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Introduction
Research over the past few decades has vastly improved our understanding of  the pathogenesis of  type 

2 diabetes mellitus (T2DM). The advent of  increasingly sophisticated metabolomics techniques using 

mass spectrometry has contributed to this improvement considerably. However, our understanding of  

the molecular events leading to the onset of  T2DM remains incomplete. Expansion of  the availability 

of  reliable biochemical markers in the blood could enhance this understanding and potentially lead to 

the identification of  novel therapeutic targets to treat and prevent T2DM. At the same time, they may 

allow us to better predict the risk of  T2DM and serve as biomarkers of  the efficacy of  measures taken 

to prevent diabetes.

BACKGROUND. Sphingolipids (SPs) are ubiquitous, structurally diverse molecules that include 

ceramides, sphingomyelins (SMs), and sphingosines. They are involved in various pathologies, 

including obesity and type 2 diabetes mellitus (T2DM). Therefore, it is likely that perturbations 

in plasma concentrations of SPs are associated with disease. Identifying these associations may 

reveal useful biomarkers or provide insight into disease processes.

METHODS. We performed a lipidomics evaluation of molecularly distinct SPs in the plasma of 2302 

ethnically Chinese Singaporeans using electrospray ionization mass spectrometry coupled with 

liquid chromatography. SP profiles were compared to clinical and biochemical characteristics, and 

subjects were evaluated with follow-up visits for 11 years.

RESULTS. We found that ceramides correlated positively but hexosylceramides correlated 

negatively with BMI and homeostatic model assessment of insulin resistance (HOMA-IR). 

Furthermore, SPs with a d16:1 sphingoid backbone correlated more positively with BMI and HOMA-

IR, while d18:2 SPs correlated less positively, relative to canonical d18:1 SPs. We also found that 

higher concentrations of 2 distinct SMs were associated with a higher risk of T2DM (HR 1.45 with 

95% CI 1.18–1.78 for SM d16:1/18:0 and HR 1.40 with 95% CI 1.17–1.68 for SM d18:1/18:0).

CONCLUSIONS. We identified significant associations between SPs and obesity/T2DM 

characteristics, specifically, those of hexosylceramides, d16:1 SPs, and d18:2 SPs. This suggests that 

the balance of SP metabolism, rather than ceramide accumulation, is associated with the pathology 

of obesity. We further identified 2 specific SPs that may represent prognostic biomarkers for T2DM.
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Sphingolipids (SPs), including ceramides, sphingomyelins, and cerebrosides, represent an abundant and 

structurally diverse class of  lipids that are known to contribute to physiological and pathological processes 

(1). Notably, alterations in subclasses of  SPs have been identified in T2DM patients and in animal models of  

diabetes. For example, ceramides have been shown to be elevated in the plasma of  human T2DM patients (2), 

and studies of  small cohorts suggested that there may be similar increases in plasma glucosylceramides (3, 4). 

In animal models, obese, diabetic mice were found to have total sphingomyelin and ceramide content that was 

decreased in adipose tissues but increased in plasma (5), whereas in wild-type mice, a high-fat diet resulted in 

increased ceramide in both adipose tissues and plasma (6). It is likely that there is functional significance to 

these changes, contributing to the pathology of  metabolic disease or resulting from its sequelae. Specifically, 

in experimental animal models, multiple studies have demonstrated that ceramides promote the dysfunction 

and apoptosis of  pancreatic beta islet cells in vitro and in vivo (7, 8) and that inhibition of  ceramide synthesis 

improves insulin sensitivity (9). It is notable that these studies typically used fairly low-resolution analyses and 

evaluated broad categories of  SPs without discrimination of  specific SP molecules. Because each category is 

composed of  many structural variants, it has been proposed that subclasses or individual species may be par-

ticularly relevant (10). For example, specific ceramides (18:0, or dihydroceramides), rather than total ceramide 

content, are selectively elevated before the onset of  T2DM and thus may serve as a prognostic biomarker (11). 

Furthermore, deoxysphingolipids and d16:1 sphingosines were shown to be selectively elevated in metabolic 

syndrome and T2DM, respectively (12). These studies have been limited in their resolving power but under-

score the need to evaluate detailed SP profiles.

