barack obama

dbp:dateOfBirth 08-04-61 fb:date_of_birth 08-04-61

(2/3)+(1)
2 = 0.83.

5.2 Instance matching with the crowd

We now turn to the description of two HIT designs we exper-

imented with for crowdsourcing instance matching in Zen-

Crowd. Previous work also compared different interfaces to

crowdsourcing instance matching tasks [48]. Specifically, the

authors compared pairwise and table-based matching inter-

faces. Instead, we compare matching interfaces based on dif-

ferent pieces of information given to the worker directly on

the HIT page.

Figures 2 and 3 show our two different interfaces for the

instance matching task. The label-only matching interface

asks the crowd to find a target entity among the proposed

matches. In this case, the target entity is presented as its label

with a link to the corresponding LOD webpage. Then, the

top-ranked instances from the DBPedia data set, which are

candidates to match the target entity, are shown. This inter-

face is reminiscent of the automatic approach based on the

inverted index that performs the initial blocking step though

on a larger scale (i.e., only few candidates are shown to the

worker in this case).

The molecule interface also asks the worker to identify

the target entity (from Freebase in the figure) in the table

containing top-ranked entities from DBPedia. This second

interface defines a simpler task for the worker by present-

ing directly on the HIT page relevant information about

the target entity as well as about the candidate matches.

In this second version of the interface, the worker is asked

to directly match the instance on the left with the cor-

responding instance on the right. Compared to the first

matching interface, the molecule interface does not just

display the labels but also additional information (prop-

erty and value pairs) about each instance. Such information

is retrieved from the graph database and displayed to the

worker.

In both interfaces, the worker can select the “No match”

option if no instance matches the target entity. An additional

field is available for the worker to leave comments.

6 Probabilistic models

ZenCrowd exploits probabilistic models to make sensible

decisions about candidate results. We describe below the

probabilistic models used to systematically represent and

Fig. 5 A simple factor graph of four variables and two factors

combine information in ZenCrowd, and how those models

are implemented and handled by our system. We start by

giving an overview of probabilistic networks first.

6.1 A quick reminder on factor graphs and

message-passing schemes

We use factor graphs to graphically represent probabilistic

variables and distributions in the following. Note that our

approach is not bound to this representation—we could use

series of conditional probabilities only or other probabilistic

graphical model—but we decided to use factor graphs for

their illustrative merits.

We give below a brief introduction to factor graphs and

message-passing techniques. For a more in-depth coverage,

we refer the interested reader to one of the many overviews

on this domain, such as Kschischang et al. [32]. Probabilistic

graphical models are a marriage between probability the-

ory and graph theory. In many situations, one can deal with

a complicated global problem by viewing it as a factoriza-

tion of several local functions, each depending on a sub-

set of the variables appearing in the global problem. As

an example, suppose that a global function g(x1, x2, x3, x4)

factors into a product of two local functions f A and fB :

g(x1, x2, x3, x4) = f A(x1, x2) fB(x2, x3, x4). This factor-

ization can be represented in a graphical form by the factor-

graph depicted in Fig. 5, where variables (circles) are linked

to their respective factors (black squares).

Often, one is interested in computing a marginal of this

global function, e.g.,

g2(x2) =
∑

x1

∑

x3

∑

x4

g(x1, x2, x3, x4) (1)

=
∑

∼{x2}

g(x1, x2, x3, x4)

where we introduce the summary operator
∑

∼{xi }
to sum

over all variables but xi . Such marginals can be derived in an
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efficient way by a series of simple sum-product operations

on the local function, such as

g2(x2) =

(

∑

x1

f A(x1, x2)

)(

∑

x3

∑

x4

fB(x2, x3, x4)

)

(2)

Interestingly, the above computation can be seen as the

product of two messages µ f A→x2(x2) and µ fB→x2(x2) sent,

respectively, by f A and fB to x2 (see Fig. 5). The sum-product

algorithm [32] exploits this observation to compute all mar-

ginal functions of a factor graph in a concurrent and efficient

manner.

Message-passing algorithms traditionally compute mar-

ginals by sending two messages — one in each direction —

for every edge in the factor graph:

variable x to local factor f :

µx→ f (x) =
∏

h∈n(x)\{ f }

µh→x (x) (3)

local factor f to variable x

µ f →x (x) =
∑

∼{x}



 f (X)
∏

y∈n( f )\{x}

µy→ f (y)



 (4)

where n(·) stands for the neighbors of a variable/function

node in the graph and X = n( f ). These computations are

known to be exact for cycle-free factor graphs; in contrast,

applications of the sum-product algorithm in a factor graph

with cycles only result in approximate computations for the

marginals [39]. However, some of the most exciting applica-

tions of the sum-product algorithms (e.g., decoding of turbo

or LDPC codes) arise precisely in such situations. We show

below that this is also the case for factor graphs modeling

instance matching graphs.

6.2 Graph models

We start by describing the probabilistic graphs used to com-

bine all matching evidences gathered for a given candidate

URI. Consider an instance from the source data set. The can-

didate matches are stored as a list of potential matchings m j

from a LOD data set. Each m j has a prior probability distrib-

ution pm j computed from the confidence matching function.

