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Abstract

Visual location recognition is the task of determining the

place depicted in a query image from a given database of

geo-tagged images. Location recognition is often cast as an

image retrieval problem and recent research has almost ex-

clusively focused on improving the chance that a relevant

database image is ranked high enough after retrieval. The

implicit assumption is that the number of inliers found by

spatial verification can be used to distinguish between a

related and an unrelated database photo with high preci-

sion. In this paper, we show that this assumption does not

hold for large datasets due to the appearance of geomet-

ric bursts, i.e., sets of visual elements appearing in similar

geometric configurations in unrelated database photos. We

propose algorithms for detecting and handling geometric

bursts. Although conceptually simple, using the proposed

weighting schemes dramatically improves the recall that

can be achieved when high precision is required compared

to the standard re-ranking based on the inlier count. Our

approach is easy to implement and can easily be integrated

into existing location recognition systems.

1. Introduction

Given a database of geo-tagged images, the task of a vi-

sual location recognition system is to determine the place

depicted in a query photo [2, 5, 30, 34, 35]. Knowing which

database images show the same place as the query, the posi-

tion (potentially also the orientation) from which the query

photo was taken can either be approximated [7, 13, 37] or

computed precisely [26,40] from the known positions of the

matching database images. Location recognition techniques

play an important role for several applications such as loop-

closure in robotics [9], landmark recognition [4, 7], visual

navigation [26], and image-based localization [6, 14, 29].

Typically, two tasks must be accomplished to solve

the visual location recognition problem: (i) find a set of

database images visually similar to the query and (ii) de-

termine which, if any, of the retrieved images depict the

same place as the query. The first step is another canonical

problem of computer vision, namely image retrieval [31].

Consequently, most work on location recognition focuses

on optimizing the retrieval step, with the aim to maximize

the portion of queries where at least one relevant database

photo is contained in the N most similar retrieved images,

the so-called recall@N . Image retrieval largely ignores the

spatial relations between features in the query image. Thus,

the recall@N can be improved further through spatial ver-

ification: the (approximate) geometric transformation be-

tween the query and the top-ranked images after retrieval is

estimated [24,32,33] and the database images are re-ranked

based on the number of inliers to the transformation.

Improving the retrieval step is clearly a key factor for

solving the location recognition problem. Yet, only improv-

ing the recall@N is not sufficient for quite a few applica-

tions which require high precision. For example, to support

loop-closure in SLAM systems one must recognize previ-

ously visited locations with high precision, since the loop

closure (a.k.a. pose graph optimization) itself tolerates only

a small number of mistakes [18]. Similarly, tools which au-

tomatically annotate photos with the place where they were

taken [11] become useless if the user must search and cor-

rect too many mistakes. Thus, a second key capability of

a location recognition system is to decide with high pre-

cision (i.e., low false-positive rate) which of the retrieved

images actually depict the same place – ideally the bulk of

the queries should satisfy recall@1.

As explained, the standard way to refine the raw list of

retrieved images is geometric verification with a suitable

transformation. But the re-ranking is surprisingly primitive:

typically, images are simply re-ordered by the number of

inliers to the transformation, respectively discarded if that

number falls below some threshold. Interestingly, the re-

sults reported in previous work actually suggest that this is

not a suitable strategy if high precision is required. E.g., [2]

reports a recall@1 of ≈70% on the large-scale Pittsburgh

dataset [35], but a recall@50 of ≈90%. In other words, for
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Figure 1. Geometric bursts, i.e., geometrically consistent structures of similar appearance, cause problems to location recognition: database

images depicting an unrelated place can often attain more inliers to the estimated geometric model than photos of the same place.

20% of all query images an unrelated image has a higher

inlier count than any photo taken at the same place, even

after spatial verification! Somewhat surprisingly, this ob-

servation has received very little attention in the literature.

It is known that visual words appearing in visual bursts

[16] or words that are likely to co-occur together [8] require

special handling. In much the same way, large databases of-

ten contain geometric bursts, i.e., geometric configurations

of visually similar features that are shared between differ-

ent places. Fig. 1 illustrates this phenomenon. By defini-

tion, geometric bursts appear in multiple locations of the

database. Hence, they violate the basic assumption under-

lying geometric verification: even spatial configurations of

several features are not always unique, making it impossible

to distinguish between a correct and a wrong location.