Recent progress in mass spectrometry–based technologies allows for better discrimination of  individ-

ual SP species than was previously possible (13–15). Such advances have expanded the repertoire of  the 

“sphingolipidome” to over 600 structurally distinct SPs that have been confirmed and potentially thousands 

of  theoretical metabolites that are likely to exist (1). Because SP metabolism is dysregulated in metabolic 

diseases, any of  these specific molecules may represent a potential biomarker of  T2DM or other patholo-

gies (10). To date, there have been few reports of  a population analysis of  plasma SP content that have had 

the throughput and the resolution necessary to identify specific species of  SPs as biomarker candidates. The 

current study was carried out to identify associations between SPs and parameters of  obesity and diabetes 

in one of  the largest population-based studies in an East Asian population to date.

Results
All 2302 participants (Figure 1) yielded quantifiable SP profiles in this study. The relative concentrations 

of  the 80 structurally distinct, quantifiable lipid species (Supplemental Figures 1 and 2; supplemental 

material available online with this article; https://doi.org/10.1172/jci.insight.126925DS1) clustered in a 

pattern that was generally consistent with their metabolic pathways (Supplemental Figure 3). A notable 

exception involved the C16 ceramides (Cer d18:1/16:0 and Cer d18:2/16:0), which did not cluster with 

the other ceramides. This may be due to atypical regulation of  a specific ceramide synthase that prefer-

entially generates C16 ceramides, likely CERS6 (16).

Table 1 shows the characteristics of  the study population as a whole and compares those who did and 

did not develop diabetes mellitus. Those who developed diabetes were older and had higher BMI, waist/

hip ratio, blood pressure, blood triglycerides, C-reactive protein, fasting insulin, and HbA1c. They also had 

lower levels of  blood HDL and total– and low–molecular weight adiponectin.

The plasma concentrations of many SPs correlated with clinical and biochemical characteristics (Figure 2 

and Figure 3). We first evaluated the associations between SPs and age and sex. SMs were generally more abun-

dant in women, while SPHs were higher in men (Supplemental Figure 4 and Supplemental Table 1). Interest-

ingly, complex SPs (SMs, HexCer, and Hex2Cer) containing a d18:2 sphingoid base preferentially demonstrated 

significantly higher levels in women. The SP classes most broadly associated with age were the ceramides, which 

largely increased with increasing age, and the hexosylceramides (HexCer and Hex2Cer), which almost uniform-

ly decreased with increasing age (Figure 3, Supplemental Figure 5, and Supplemental Table 2).

Most of  the risk factors for incident diabetes showed strong correlations with SPs. For example, body 

mass index (BMI) (Figure 4A), HOMA-IR (Figure 4B), waist-hip ratio (WHR), blood pressure, fasting 

insulin, C-reactive protein (CRP), and low levels of  HDL and adiponectin all correlated positively with 

SPH, S1P, and most ceramides, but negatively with HexCer and Hex2Cer. SMs correlated positively or 

negatively depending on the molecular species. Among the ceramides, those with the noncanonical d16:1 

backbone had more strongly positive correlations relative to the canonical d18:1 ceramides, while the d18:2 
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ceramides correlated less positively or, in some cases, correlated negatively (Figure 3; Figure 4, A and B; 

Supplemental Table 3; and Supplemental Figures 6–8). In addition, the most strongly positive correlating 

ceramides were those containing a C18:0, C20:0, or C22:0 N-linked fatty acid. These phenomena were less 

consistent among the other, nonceramide, SP classes.

The strongest correlations were observed between LDL and most of the SPs, which likely reflects the fact 

that these SPs are carried on LDL in the plasma (Figure 3 and Supplemental Figure 6). Because experimental 

evidence demonstrates that the production of SPs increases with hyperlipidemia because of substrate availability 

(17) and that SPs make up a significant portion of LDL (18), these correlations were expected. In contrast, SPs 

correlated with HDL and triglycerides positively or negatively depending on the identity of the different SP spe-

cies (Figure 3 and Supplemental Figures 7 and 8). Notably, HDL, which is known to transport SMs, correlated 

positively with most SMs but negatively with most ceramides, which are preferentially transported by LDL.

To determine the influence of  these covariates on the relationship between SPs and BMI, we per-

formed a multivariate analysis correcting for age, sex, LDL, HDL, and triglycerides (Figure 4C and 

Supplemental Tables 4 and 5). Most relationships were retained in this multivariate model. However, this 

analysis provided increased support for the significance of  the noncanonical sphingoid backbone. That 

is, after correcting for these covariates, nearly all d16:1 SPs correlated positively and d18:2 SPs correlated 

negatively with BMI, regardless of  the SP subtype.