Each candidate can also be examined by human workers wi

performing micro-matching tasks and performing clicks ci j

to express the fact that a given candidate matching corre-

sponds (or not) to the source instance from his/her perspec-

tive.

Workers, matchings, and clicks are mapped onto binary

variables in our model. Workers accept two values {Good,

Bad} indicating whether they are reliable or not. Match-

ings can either be Correct or I ncorrect . As for click vari-

ables, they represent whether the worker i considers that the

Fig. 6 Entity factor graph connecting two workers (wi ), six clicks (ci j ),
and three candidate matchings (m j )

source instance is the same as the proposed matching m j

(Correct) or not (I ncorrect). We store prior distributions—

which represent a priori knowledge obtained, for example,

through training phases or thanks to external sources—for

each workers (pwi ()) and each matching (pm j ()). The clicks

are observed variables and are set to Correct or I ncorrect

depending on how the human workers clicked on the crowd-

sourcing platform.

A simple example of such an entity graph is given in Fig. 6.

Clicks, workers, and matchings are further connected through

two factors described below.

The same network can be instantiated for each entity of

an entity linking task where m j are candidate links from the

LOD instead.

6.2.1 Matching and linking factors

Specific task (either matching or linking) factors m f j () con-

nect each candidate to its related clicks and the workers who

performed those clicks. Examining the relationships between

those three classes of variables, we make two key observa-

tions: (1) Clicks from reliable workers should weight more

than clicks from unreliable workers (actually, clicks from

consistently unreliable workers deciding randomly whether

a given answer is relevant or not should have no weight at all

in our decision process) and (2) when reliable workers do not

agree, the likelihood of the answer being correct should be

proportional to the fraction of good workers indicating the

answer as correct. Taking into account both observations,

and mapping the value 0 to I ncorrect and 1 to Correct , we

write the following function for the factor:
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m f (w1, . . . , wm, c1, . . . , cn, m)

=

{

0.5, if ∀wi ∈ {w1, . . . , wm} wi = Bad
∑

i 1(wi =Good ∧ ci =m)
∑

i 1(wi =Good)
, otherwise

(5)

where 1(cond) is an indicator function equal to 1 when cond

is true and 0 otherwise.

6.2.2 Unicity constraints for entity linking

Given that the instance matching task definition assumes that

only one instance from the target data set can be a correct

match for the source instance. Similarly, a concept appear-

ing in textual content can only be mapped to a single entity

from a given data set. We can thus rule out all configurations

where more than one candidate from the same LOD data set

are considered as Correct . The corresponding factor u() is

declared as being equal to 1 and is defined as follows:

u(m1, . . . , mn) =







0, if ∃(mi , m j ) ∈ {m1, . . . , mn}

| mi = m j = Correct

1, otherwise

(6)

6.2.3 SameAs constraints for entity linking

SameAs constraints are exclusively used in entity linking

graphs. They exploit the fact that the resources identified

by the links to the LOD cloud can themselves be interlinked

(e.g., dbpedia:Fribourg is connected through an owl:sameAs

link to fbase:Fribourg in the LOD cloud).15 Considering

that the SameAs links are correct, we define a constraint on

the variables connected by SameAs links found in the LOD

cloud; the factor sa() connecting those variables puts a con-

straint forbidding assignments where the variables would not

be set to the same values as follows:

sa(l1, . . . , ln) =

{

1 if ∀(li , l j ) ∈ {l1, . . . , ln} li = l j

0 otherwise

We enforce the constraint by declaring sa() = 1. This con-

straint considerably helps the decision process when strong

evidences (good priors, reliable clicks) are available for any

of the URIs connected to a SameAs link. When not all SameAs

links should be considered as correct, further probabilistic

analyses (e.g., on the transitive closures of the links as defined

in idMesh [15]) can be put into place.

6.3 Reaching a decision

Given the scheme above, we can reach a sensible decision

by simply running a probabilistic inference method (e.g., the

sum-product algorithm described above) on the network and

15 We can already see the benefit of having better matchings across data
sets for that matter.

considering as correct all matchings with a posterior proba-

bility P(l = Correct) > 0.5. The decision engine can also

consider a higher threshold τ > 0.5 for the decisions in order

to increase the precision of the results.

6.4 Updating the priors

Our computations always take into account prior factors

capturing a priori information about the workers. As time

passes, decisions are reached on the correctness of the vari-

ous matches, and the probabilistic network iteratively accu-

mulates posterior probabilities on the reliability of the work-

ers. Actually, the network gets new posterior probabilities on

the reliability of the workers for every new matching deci-

sion that is reached. Thus, the decision engine can decide to

modify the priors of the workers by taking into account the

evidences accumulated thus far in order to get more accurate

results in the future. This corresponds to a learning parame-

ters phase in a probabilistic graphical model when some of

the observations are missing. Several techniques might be

applied to this type of problem (e.g., Monte Carlo methods,

Gaussian approximations). We use in the following a simple

expectation–maximization [14,19] process, which looks as

follows:

– Initialize the prior probability of the workers using a

training phase during which workers are evaluated on

k matches whose results are known. Initialize their prior

reliability to #correct_results/k. If no information is

available or no training phase is possible, start with

P(w = reliable) = P(w = unreliable) = 0.5 (maxi-

mum entropy principle).