In this paper, we investigate ways to explicitly handle

geometric bursts by analyzing the geometric relations be-

tween the different database images retrieved by a query.

Namely, we make the following contributions: (i) we intro-

duce the concept of geometric burstiness. (ii) we demon-

strate that geometric bursts are an important cause for false

positives and have a significant impact on the precision of

location recognition. (iii) we show how to dramatically

increase the recall for a given precision with an appropri-

ately weighted inlier count that better accounts for geomet-

ric bursts. (iv) our approach is designed such that it oper-

ates online at query time, and requires neither costly pre-

processing nor any additional storage. It can be used as a

drop-in replacement for the conventional inlier count, with-

out any changes to the underlying retrieval system, and we

make source code available at https://github.com/

tsattler/geometric_burstiness.

2. Related Work

Location recognition, also referred to as place recogni-

tion, relies on image retrieval techniques such as inverted

files [31], quantized feature matching with large visual vo-

cabularies [22, 24], vocabulary trees [23], and fast approxi-

mate spatial matching [24, 33]. Hamming embedding [15]

simulates the similarity between two descriptors at little ad-

ditional run-time and memory overhead by using compact

binary representations. Thus, Hamming embedding allows

to remove many of the unrelated votes caused by visual

word quantization [29]. To overcome the limited viewpoint

invariance of modern features such as SIFT [20], [4, 7, 26]

rectify images prior to feature extraction, with the help of

vanishing points. [7] show that combining rectified and reg-

ular images increases the overall performance. Instead of

using invariant features, [34] densely sample the scene by

generating synthetic renderings from novel viewpoints.

Recent work on place recognition focused on the prob-

lems caused by repetitive structures and uninformative fea-

tures. Repetitive structures lead to bursts of visual ele-

ments, i.e., a visual word occurs very often in an image [16].

While [16] handle the repetitions of a single word, [8] de-

tect and handle sets of co-occurring features, showing that

the classical tf-idf weighting cannot handle that case. [35]

recognize that repetitive structures are not only a nuisance,

but can provide valuable information about a place. They

propose to consider the features in a repetitive pattern as a

soft assignment of a single visual element, and show that

their explicit handling of repetitions outperforms the stan-

dard scheme [16] that down-weights visual bursts.

In order to improve and accelerate the retrieval perfor-

mance, [30, 36] select only an informative subset of all

database features that are repeatable and/or unique for each

place. [17] proceed more conservatively and only remove

confusing features that are also found in unrelated places of

the database. Both [6, 12] learn SVM classifiers on top of

the Bag-of-Words image representation for each place, so

as to properly weight informative and confusing features.

All these methods [6, 12, 17, 30, 36] must query every sin-

gle database photo against the database. [2] argue that this

is infeasible for large databases due to its quadratic compu-

tational complexity. Instead, they propose to handle repeti-

tions and uninformative features online at query time, by

density estimation in the space of Hamming descriptors,

which can be computed efficiently. All these methods aim

to improve the retrieval stage before spatial verification. In

contrast, we focus on providing a better measure for decid-

ing between related and unrelated places after verification.
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Instead of using visual words, [37, 38] exploit the full

feature descriptors for matching. They do not vote for indi-

vidual database images, but instead use the geo-tags of all

matching images to cast votes for the geo-position of the

query image. [39] take that idea one step further and use

a 3D model of the scene to better constrain the voting, for

both the position and orientation of the image. However, us-

ing full descriptors soon becomes infeasible at large scale.

Closely related to location recognition is the image-

based localization problem, where the goal is to recover the

full camera pose of a given query image relative to a 3D

scene model [19,28]. Image-based localization systems put

emphasis on computing the camera pose with a high preci-

sion. They use the full feature descriptors for matching and

more restrictive geometric models for spatial verification,

while image retrieval-based approaches traditionally use vi-

sual words for matching and approximate geometric mod-

els for verification. As a result, image-based localization

by large achieves a much higher recall than place recog-

nition methods in the high precision regime, although [27]

recently showed that a similar recall at high precision can

be achieved with quantized features as well. However,

there are no theoretical reasons why location recognition

approaches should perform worse. In this paper, we show

that by handling geometric bursts, location recognition ap-

proaches can reach similar or better levels of recall in the

high precision regime without using the full descriptors and

using only an affine model for geometric verification.