The same SPs that were associated with BMI also showed a similar association with HOMA-IR. Given 

that some of these associations may be driven by the correlation between BMI and HOMA-IR, multivariate 

analyses were performed between SPs and HOMA-IR after correcting for age, sex, LDL, HDL, triglycerides, 

and BMI. Of the 70 SPs that correlated significantly with HOMA-IR, 38 remained significant in the multivariate 

model (Figure 4C and Supplemental Tables 4 and 5). Notably, these included all the SPHs and the d18:2 hexo-

sylceramides (Figure 5). In contrast, most of the d18:1 SPs (70%) that were significant in the univariate analysis 

became insignificant in the multivariate analysis, suggesting that these SPs correlated with insulin resistance as a 

consequence of their relationship with body mass and plasma lipids. Furthermore, most d18:2 Hex2Cers did not 

retain association with HOMA-IR after elastic net regularization (Supplemental Table 5), suggesting that d18:2 

ceramides and d18:2 SMs are better predictors of the relationship between d18:2 SPs and HOMA-IR.

To determine whether SPs were significantly correlated with incidence of  T2DM, a Cox regression 

analysis was performed to identify associations with follow-up diabetes incidence. Forty-nine SPs asso-

ciated significantly with diabetes occurrence. Consistent with the correlation observed between SPs and 

BMI, ceramides were generally higher in individuals who were subsequently diagnosed with T2DM, 

hexosylceramides were uniformly lower, and SMs varied by species (Figure 6 and Supplemental Tables 

6–8). In addition, associations involving the d16:1 SPs were more strongly positive across SP classes rela-

tive to those with d18:1 or d18:2 sphingoid backbones. We then performed a multivariate Cox regression 

analysis to correct for diabetes-related covariates, including age, sex, LDL, HDL, triglycerides, BMI, 

and HbA1c. As we observed when we examined the association between SPs and HOMA-IR, most 

of  the associations were attenuated and became statistically nonsignificant after adjustment for BMI. 

Only 4 SPs, SM d16:1/18:0 and SM d18:1/18:0 and their metabolic precursors, Cer d16:1/18:0 and Cer 

d18:1/18:0, remained significant after adjustment for BMI, and when HbA1c was added to the model, 

only the 2 SMs remained independently associated with T2DM incidence (Table 2). A net reclassifi-

cation index (NRI) analysis demonstrated that the addition of  SM d16:1/18:0 and SM d18:1/18:0 to 

the current clinical standard of  HbA1c or HbA1c plus BMI provides moderately improved accuracy of  

Figure 1. Flow diagram of the final number of partici-

pants included in the study.
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the prediction of  diabetes incidence for 38%–40% of  individuals (Supplemental Table 9). For individu-

als that became diabetic, predicted probability was increased in 59%–61% and decreased in 39%–41%, 

giving an NRI+ of  18%–21%. For individuals who did not become diabetic, predicted probability was 

reduced in 59%–60% and increased in 40%–41%, giving an NRI– of  18%–20%. Similar results were 

obtained when evaluating the effect of  adding SM d16:1/18:0 and SM d18:1/18:0 to the Atherosclerosis 

Risk in Communities predictive model for diabetes risk (ref. 19 and Supplemental Table 9). Interestingly, 

the improvements of  these models were entirely due to SM d16:1/18:0, while SM d18:1/18:0 alone did 

not alter the models beyond a 95% CI. It is also of  note that although the addition of  SM d16:1/18:0 

did improve the prediction of  future diabetes risk for a relatively large proportion of  the population, the 

magnitude of  change of  the predicted probability was modest (Supplemental Figure 9) and, as a conse-

quence, may not have a large effect at the population level despite the improvement in prediction.

Discussion
To the best of  our knowledge, this study reports the largest population-based, high-resolution analysis of  

the sphingolipidome, allowing for an accurate evaluation of  the associations between plasma SP content 

and obesity- and diabetes-related characteristics, such as BMI, blood lipids, and HOMA-IR. Many of  the 

SPs evaluated in this study demonstrated significant correlations with BMI. Surprisingly, these correla-

tions were not uniformly positive, which would be expected if  SP synthesis were globally upregulated with 

increasing lipid stores. Rather, these correlations suggest that a more complex derangement of  SP metabo-

lism results from increased adiposity and/or contributes to susceptibility to obesity.