– Gather posterior evidences on the reliability of the work-

ers P(w = reliable|mi = Correct/I ncorrect) as

soon as a decision is reached on a matching. Treat these

evidences as new observations on the reliability of the

workers, and update their prior beliefs iteratively as fol-

lows:

P(w = reliable) =

k
∑

i=1

Pi (w = reliable|mi )k
−1 (7)

where i runs over all evidences gathered so far (from the

training phase and from the posterior evidences described

above). Hence, we make the prior values slowly converge to

their maximum likelihood to reflect the fact that more and

more evidences are being gathered about the mappings as

we reach more decisions on the instances. This technique

can also be used to identify and blacklist unreliable workers

dynamically.
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6.5 Selective model instantiation

The framework described above actually creates a gigantic

probabilistic graph, where all instances, clicks, and workers

are indirectly connected through various factors. However,

only a small subset of the variables needs to be considered

by the inference engine at any point in time. Our system

updates the various priors iteratively, but only instantiates

the handful of variables useful for reaching a decision on

the entity currently examined. It thus dynamically instanti-

ates instance matching and entity linking factor graphs, com-

putes posterior probabilities for the matchings and linking,

reaches a decision, updates the priors, and stores back all

results before de-instantiating the graph and moving to the

next instance/entity.

7 Experiments on instance matching

In this section, we experimentally evaluate the effective of

ZenCrowd for the instance matching (IM) task. ZenCrowd

is a relatively sophisticated system involving many compo-

nents. In the following, we present and discuss the results of a

series of focused experiments, each designed to illustrate the

performance of a particular feature of our IM pipeline. We

present extensive experimental results evaluating the entity

linking pipeline (depicted using an orange background in

Fig. 1) in Sect. 8. Though many other experiments could have

been performed, we believe that the set of experiments pre-

sented below gives a particularly accurate account of the per-

formance of ZenCrowd for the IM task. We start by describ-

ing our experimental setting below.

7.1 Experimental setting

To evaluate the ZenCrowd IM pipeline based on probabilistic

networks as well as on crowdsourcing, we use the follow-

ing data sets: The ground truth matching data come from the

data interlinking task from the instance matching track of the

ontology alignment evaluation initiative (OAEI) in 2011.16

In this competition, the task was to match a given New York

Times (NYT) URI17 to the corresponding URI in DBPe-

dia, Freebase, and Geonames. The evaluation of automatic

systems is based on manual matchings created by the NYT

editorial team. Starting from such data, we obtained the corre-

sponding Freebase-to-DBPedia links via transitivity through

NYT instances. Thus, the ground truth is available for the

task of matching a Freebase instance to the corresponding

one in DBPedia, which is more challenging than the origi-

nal task as both Freebase and DBPedia are very large data

16 http://oaei.ontologymatching.org/2011/instance/.
17 http://data.nytimes.com/.

sets generated semiautomatically as compared to NYT data,

which is small and manually curated.

In addition, we use a standard graph data set containing

data about all instances in our testset (that is, the Billion

Triple Challenge BTC 2009 data set18) in order to run our

graph-based schema matching approach and to retrieve data

that is presented to the crowd. The BTC 2009 consists of a

crawl of RDF data from the Web containing more than one

billion facts about 800 million instances.

First blocking phase: LOD indexing and instance ranking. In

order to select candidate matchings for the source instance,

we adopt IR techniques similar to those that have been used

by participants of the entity search evaluation at the Seman-

tic Search workshop for the AOR task, where a string repre-

senting an entity (i.e., the query) is used to rank URIs that

identify the entity. We build an inverted index over 40 mil-

lion instance labels in the considered LOD data sets and

run queries against it using the source instance labels in our

test collection. Unless specified otherwise, the top-5 results

ranked by TF-IDF are used as candidates for the crowdsourc-

ing task after their confidence score has been computed.

Micro-task generation and ZenCrowd aggregation. To eval-

uate the quality of each step in the ZenCrowd IM pipeline, we

selected a subset of 300 matching pairs from the ground truth

of different categories (100 persons, 100 locations, and 100

organizations). Then, we crowdsourced the entire collection

to compare the quality of the crowd matching against other

automatic matching techniques and their combinations.

The crowdsourcing tasks were run over Amazon Mechan-

ical Turk19 as two independent experiments for the two pro-

posed matching interfaces (see Sect. 5.2). Each matching task

has been assigned to five different workers and was remuner-

ated $0.05 each, employing a total of 91 workers.20

We aggregate the results from the crowd using the method

described in Sect. 6, with an initial training phase consisting

of 5 entities and a second, continuous training phase, consist-

ing of 5 % of the other entities being offered to the workers

(i.e., the workers are given a task whose solution is known

by the system every 20 tasks on average).