3. Geometric Burstiness

During conventional image retrieval the spatial configu-

ration of features in query and database images is ignored.

As a consequence, a retrieved database image may contain

many visually similar features, but in a very different ge-

ometric configuration. The purpose of geometric verifica-

tion is to detect images where the feature point locations

are not consistent, i.e., they are unrelated and retrieved by

mistake. The common assumption is that, if one fits a suit-

able image-to-image transformation to the feature matches,

not many inliers will be found for unrelated images. The

inlier count is used to re-rank the top-k retrieved images.

Clearly, the assumption does not hold if the same geometric

configuration occurs repeatedly in the database. Such non-

unique configurations, geometric bursts, are more likely if

the scene is large, and if it contains visually similar objects.

The central message of this paper is that, other than what

one might hope, geometric bursts do occur regularly in re-

alistic databases. That means that one will encounter cases

where unrelated images have the highest inlier counts (c.f .

Fig. 1(left & middle)). With standard re-ranking these at-

tain the highest rank and lower the recall@N . Note that

geometric bursts are not restricted to small image areas.

However, the impact of geometric bursts goes beyond a
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Figure 2. Precision-recall curves obtained by a state-of-the-art lo-

calization recognition system [2] when considering the top-ranked

image after spatial verification (raw inlier count re-ranking).

reduced recall@N : as unrelated database images can have

many inliers for some query images, the inlier count is also

not a suitable measure to decide whether a place has been

correctly recognized or not (c.f . Fig. 1(right)). Fig. 2 shows

that this can result in a much lower recall in the high preci-

sion regime, when one must set a high threshold, e.g., 90%,

to the amount of the correct answers returned by the system.

One obvious strategy to handle geometric bursts is to

remove them in a pre-processing step, by detecting visual

bursts for each database image, similar to the removal of

confusing features proposed in [17]. However, the compu-

tational complexity of such an offline process is quadratic

in the number of database images: each image needs to

be queried against the complete database. As pointed out

by [2], such preprocessing quickly becomes infeasible as

the database size grows. We propose to instead handle ge-

ometric bursts at query time. In [8] it has been shown how

to efficiently detect co-occurrence sets, i.e., sets of visual

words likely to appear together, in the query image dur-

ing retrieval. However, it is unclear how to distinguish co-

occurrence sets between multiple images of the same lo-

cation from geometric bursts that appear at unrelated loca-

tions. Moreover, removing bursts at retrieval time runs the

risk of also losing the correct location [8]. We thus prefer to

handle geometric bursts at the stage where they cause prob-

lems, i.e., after spatial verification. By definition, geometric

bursts visible in a query image will appear in multiple un-

related database images. Given the geo-tags of the database

photos and the inlier matches detected for them, it is there-

fore rather simple to detect geometric bursts on demand and

down-weight their influence on the image ranking. We will

show in Sec. 5 that it is easier to distinguish related and un-

related images with that weighted inlier count. As a result,

our approach greatly increases the recall at high precision.

4. Detecting and Handling Geometric Bursts

Essentially, a geometric burst is a set of visual words that

co-occur repeatedly in the same spatial configuration. [16]

show for visual bursts that appropriate down-weighting im-

proves retrieval, and [8] apply the same weighting scheme

for co-occurrence sets (sets of co-occurring features in an
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arbitrary spatial configuration). In Sec. 4.1, we first review

this weighting scheme and discuss how to adapt it for ge-

ometric burstiness. While this simple adaptation already

improves the recall at high precision, it overestimates the

importance of geometric bursts. Sec. 4.2 describes how to

remedy this behavior. Sec. 4.3 then proposes to measure

place popularity and include it into the weighting scheme.