Consistent with the known diabetogenic role of ceramides (7), we found that most ceramides correlated 

positively with HOMA-IR and other diabetes-related characteristics. Interestingly, this included an inverse 

relationship between ceramides and adiponectin. Although this may be due to the known negative correlation 

between this adipokine and BMI (20), there may be a more direct relationship between adiponectin and cera-

mide. Notably, adiponectin administration has been shown to induce ceramidase activity in vitro and in vivo, 

via endogenous ceramidase activity of the adiponectin receptor (21, 22). Indeed, most ceramides retained sig-

nificant positive associations with adiponectin even with the use of BMI as a covariate (Supplemental Table 10).

In contrast with the positive relationship between most ceramides and diabetes-related characteristics, 

our study found a significant negative correlation between hexosylceramides and diabetes-related charac-

teristics. These results suggest that there is an increase in the scavenge/salvage pathway in obese individuals 

that leads to the production of  ceramides through the catabolism of  hexosylceramides (Figure 7).

Table 1. Clinical and demographic characteristics of study participants

Parameters Total population (2302 subjects) No diabetes (2132 subjects) Incident diabetes (170 subjects)

Median Interquartile range Median Interquartile range Median Interquartile range

BMI (kg/m2) 22.32 20.18–24.74 22.15 20.04–24.46 24.76 22.35–27.55

Age (years) 47.00 40.00–55.00 47.00 40.00–54.00 54.00 48.0–62.00

HbA1c (%) 5.39 5.20–5.69 5.39 5.20–5.69 5.89 5.59–6.09

Fasting insulin (μU/mL) 5.40 3.80–8.00 5.30 3.70–7.60 8.60 6.03–12.30

Glucose (nmol/L) 4.70 4.40–5.00 4.60 4.40–4.90 5.10 4.70–5.50

HOMA-IR 1.13 0.76–1.69 1.08 0.74–1.60 1.99 1.42–2.91

Triglycerides (mmol/L) 1.06 0.75–1.57 1.03 0.73–1.51 1.55 1.10–2.15

Total cholesterol (mmol/L) 5.15 4.60–5.79 5.14 4.58–5.78 5.34 4.72–6.03

HDL-cholesterol (mmol/L) 1.45 1.24–1.71 1.46 1.24–1.72 1.30 1.11–1.52

LDL-cholesterol (mmol/L) 3.09 2.60–3.67 3.08 2.59–3.66 3.16 2.64–3.87

Systolic BP (mmHg) 126.50 114.50–141.50 125.00 114.00–140.50 143.50 130.75–158.38

Diastolic BP (mmHg) 75.50 68.00–84.00 75.00 68.00–84.00 82.00 74.63–89.50

CRP (mg/L) 0.80 0.40–1.80 0.80 0.40–1.70 1.95 0.90–3.63

WHR 0.84 0.79–0.89 0.83 0.78–0.88 0.87 0.83–0.91

Adiponectin HMW (μg/mL) 1.19 0.68–1.99 1.23 0.71–2.02 0.83 0.50–1.34

Adiponectin TMW (μg/mL) 3.43 2.39–4.95 3.49 2.45–5.03 2.72 1.88–3.88

Among the 2302 study subjects, there were 1056 men and 1246 women. HOMA-IR, homeostatic model assessment of insulin resistance; CRP, C-reactive 

protein; WHR, waist/hip ratio.
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We found that plasma hexosylceramide content associated negatively with both BMI and T2DM 

incidence, which seems to contradict previous preclinical studies that have suggested that hexosylcer-

amides are likely to be negative regulators of  insulin signaling. For example, inhibition of  hexosylcer-

amide metabolism in mice and rats was associated with improved glucose tolerance and insulin sensitiv-

ity (23, 24). Furthermore, concentrations of  ganglioside GM3 were found to be increased in the adipose 

tissue of  obese, insulin-resistant women (25), and a negative association was found between muscle gan-

glioside GM3 concentration and insulin sensitivity (26). Rats fed a high-fat, obesogenic diet for 12 weeks 

had an accumulation of  hexosylceramides in adipose tissue but a depletion in muscle (27). However, in 

rodent diabetes models, it was found that muscle hexosylceramide levels increased in a T2DM model but 

decreased in a T1DM model (28). In the current study, we identified only 1 GM3 species (d18:1/16:0). 