Evaluation measures. In order to evaluate the effective-

ness of the different components, we compare—for each

instance—the selected matches against the ground truth

that provides matching/non-matching data for each source

instance. Specifically, we compute (P)recision and (R)ecall

18 http://km.aifb.kit.edu/projects/btc-2009/.
19 http://www.mturk.com.
20 The testset we have created together with the matching results from
the crowd is available for download at the page: http://exascale.info/
ZenCrowd.
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Fig. 7 Maximum achievable precision by considering top-K results
from the inverted index

which are defined as follows: We consider as true positives

(tp) all cases where both the ground truth and the approach

select the same matches, false positives (fp) the cases where

the approach selects a match which is not considered as cor-

rect by the ground truth, and false negatives (fn) the cases

where the approach does non select a match, while the ground

truth does. Then, precision is defined as P = tp/(tp + f p)

and recall as R = tp/(tp + f n).

In the following, all the final matching approaches (auto-

matic, crowd agreement vote, and ZenCrowd) are optimized

to return high precision values. We decided to focus on preci-

sion from the start, since from our experience, it is the most

useful metric in practice, but we have observed that high

recall is obtained in most configurations.

7.2 Experimental results

In the following, we report the experimental results aiming at

comparing the effectiveness of different matching techniques

at different stages of the blocking process. In detail, we com-

pare the results of our inverted index-based matching, which

is highly scalable but not particularly effective, the matching

based on schema information, and the matching provided

by the crowd whose results are excellent but which is not

cost and time efficient because of the high monetary cost it

necessitates and of the high latency it generates.

Recall of the first blocking phase. The first evaluation we

perform is centered on the initial blocking phase based on

keyword queries over the inverted index. It is critical that

such a step, while being efficiently performed over a large

amount of potential candidate matchings, preserves as many

correct results as possible in the generated ranked list (i.e.,

high recall) in order for the subsequent matching phases to be

effective. This allows the graph and crowd-based matching

schemes to focus on high precision in turn.

Figure 7 shows how recall varies by considering the top-N

results as ranked by the inverted index using TF-IDF values.

As we can see, we retrieve the correct matches for all the

instances in our testset after five candidate matches already.

Fig. 8 Precision and recall as compared to matching confidence values

Second blocking phase: matching confidence function. The

second blocking step involves the use of a matching confi-

dence measure. This function measures the likelihood of a

match given a pair of instances based on schema matching

results and string comparison on the values directly attached

to the instances in the graph (see Sect. 4.5). The goal of such

a function is to be able to identify the matching pairs that are

worth to crowdsource in order to improve the effectiveness

of the system.

Figure 8 shows how precision and recall vary by consider-

ing matching pairs that match best according to our schema-

based confidence measure. Specifically, by setting a thresh-

old on the confidence score, we can let the system focus either

on high precision or on high recall. For instance, if we only

trust matches with a confidence value of 1.0, then precision

is at is maximum (100 %), but the recall is low (25 %). That

is, we would need to initiate many crowdsourcing tasks to

compensate.

Final phase: crowdsourcing and probabilistic reasoning.

After the confidence score has been computed and the match-

ing pairs have been selected, our system makes it possible to

crowdsource some of the results and aggregates them into a

final matching decision.

A standard approach to aggregate the results from the

crowd is majority voting: The 5 automatically selected can-

didate matchings are all proposed to 5 different workers

who have to decide which matching is correct for the given

instance. After the task is completed, the matching with most

votes is selected as valid matching. Instead, the approach used

by ZenCrowd is to aggregate the crowd results by means of

the probabilistic network described in Sect. 6.

Table 2 shows the effectiveness values of the crowd on all

the matching pairs in our testset. Table 3 shows the effective-

ness values of the automatic approaches and their combina-

tions with the crowd results based on both majority voting

and ZenCrowd.

From Table 2, we observe that (1) the crowd performance

improves by using the molecule interface, that is, displaying
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Table 2 Crowd matching precision over two different HIT design inter-
faces (label-only and molecule) and two different aggregation methods
(majority voting and ZenCrowd)

HIT Aggregation Organizations People Locations

Label-only Maj.Vote 0.67 0.70 0.65

ZenCrowd 0.77 0.75 0.73

Molecule Maj.Vote 0.74 0.85 0.73

ZenCrowd 0.81 0.87 0.81

Table 3 Matching precision for purely automatic and hybrid
human/machine approaches

Organizations People Locations

Inverted Index Baseline 0.78 0.98 0.89

Majority Vote 0.87 0.98 0.96

ZenCrowd 0.89 0.98 0.97

data about the matching candidates directly from the graph

database leads to higher precision consistently across differ-

ent entity types as compared to the interface that only displays

the instance name and lets the worker click on their link to

obtain additional information; we also observe that (2) the

probabilistic network used by ZenCrowd to aggregate the

outcome of crowdsourcing outperforms the standard major-

ity vote aggregation scheme in all cases.

From Table 3, we can see that ZenCrowd outperforms

i) the purely automatic matching baseline based on the

inverted index ranking function as well as ii) the hybrid

matching approach based on automatic ranking, schema-

based matching confidence, and crowdsourcing. Addition-

ally, we observe that the most challenging type of instances

to match in our experiment is organizations, while people

can be matched with high precision using automatic meth-

ods only. On average over the different entity types, we

could match data with a 95 % accuracy21 (as compared to

the initial 88 % average accuracy of the purely automatic

baseline).