4.1. Inter­Image Geometric Burstiness

According to [16], a visual burst is a visual word which

violates the assumption that words appear independently of

each other. Moreover, they distinguish between intra-image

and inter-image burstiness. Intra-image bursts are caused by

repetitive structures found in a single image, whereas inter-

image burstiness refers to visual elements shared between

many database images. In terms of geometric burstiness,

intra-image bursts can easily be handled by enforcing one-

to-one correspondences for the inliers.

[16] handle inter-image visual burstiness as follows: let

sim(Qi,D
m
j ) be the similarity score between the ith feature

in the query image Q and the jth feature in the mth database

image Dm, e.g., computed via Hamming embedding. The

sum of similarity scores for the ith query feature across all

database images is thus given by

sim∑(Qi) =
∑

m

∑

j

sim(Qi,D
m
j ) . (1)

[16] use this sum to weight each similarity score

sim(Qi,D
m
j ) by multiplying with

√

sim(Qi,D
m
j
)

sim∑(Qi)
.

Obviously, this weighting scheme can be adapted to the

case of geometric bursts. A match (Qi,D
m
j ) contributes a

value of 1 to the inlier count for image Dm if it is an inlier

to the estimated model and a value of 0 otherwise, i.e.,

simgeo(Qi,D
m
j ) =

{

1 if (Qi,D
m
j ) is an inlier

0 otherwise
. (2)

The ith query feature Qi is a part of at most one inlier match

for any database image, thus the geometric equivalent

simgeo,
∑(Qi) =

k
∑

m=1

∑

j

simgeo(Qi,D
m
j ) (3)

to Eqn. (1) is simply the number of database images for

which Qi is an inlier of the geometric verification. Notice

that while Eqn. (1) considers all database images, Eqn. (3)

only includes the top-k ranked images after retrieval for

which spatial verification is performed1.

1 To avoid confusion, top-k will refer to the k images with the highest

similarity score after retrieval. The recall@N measure then considers the

N highest ranked images after applying spatial verification on the top-k

images and re-ranking based on the (raw or weighted) number of inliers.

Figure 3. Two images from the San Francisco dataset depicting

the same clock tower from different viewpoints.

A query feature Qi participates in a geometric burst if it

forms part of the inlier set for at least two database images

Dm 6= Dl. To assign a lower weight to features from a ge-

ometric burst, we use an inter-image-weighted inlier count

Iinter-image(D
m) =

∑

inlier match (Qi,D
m
j
)

1
√

simgeo,
∑(Qi)

(4)

over all verified matches (Qi,D
m
j ) from the query image Q

to the database image Dm. In Sec. 5, we will experiment

with various weighting functions, as well as a variant that

completely removes features from geometric bursts.

4.2. Inter­Place Geometric Burstiness

Usually, place recognition databases contain multiple

photos of each place, e.g., street-level panoramas taken at

regular intervals as in online mapping services. Two im-

ages depicting the same location will inherently share com-

mon features. Thus, it is likely that a geometric burst de-

tected within one of them is also detected in the other one.

Eqn. (3) treats each view separately and thus overestimates

the burstiness of the underlying features. Consequently, the

weighted inlier count, Eqn. (4), underestimates the sim-

ilarity between the query and database images. Rather

than identifying geometric bursts on a per-image level, it

would be more appropriate to identify bursts on a per-place

level. In the following, we provide a workable definition

of a “place” and with that definition compute an inter-place

burstiness measure.

Defining places. Fig. 3 shows a fundamental difficulty

of visual location recognition. Two database images were

taken at different places that are far apart, but they con-

tain the same clock tower. Note the subtle problem: fea-

tures on the front side of the tower in the two images depict

the same physical points, nevertheless they form a geomet-

ric burst, since the tower is visible from multiple locations

and can confuse place recognition. The example highlights

a simple, but important fact: visual similarity alone is un-

suitable to define a place (even if one had perfect descrip-

tors that unambiguously encode 3D points), simply because

vision is a long-range sensor. To solve this problem, we

must exploit the geo-tags g(Dm) ∈ R
2 of each database

image, obtained, e.g., from GPS or Structure-from-Motion.
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One natural approach is to define a place as the set of all

database images whose geo-tags fall into a pre-defined cell

in scene space, e.g., on a regular lattice or a Voronoi tes-

sellation found with k-means clustering. A regular grid is

tempting, but will lead to quantization artifacts near the cell

boundaries, because it ignores the distribution of the geo-

tags. We therefore adaptively cluster at query time based

on the spatially verified database images. At first glance,

this approach seems suboptimal. However, we only need to

consider a few spatially verified images2. Compared to the

time required for retrieval and spatial verification, we found

the time required for clustering to be negligible.