Although this lipid was negatively associated with BMI and HOMA-IR, and it correlated closely with its 

metabolic precursor, Hex2Cer d18:1/16:0, it is possible that other, more complex ceramides are differ-

entially regulated. This is consistent with in vitro studies that found distinguishable effects of  ceramides 

versus hexosylceramides on insulin signaling (27).

Figure 2. Correlations between SPs and key clinical characteristics. SP/clinical characteristics network showing plasma SP correlations with 7 key clinical 

characteristics. Pearson’s correlation coe�cients based on univariate logistic regression are represented as connecting lines (edges) between the clinical 

characteristics’ nodes and SPs’ nodes. Only correlations with an absolute value of 0.2 and above were shown. Edge width is proportional to correlation 

strength from minimum 0.2 to maximum 0.58. Size of circles (nodes) is proportional to degree (total number of connections with other nodes). Red edge 

color indicates positive correlation while blue edge indicates negative correlation. Node color was grouped according to SP type and clinical characteristic: 

clinical characteristic nodes are gray, Cer nodes are red, HexCer nodes are blue, Hex2Cer nodes are green, and nodes for the other SPs are yellow. The graph 

was generated using the Force Atlas layout in Gephi 0.9.2. S1P, sphingosine-1-phosphate; SM, sphingomyelin; SPH, sphingosine.
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Figure 3. Correlations between 

SPs and clinical characteristics. 

Pearson’s correlation coe�cients 

based on univariate logistic regres-

sion were calculated between each 

SP species and relevant clinical 

characteristics and depicted as a 

heatmap. Positive correlations are 

depicted in red. Negative correla-

tions are depicted in blue.
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In addition to the identification of  an inverse association between plasma hexosylceramides and 

T2DM, this study identified unexpected correlations between increased BMI and SPs that contain d16:1 

and d18:2 sphingoid backbone structures. These noncanonical SPs represent a quantitatively minor com-

ponent of  the sphingolipidome, relative to d18:1 SPs, which may explain why this relationship was under-

appreciated in previous studies. With respect to their correlations with BMI and HOMA-IR, d16:1 SPs are 

uniformly higher and d18:2 SPs are often lower than that of  the canonical d18:1 species. This pattern is 

consistent across subclasses, including ceramides, hexosylceramides, SPHs, and S1P.

SP chain length is regulated at the first step of  de novo synthesis by a heterotrimeric SPT enzyme com-

plex (29). SPT long chain base unit 1 (SPTLC1) is an obligate member of  this complex, but differential 

incorporation of  1 of  2 additional large subunits (SPTLC2 or SPTLC3) and 1 of  2 small subunits (SPT small 

subunit A [SPTSSA] or SPT small subunit B [SPTSSB]) results in alterations in substrate preference (29, 

30). Therefore, it is likely that accumulation of  d16:1 SPs is due to a dysregulation of  SPT subunit genes as a 

result of  increased adiposity. The key SPT subunit involved in the generation of  SPs with shorter backbones is 

SPTLC3, which catalyzes the formation of  d16:1 SPH (29). Interestingly, SPTLC3 has been shown to gener-

ate d16:1 SPs in the heart, where high levels of  d16:1 SPs were found to induce cardiomyocyte apoptosis (29, 

31), thus identifying a potential mechanistic link between T2DM and congestive heart failure. Alternatively, 

dysregulation of  SPT small subunits may be contributing to this phenomenon because SPTSSA has been 

shown to exhibit greater preference for shorter acyl chain substrates than those of  SSPTSSB (30).

The origin of  d18:2 SPs (with a second double bond in the 14Z position) is less clear because there are 

no known metabolic pathways that are responsible for their generation (1). This may be due to the incorpo-

ration of  monounsaturated fatty acids by SPT; however, the likely precursor, 12-hexadecenoic acid, is not 

detected in human plasma in significant concentrations (32). Alternatively, it is possible that an unknown 

SP desaturase catalyzes the incorporation of  a second double bond into the sphingoid backbone at some 

step along the SP metabolic pathway (33).