Crowdsourcing cost optimization. In addition to being inter-

ested in the effectiveness of the different matching methods,

we are also interested in their cost in order to be able to select

the best trade-off among the available combinations. In the

following, we report on results focusing on an efficient selec-

tion of the matching pairs that the system crowdsources. After

the initial blocking step based on the inverted index (that is

able to filter out most of the non-relevant instances), we com-

pute a confidence matching score for all top-ranked instances

21 This is the average accuracy over all entity types reported in Table
3.
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Fig. 9 Number of tasks generated for a given confidence value

Fig. 10 ZenCrowd money saving by considering results from top-K
workers only

using the schema-based method. This second blocking step

allows ZenCrowd to select, based on a threshold on the

computed confidence score, which matching pairs to crowd-

source. Setting a threshold allows to crowdsource cases with

low confidence only.

Figure 9 shows how many HITs are generated by Zen-

Crowd by varying the threshold on the confidence score. As

we can see when we set the confidence threshold to 0, then we

trust completely the automatic approach and crowdsource no

matching. By increasing the threshold on the matching con-

fidence, we are required to crowdsource matchings for more

than half of out testset instances. Compared to Fig. 8, we can

see that the increase in the gap between precision and recall

corresponds to the number of crowdsourced tasks: If recall

is low, we need to crowdsource new matching tasks to obtain

results about those instances the automatic approach could

not match with high confidence.

Crowd performance analysis. We are also interested in

understanding how the crowd performs on the instance

matching task.

Figure 10 shows the trade-off between the crowdsourcing

cost and the matching precision. We observe that our system

is able to improve the overall matching precision by reward-

ing more workers (i.e., we select top-K workers based on

their prior probability which is computed according to their

past performance). On the other hand, it is possible to reduce

the cost (as compared to the original 5 workers setup) with a

limited loss in precision by considering fewer workers.
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Table 4 Correct and incorrect matchings as by crowd majority voting
using two different HIT designs

Molecule Label-only

Correct Wrong

Correct 176 66

Wrong 38 20
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Fig. 11 Distribution of the workers’ precision using the molecule
design as compared to the number of tasks performed by the workers

Table 4 compares the crowd performance over the two

different HIT designs. When comparing the two designs, we

can observe that more errors are done with the label-only

interface (i.e., 66 vs. 38) as the workers do not have much

information directly on the HIT page. Interestingly, we can

also see that the common errors are minimal (i.e., 20 out of

300), which motivates further analysis and possible combi-

nations of the two designs.

Figure 11 presents the worker accuracy as compared to

the number of tasks performed by the worker. As we can see,

most of the workers reach precision values higher than 50 %

and the workers who contributed most provide high-quality

results. When compared with the worker precision over the

entity linking task (see Fig. 18 top), we can see that while

the power law distribution of completed HITs remains (see

Fig. 17), the crowd precision on the instance matching task

is clearly higher than on the entity linking task.

Efficiency. Finally, we briefly comment on the efficiency of

our IM approach. In its current implementation, ZenCrowd

takes on average 500 ms to select and rank candidate match-

ings out of the inverted index, 125 ms to obtain instance infor-

mation from the graph DB, and 500 ms to generate a micro-

matching task on the crowdsourcing platform. The decision

process takes on average 100 ms. Without taking into account

any parallelization, our system can thus offer a new matching

task to the crowd roughly every second, which in our opinion

is sufficient for most applications. Once on the crowdsourc-

ing platform, the tasks have a much higher latency (several

minutes to a few hours), latency, which, is however mitigated

by the fact that instance matching is an embarrassingly par-

allel operation on crowdsourcing platforms (i.e., large col-

lections of workers can work in parallel at any given point in

time).

7.3 Discussion

Looking back at the experimental results presented so far,

we first observe that crowdsourcing instance matching is

useful to improve the effectiveness of an instance match-

ing system. State-of-the-art majority voting crowdsourcing

techniques can relatively improve precision up to 12 % over

a purely automatic baseline (going from 0.78 to 0.87). Zen-

Crowd takes advantage of a probabilistic framework for mak-

ing decisions and performs even better, leading to a relative

performance improvement up to 14 % over our best automatic

matching approach (going from 0.78 to 0.89).22

A more general observation is that instance matching is

a challenging task, which can rapidly become impractical

when errors are made at the initial blocking phases. Analyz-

ing the population of workers on the crowdsourcing platform

(see Fig. 17), we observe that the number of tasks performed

by a given worker is Zipf-distributed (i.e., few workers per-

form many tasks, while many workers perform a few tasks

only). Also, we observe that the average precision of the

workers is broadly distributed between [0.5, 1] (see Fig. 11).

As workers cannot be selected dynamically for a given task

on the current crowdsourcing platforms (all we can do is pre-

vent some workers from receiving any further task through

blacklisting or decide not to reward workers who consistently

perform bad), obtaining perfect matching results is thus in

general unrealistic for non-controlled settings.

8 Experiments on entity linking

8.1 Experimental setting

Data set description. In order to evaluate ZenCrowd on the

entity linking (EL) task, we created an ad hoc test col-

lection.23 The collection consists of 25 news articles writ-

ten in English from CNN.com, NYTimes.com, washington-

post.com, timesofindia.indiatimes.com, and swissinfo.com,

which were manually selected to cover global interest news

(10), US local news (5), India local news (5), and Switzer-

land local news (5). After the full text of the articles has

been extracted from the HTML page [31], 489 entities were

22 The improvement is statistically significant (t test p < 0.05).
23 The test collection we created is available for download at: http://
exascale.info/zencrowd/.
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extracted from it using the Stanford Parser [30] as entity

extractor. The collection of candidate URIs is composed of

all entities from DBPedia,24 Freebase,25 Geonames,26 and

NYT,27 summing up to approximately 40 million entities

(23M from Freebase, 9M from DBPedia, 8M from Geon-

ames, 22K from NYT). Expert editors manually selected the

correct URIs for all the entities in the collection to create the

ground truth for our experiments. Crowdsourcing was per-

formed using the Amazon MTurk28 platform where 80 dis-

tinct workers have been employed. A single task, paid $0.01,

consisted of selecting the correct URIs out of the proposed

five URIs for a given entity.

In the following, we present and discuss the results of a

series of focused experiments, each designed to illustrate the

performance of a particular feature of our EL pipeline or of

related techniques. We start by describing a relatively simple

base configuration for our experimental setting below.

LOD indexing, entity linking, and ranking. In order to select

candidate URIs for an entity, we adopt the same IR techniques

used for the IM task. We build an inverted index over 40

million entity labels in the considered LOD data sets and run

queries against it using the entities extracted from the news

articles in the test collection. Unless specified otherwise, the

top 5 results ranked by TF-IDF are used as candidates for the

crowdsourcing task.

Micro-task generation. We dynamically create a task on

MTurk for each entity sent to the crowd. We generate a micro-

task where the entity (possibly with some textual context) is

shown to the worker who has then to select all the URIs that

match the entity, with the possibility to click on the URI and

visit the corresponding webpage.

If no URI matches the entity, the worker can select the

“None of the above” answer. An additional field is available

for the worker to leave comments.

Evaluation measures. In order to evaluate the effectiveness

of our EL methods, we compare, for each entity, the selected

URIs against the ground truth which provides matching/non-

matching information for each candidate URI. Similarly

to what we did for the IM task evaluation, we compute

(P)recision, (R)ecall, and (A)ccuracy which are defined as

follows: We consider as true positives (tp) all cases where

both the ground truth and the approach select the URI, true

negatives (tn) the cases where both the ground truth and the

24 http://dbpedia.org/.
25 http://www.freebase.com/.
26 http://www.geonames.org/.
27 http://data.nytimes.com/.
28 http://www.mturk.com.

approach do not select the URI for the entity, false positives

(fp) the cases where the approach selects a URI which is not

considered correct by the ground truth, and false negatives

(fn) the cases where the approach does non select a URI that

is correct in the ground truth. Then, precision is defined as

P = tp/(tp+ f p), recall as R = tp/(tp+ f n), and accuracy

as A = (tp + tn)/(tp + tn + f p + f n).

In the following, all the final EL approaches (automatic,

agreement vote, and ZenCrowd) are optimized to return high

precision values. We decided to focus on precision from the

start, since from our experience, it is the most useful metric

in practice (i.e., entity linking applications typically tend to

favor precision to foster correct information processing capa-

bilities and do not care whether some of the entities end up

being not linked).

8.2 Experimental results

Entity extraction and linkable entities. We start by evalu-

ating the performance of the entity extraction process. As

described above, we use a state-of-the-art extractor (the Stan-

ford Parser) for this task. According to our ground truth, 383

out of the 488 automatically extracted entities can be cor-

rectly linked to URIs in our experiments, while the remain-

ing ones are either wrongly extracted or not available in the

LOD cloud we consider. Unless stated otherwise, we aver-

age our results over all linkable entities, i.e., all entities for

which at least one correct link can be picked out (we dis-

regard the other entities for several experiments, since they

were wrongly extracted from the text or are not at all avail-

able in the LOD data we consider and thus can be seen as a

constant noise level in our experiments).

Candidate selection. We now turn to the evaluation of our

candidate selection method. As described above, candidate

selection consists in the present case in ranking URIs using

TF-IDF given an extracted entity.29 We focus on high recall

for this phase (i.e., we aim at keeping as many potentially

interesting candidates as possible) and decided to keep the

top-5 URIs produced by this process. Thus, we aim at pre-

serving as many correct URIs as possible for later linking

steps (e.g., in order to provide good candidate URIs to the

crowd). We report on the performance of candidate selection

in Table 5.

As we can observe, results are consistent with our goal

since all interesting candidates are preserved by this method

(recall of 1 for the linkable entities set).