We also observed asymmetries in the correlations relating to ceramides with different N-linked fat-

ty acids (Figure 2 and Figure 3). Notably, medium-chain ceramides (C18:0, C20:0, and C22:0) correlat-

ed more positively with BMI, HOMA-IR, and diabetes incidence than other ceramides, regardless of  the 

nature of  the sphingoid backbone. This may be due to alterations in the expression or activity of  specific 

ceramide synthase genes, such as CERS1 and CERS4, which are known to generate these ceramide species 

preferentially (34, 35). Furthermore, it is likely that this has functional significance because generation of  

these ceramides by CERS4 is associated with glucolipotoxicity in pancreatic β cells in vitro (34).

It is likely that these observed trends in the levels of  the noncanonical subclasses of  SPs (considering spe-

cific head groups, sphingoid backbones, and N-acyl fatty acids) are the result of  broad, consistent shifts in 3 

key metabolic steps: SPT-mediated condensation (sphingoid backbone variation), CERS-mediated N-acetyl-

ation (fatty acid length), and hexosyltransferase activity (HexCer accumulation). Such activity should result 

in broad, consistent changes in all SPs of  that subtype, rather than sporadic changes in a few species. Indeed, 

when considering the subclasses in aggregate by multivariate linear regression analysis, hexosylceramides 

remained negatively associated with BMI, while SPs and d16:1 SPs (but not d18:1 SPs) containing very long–

chain fatty acids remained positively associated with BMI (Supplemental Figure 10). In contrast, these rela-

tionships did not retain association with T2DM incidence by Cox regression analysis when adjusted for age, 

sex, LDL, HDL, triglycerides, BMI, and HbA1c (Supplemental Figure 11). This is consistent with the high 

stringency of  this analysis and emphasizes the importance of  obtaining high-resolution lipidomic profiles.

Interestingly, while this manuscript was in preparation, 2 additional population-based lipidomics anal-

yses evaluated plasma SPs in the context of  obesity and diabetes (36, 37). Relative to the study presented 

here, the Huynh et al. study (36) quantified a larger number of  metabolites (636 species), across more lipid 

classes (SPs, phospholipids, cholesterols, acylcarnitines), in fewer individuals (640 samples), whereas the 

Lemaitre et al. study (37) evaluated fewer SPs (15 species) on a similar number of  individuals (2086 sam-

Figure 4. Linear regression analysis between SPs and BMI and HOMA-IR. Volcano plots of the e�ects of (A) BMI on lipid concentration representing 

the normalized slope of the lipid/BMI relationship versus the significance of this relationship and (B) HOMA-IR on lipid concentration representing the 

normalized slope of the lipid/HOMA-IR relationship versus the significance of this relationship. Lipids are color coded by class, except that those without 

a significant (P > 0.05) relationship are indicated in black. (C) Multivariate linear regression analysis between SPs and BMI and HOMA-IR. Models with 

increasing covariates are depicted from left to right (increasing stringency). The shading intensity is proportional to the slope of the regression line. Rela-

tionships that are not significant (P > 0.05) are indicated with a black box.
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ples). Although there were some differences among our 3 studies; interestingly, 1 significant observation 

was consistent: ceramides correlated positively while hexosylceramides correlated negatively with clinical 

and biochemical characteristics of  obesity and diabetes. This is particularly notable because these studies 

evaluated 3 ethnically distinct cohorts, Australian, Native American, and Singaporean Chinese, suggesting 

that our observations are not specific to an East Asian population. It is notable that these studies were per-

formed with different analytical methodologies, which is known to result in some variation in absolute lipid 

concentrations (38). However, the relative concentrations determined in the current study were consistent 

with those reported by Huynh et al. (Supplemental Figure 12), and the commonalities reported among 

these studies independently validated some of  our major findings. Neither of  the recent studies evaluated 

longitudinal diabetes incidence data; however, Huynh et al. (36) demonstrated a significant correlation 

between 1 of  our putative prognostic markers, SM d18:1/18:0, and fasting glucose. (SM d16:1/18:0 was 

not evaluated.) Interestingly, Lemaitre et al. (37) reported a complex relationship between several SMs 

(including SM d18:1/18:0) and insulin sensitivity that was dependent upon BMI. That is, SMs are negative-

ly associated with insulin level at normal BMI but are positively associated in obese individuals.