Then, we examine the potential role of the highest confi-

dence scores in the candidate selection process. This analysis

helps us decide when crowdsourcing an EL task is useful and

29 Our approach is hence similar to Blanco et al. [7], though we do not
use BM25F as a ranking function.
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Table 5 Performance results for the candidate selection approach

All entities Linkable entities

P R P R

GL news 0.27 0.67 0.40 1.0

US news 0.17 0.46 0.36 1.0

IN news 0.22 0.62 0.36 1.0

SW news 0.21 0.63 0.34 1.0

All news 0.24 0.63 0.37 1.0

Fig. 12 Average recall of candidate selection when discriminating on
maximum relevance probability in the candidate URI set

when it is not. In Fig. 12, we report on the average recall of the

top-5 candidates when classifying results based on the max-

imum confidence score obtained (top-1 score). The results

are averaged over all extracted entities.30

As expected, we observe that high confidence values for

the candidates selection lead to high recall and, therefore,

to candidate sets which contain many of the correct URIs.

For this reason, it is useful to crowdsource EL tasks only for

those cases exhibiting relatively high confidence values (e.g.,

>0.5). When the highest confidence value in the candidate

set is low, it is then more likely that no URI will match the

entity (because the entity has no URI in the LOD cloud we

consider, or because the entity extractor extracted the entity

wrongly).

On the other hand, crowdsourcing might be unnecessary

for cases where the precision of the automatic candidate

selection phase is already quite high. The automatic selection

techniques can be adapted to identify the correct URIs in a

completely automatic fashion. In the following, we automati-

cally select top-1 candidates only (i.e., the link with the high-

est confidence), in order to focus on high precision results as

required by many practical applications. A different approach

focusing on recall might select all candidates with a confi-

30 Confidence scores have all been normalized to [0, 1] by manually
defining a transformation function.

Fig. 13 Performance results (precision, recall) for the automatic
approach

dence higher than a certain threshold. Fig. 13 reports on the

performance of our fully automatic entity linking approaches.

We observe that when the top-1 URI is selected, the auto-

matic approach reaches a precision value of 0.70 at the cost

of low recall (i.e., fewer links are picked). As latter results

will show, crowdsourcing techniques can improve both preci-

sion and recall over this automatic entity linking approaches

in all cases.

Entity linking using crowdsourcing with agreement vote. We

now report on the performance of a state-of-the-art crowd-

sourcing approach based on agreement voting: The 5 auto-

matically selected candidate URIs are all proposed to 5 dif-

ferent workers who have to decide which URI(s) is (are)

correct for the given entity. After the task is completed, the

URIs with at least 2 votes are selected as valid links (we tried

various thresholds and manually picked 2 in the end since

it leads to the highest precision scores while keeping good

recall values for our experiments). We report on the perfor-

mance of this crowdsourcing technique in Table 6. The values
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Fig. 14 Per document task effectiveness

are averaged over all linkable entities for different document

types and worker communities.

The first question we examine is whether there is a differ-

ence in reliability between the various populations of work-

ers. In Fig. 14, we show the performance for tasks performed

by workers located in USA and India (each point corresponds

to the average precision and recall over all entities in one

document). On average, we observe that tasks performed by

workers located in the USA lead to higher precision val-

ues. As we can see in Table 6, Indian workers obtain higher

precision and recall on local Indian news as compared to US

workers. The biggest difference in terms of accuracy between

the two communities can be observed on the global interest

news.

A second question we examine is how the textual context

given for an entity influences the worker performance. In Fig.

15, we compare the tasks for which only the entity label is

given (simple) to those for which a context consisting of all

the sentences containing the entity are shown to the worker

(snippets). Surprisingly, we could not observe a significant

difference in effectiveness caused by the different textual

contexts given to the workers. Thus, we focus on only one

type of context for the remaining experiments (we always

give the snippet context).

Entity linking with ZenCrowd. We now focus on the perfor-

mance of the probabilistic inference network as proposed in

this paper. We consider the method described in Sect. 6, with

an initial training phase consisting of 5 entities and a second,

continuous training phase, consisting of 5 % of the other enti-

ties being offered to the workers (i.e., the workers are given

a task whose solution is known by the system every 20 tasks

on average).

In order to reduce the number of tasks having little influ-

ence in the final results, a simple technique of blacklisting of

bad workers is used. A bad worker (who can be considered

as a spammer) is a worker who randomly and rapidly clicks

on the links, hence generating noise in our system. In our

Fig. 15 Crowdsourcing results with two different textual contexts

experiments, we consider that 3 consecutive bad answers in

the training phase is enough to identify the worker as a spam-

mer and to blacklist him/her. We report the average results

of ZenCrowd when exploiting the training phase, constraints,

and blacklisting in Table 7. As we can observe, precision and

accuracy values are higher in all cases when compared to the

agreement vote approach (see Table 6).

Finally, we compare ZenCrowd to the state-of-the-art

crowdsourcing approach (using the optimal agreement vote)

and our best automatic approach on a per-task basis in Fig. 16.

The comparison is given for each document in the test col-

lection. We observe that in most cases, the Human Intelli-

gence contribution improves the precision of the automatic

approach. We also observe that ZenCrowd dominates the

overall performance (it is the best performing approach in

more than 3/4 of the cases).

Efficiency. Finally, we briefly comment on the efficiency of

our approach. In its current implementation, ZenCrowd takes

on average 200 ms to extract an entity from text, 500 ms

to select and rank candidate URIs, and 500 ms to generate

a micro-linking task. The decision process takes on aver-

age 100 ms. The same observations about parallelization on

crowdsourcing platforms already done for the IM task hold

for the EL task as well.

8.3 Discussion

Looking at the experimental results about the EL task

presented above, we observe that the crowdsourcing step

improves the overall EL effectiveness of the system.

Standard crowdsourcing techniques (i.e., using agreement

vote aggregation) yield a relative improvement of 6 % in

precision (from 0.70 to 0.74). ZenCrowd, by leveraging the

probabilistic framework for making decisions, performs bet-

ter, leading to a relative performance improvement ranging
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Table 6 Performance results for
crowdsourcing with agreement
vote over linkable entities

US workers Indian workers

P R A P R A

GL news 0.79 0.85 0.77 0.60 0.80 0.60

US news 0.52 0.61 0.54 0.50 0.74 0.47

IN news 0.62 0.76 0.65 0.64 0.86 0.63

SW news 0.69 0.82 0.69 0.50 0.69 0.56

All news 0.74 0.82 0.73 0.57 0.78 0.59

Table 7 Performance results for
crowdsourcing with ZenCrowd
over linkable entities

US workers Indian workers

P R A P R A

GL news 0.84 0.87 0.90 0.67 0.64 0.78

US news 0.64 0.68 0.78 0.55 0.63 0.71

IN news 0.84 0.82 0.89 0.75 0.77 0.80

SW news 0.72 0.80 0.85 0.61 0.62 0.73

All news 0.80 0.81 0.88 0.64 0.62 0.76

Fig. 16 Comparison of three
linking techniques

between 4 and 35 % over the agreement vote approach and

on average of 14 % over our best automatic linking approach

(from 0.70 to 0.80). In both cases, the improvement is statis-

tically significant (t-test p < 0.05).

Analyzing worker activities on the crowdsourcing plat-

form (see Fig. 17), we observe that the number of tasks per-

formed by a given worker is Zipf-distributed (i.e., few work-

ers perform many tasks, while many workers perform a few

tasks only).

Augmenting the numbers of workers performing a given

task is not always beneficial: Figure 18, bottom, shows how

the average precision of ZenCrowd varies when (virtually)

employing the available top-k workers for a given task. As

can be seen from the graph, the quality of the results gets

worse after a certain value of k, as more and more mediocre

workers are picked out. As a general rule, we observe that

limiting the number of workers to 4 or 5 good workers for a

given task gives the best results.
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Fig. 17 Number of HITs completed by each worker for both IM and
EL ordered by most productive workers first

The intuition behind using the probabilistic network is that

a worker who proves that he is good, i.e., has a high prior

probability, should be trusted for future jobs. Furthermore,

his/her answer should always prevail and help identifying

other good workers. Also, the probabilistic network takes

advantage of constraints to help the decision process.

While the data sets used for the IM and EL evaluations

are different, we can make some observation on the average

effectiveness reached for each task. On average, the effec-

tiveness of the workers on the IM task is higher than that

on the EL task. However, we observe that ZenCrowd is able

to exploit the work performed by the most effective workers

(e.g., top US worker in Fig. 18 top or the highly productive

workers in Fig. 11).

9 Conclusions

As the LOD movement gains momentum, matching instances

across data sets and linking traditional Web content to the

LOD cloud is getting increasingly important in order to fos-

ter automated information processing capabilities. Current

tools rely either on fully automated techniques or on the sole

work of human experts. In this paper, we have presented Zen-

Crowd, a data integration system based on a probabilistic

framework leveraging both automatic techniques and punc-

tual human intelligence feedback captured on a crowdsourc-

ing platform. ZenCrowd adopts a novel three-stage block-

ing process that can deal with very large data sets while

at the same time minimizing the cost of crowdsourcing by

carefully selecting the right candidate matches to crowd-

source.

As our approach incorporates a human intelligence com-

ponent, it typically cannot perform instance matching and

entity linking tasks in real time. However, we believe that

it can still be used in most practical settings, thanks to the

Fig. 18 Distribution of the workers’ precision for the entity linking
task as compared to the number of tasks performed by the worker (top)
and task precision with top k workers (bottom)

embarrassingly parallel nature of data integration in crowd-

sourcing environments.

In conclusion, ZenCrowd provides a reliable approach

to entity linking and instance matching, which exploits the

trade-off between large-scale automatic instance matching

and high-quality human annotation, and which according to

our results improves the precision of the instance matching

results up to 14 % over our best automatic matching approach

for the instance matching task. For the entity linking task,

ZenCrowd improves the precision of the results by 4–35 %

over a state of the art and manually optimized crowdsourcing

approach, and on average by 14 % over our best automatic

approach.

Possible future directions include the analysis of how sim-

ilar documents linking to different entities can provide further

indication on how instances could match. Moreover, con-

sidering documents written in languages other than English

could be addressed by exploiting the multilingual property

of many LOD data sets. Another potential extension is the

comparison of different HIT designs for the instance match-

ing and entity linking tasks using, for instance, images instead

of textual entity descriptions.
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