Although factors such as lifestyle and elevated BMI may predispose individuals to increased risk, 

there remains an absence of  specific prognostic biomarkers for progression to T2DM. Our results demon-

strate that BMI and HOMA-IR correlated positively with d16:1 SPs and correlated negatively with d18:2 

SPs and with hexosylceramides. Furthermore, our survival analysis found that 2 SPs (SM d16:1/18:0 

and SM d18:1/18:0) were significantly associated with diabetes occurrence, independent of  age, sex, 

plasma lipid profile, and BMI, with HRs of  about 1.4, suggesting that these SPs may be used as potential 

novel predictors for the development of  diabetes.

Limitations of  the study. Because the participants of  this study were entirely of  East Asian ethnicity, it is 

not clear whether all the findings presented here can be generalized to an ethnically diverse population. For 

example, a previous study found that total SM levels were higher in Asian Americans than in Americans 

with European ancestry (39). A study of  the biological variation of  the lipidome across the different ethnic 

groups (Malay, Chinese, and Indian groups) in Singapore also showed specific associations between several 

Figure 5. Venn diagram depicting SP species that significantly correlate with HOMA-IR under di�erent linear regression models. SPs with a d16:1 back-

bone are indicated in red. SPs with a d18:2 backbone are indicated in blue. All relationships are positive unless indicated with “↓”.
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Figure 6. Cox regression analysis between baseline SP 

concentrations and subsequent diagnosis of T2DM. Models 

with increasing covariates are depicted from left to right 

(increasing stringency). The shading intensity is proportional 

to the slope of the regression line. Relationships that are 

not statistically significant (P > 0.05) are indicated with a 

black box.
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lipid species and certain ethnic groups (40). This suggests that there are genetic factors that regulate basal 

SP metabolism (41) and that resulting differences may explain ethnic variability in disease susceptibility 

and other similar lipidomic studies.

This study involved the evaluation of SPs in plasma only. Although this is ideal for the identification of  

systemic biomarkers, there are limitations for the mechanistic implications of the resulting data. Notably, plas-

ma levels may not correlate with the effective concentrations of SPs in target tissues, such as liver, muscle, and 

adipose. This may account for some apparent paradoxes. For example, the negative correlations between plasma 

hexosylceramides and HOMA-IR may reflect sequestration of these SPs from the plasma into muscle and adi-

pose, rather than being the result of global hexosylceramide depletion. This would explain the disparity between 

this study and others that suggest a positive relationship between hexosylceramides and insulin resistance.

Methods
Study population. Participants were recruited between 2004 and 2007 as part of  the Singapore prospective 

study program and the Singapore cardiovascular cohort study as described previously (42). Briefly, the 

participants were interviewed in their homes and invited to undergo a health examination for additional 

tests and collection of  biological specimens at local hospitals. Age, sex, height, weight, and blood pres-

sure were determined during the in-home interview, as described previously (42). Baseline plasma samples 

were obtained from participants after an 8- to 12-hour fast (42), from which LDL, HDL, triglycerides, 

and HbA1c levels were determined using standard enzymatic assays (43). All SP measurements were per-

Table 2. Cox regression analysis and HR of the effect of baseline SP concentration on subsequent diabetes incidence after adjusting for 

age, sex, LDL, HDL, triglycerides, BMI, and HbA1c

Lipid Adjusted P value HR 95% CI

Cer d16:1/18:0 0.40 1.24 1.01–1.52

Cer d18:1/18:0 0.12 1.35 1.09–1.67

SM d16:1/18:0 1.47E–02 1.45 1.18–1.78

SM d18:1/18:0 1.47E–02 1.40 1.17–1.68

Significant associations (P < 0.05) are indicated in bold.

 

Figure 7. SP metabolism. This schematic shows a simplified representation of the SP metabolic pathway. (A) De novo synthesis results in the formation 

of the essential sphingoid backbone with the condensation of serine and a fatty acyl CoA by SPT. (B) The sphingomyelinase pathway generates ceramides 

from the catabolism of membrane stores of SM. (C) Ceramides are glycosylated into complex ceramides (including HexCer and Hex2Cer) and can be recy-

cled back to ceramides through the scavenge/salvage pathway. (D) The degradation pathway terminates with the irreversible catabolism of S1P by SPL. 

The resulting products may enter the Kennedy pathway for the de novo synthesis of membrane phospholipids.
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formed on baseline plasma samples. Because of  the known variation in SP profiles among the different 

ethnic groups within Singapore (44), we excluded non-Chinese participants. In addition, participants with 

diabetes at baseline, participants who had died, and participants who did not provide consent for their dia-

betes status to be tracked were excluded, resulting in a total of  2302 individuals with health screening data 

and matched plasma samples that were analyzed in this study (Figure 1 and Table 1).

Assessment of  incident diabetes. Participants were evaluated with periodic follow-up visits for approximately 

11 years after initial sample collection and their diabetes status was assessed. Assessment of  participants’ dia-

betes status was dependent on diabetes diagnosis detected by a nationwide governmental database covering 

public health care systems or participants’ self-reported physician diagnosis based on 1 or more of  the follow-

ing criteria: fasting plasma glucose (≥7.0 mmol/L) or HbA1c (≥48 mmol/mol) or concentrations above the 

American Diabetes Association cutoffs for clinical diabetes. Using these criteria, 170 subjects were diagnosed 

with T2DM during the follow-up period (Table 1). The earliest date of  diabetes diagnosis was then linked 

with the initial study interview and blood collection date to calculate time to event for subsequent data analy-

ses. If  a participant was identified as developing diabetes based on more than 1 criterion and therefore had 2 

or more different dates of  diagnosis available, the earliest date was used to determine time to event.

Lipid extraction and quantification. Lipids from plasma samples were extracted using a 1-butanol/methanol 

(1:1, v/v) extraction solvent containing a set of  internal standards based on a method previously described 

(45). 1-butanol and methanol were supplied by Merck Millipore. For S1P analysis, the extracted lipids under-

went an additional trimethylsilyl-diazomethane derivatization step (14). The extracted lipids were analyzed 

by positive mode electrospray ionization mass spectrometry using an Agilent 6495 QQQ mass spectrometer. 

Lipid separations were performed on a UHPLC Agilent 1290, using a Waters BEH HILIC column (for S1P) 

or a reversed-phase Agilent ZORBAX Rapid Resolution High Definition Eclipse Plus C18 column (for all 

other SPs). Lipids were quantified using a dynamic, multiple reaction monitoring method with measure-

ment of  peak area of  quantifier transitions by peak integration. Lipid peaks were identified based on their 

specific precursor and product ion transitions in addition to their retention time (45). Subsequent normaliza-

tion with internal standards was carried out as previously discussed (45). To ensure the quality and precision 

of  the results, pooled quality control (QC) samples were included every 10 study samples. The coefficient 

of  variation (CoV) of  each individual lipid in the QC samples was then calculated, and lipids with CoV 

higher than 30% were excluded. Evaluation was performed for 331 peaks for each plasma sample. Of these, 

80 peaks met our inclusion criteria for reliability and were included in subsequent analyses. These included 

members of  the following classes: ceramides, cerebrosides (monohexosylceramides and HexCer), globo-

sides (dihexosylceramides and Hex2Cer), gangliosides (GM3), SMs, S1P, and SPHs (Supplemental Table 

1). Only a small number of  internal standards were used for this analysis, as is often the case for lipidomic 

measurements. We based our considerations on relative quantification of  the endogenous species because 

absolute quantification would require either the use of  a specific standard for each molecule measured or the 

evaluation of  other factors, such as changes in matrix effects during elution.

Statistics. Principal component analysis plots of  the relative abundance of  the lipids in the samples and 

QCs were created to detect any potential drifts and batch effects. All analyses were performed using R (version 

3.5.1, GNU General Public License v2) on a 64-bit Linux system. All values were log-transformed for analy-

ses. Associations between BMI and SPs were evaluated using linear models (lm function) fitted to before and 

after adjusting for age, sex, LDL, HDL, and triglycerides. Similarly, linear models were also used to evaluate 

the associations between HOMA-IR and SPs after adjusting for age, sex, LDL, HDL, triglycerides, and BMI. 

Cox regression analysis (surv function) was also carried out to identify potential SPs associated with the risk 

of  progression to T2DM after adjusting for age, sex, LDL, HDL, triglycerides, BMI, and HbA1c. Standard-

ized slope (reghelper package) was calculated for all the models. P values were adjusted by Benjamini-Hoch-

berg method. Relationships were considered significant if  the adjusted P value was less than or equal to 0.05.

Study approval. All human plasma samples were collected in accordance to ethical guidelines and pro-

tocols. This study was approved by the SingHealth Institutional Review Board (Centralised Institutional 

Review Board 2001/001/C), Singapore. Informed consent was obtained from all subjects.
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