Our method is inspired by the initialization procedure of

k-means++ clustering [3]: D1 is the database image with

the largest number of inliers. Its geo-tag g(D1) defines the

center of the first cluster. We iteratively select the database

image Dm furthest away from all previously chosen clus-

ter centers. This process is terminated once there exists no

more image Dm that is more than dmax meters away from

its closest cluster center, or all k verified images have been

considered. The termination criterion is chosen to reflect

that nearby images should belong to the same place. Next,

we assign each verified database image Dm to its closest

cluster center c(Dm). Each cluster then defines one place.

Inter-place burstiness. Given the set of places obtained

via clustering, we adapt the geometric burstiness weighting

scheme to avoid overestimating the number of geometric

bursts. For a feature Qi in the query image, let D(Qi) be

the set of database images containing an inlier match for

Qi. The set of relevant places is then given by

c(Qi) = {c(Dm) | Dm ∈ D(Qi)} . (5)

We can now normalize over places rather than images to

define an inter-place-weighted inlier count

Iinter-place(D
m) =

∑

inlier match(Qi,D
m
j
)

1

|c(Qi)|
. (6)

Compared to Eqn. (4), Eqn. (6) counts each geometric burst

at most once per place to assess a query feature Qi. In the

experiments, we show that this greatly improves recall at

high precision. In Eqn. (6), we have dropped the square

root as we found that the new criterion performs slightly

better without it. We will experiment with different weight-

ing functions in Sec. 5.

Exploiting metadata. Some datasets provide detailed

metadata for each database image. For example, the San

Francisco dataset [7] provides a “carto id”, a unique identi-

fier for the building visible in each database image. Natu-

rally, this information can be used as an alternative way of

defining places. In Sec. 5 we show that using such metadata

2Typically, 10 to 1000 top-ranked images are spatially verified.

does not necessarily improve over the data-driven cluster-

ing, possibly because the “carto id” is somewhat ambiguous

if more than one building is visible in the foreground.

4.3. Inter­Place Burstiness with Place Popularity

So far, we proposed a method which weights the indi-

vidual features of Q differently in the computed inlier sum.

Once we have the database images clustered to places, we

can also use the popularity of the individual places to further

refine the weighting scheme. For a database image Dm, let

C(Dm) be the set of images from its place. The place’s pop-

ularity p(C(Dm)) is given as the number of features from Q
which are inliers for at least one of the images in C(Dm):

p(C(Dm)) = |{i | D(Qi) ∩ C(Dm) 6= ∅}| . (7)

The inter-place-popularity-weighted inlier count is then de-

fined in the following way:

Iinter-place + pop(D
m) = Iinter-place(D

m) ·
p(C(Dm))

max
l

p(C(Dl))
. (8)

Therefore, all retrieved database images not located at the

most popular place are further down-weighted.

4.4. Discussion

The weighting scheme proposed above is conceptually

simple, and very easy to implement. It requires neither any

additional matching or verification steps nor any external

data. Notwithstanding its simplicity, re-weighting accord-

ing to geometric burstiness brings drastic improvements

compared to the traditional inlier count, as we will show

in Sec. 5. The simplicity of our method naturally raises the

question whether a different, possibly more sophisticated,

way of handling bursts would perform even better.

In Sec. 5.2, we experiment with different weighting

schemes for both Eqn. (4) and Eqn. (6). For example, we

use
√

|c(Qi)| instead of |c(Qi)| in Eqn. (6), to assign more

importance to inliers found on geometric bursts. Our results

will show that changing the weighting function has only a

small impact on the overall performance of Eqn. (6), which

is in agreement with the results of [16] for visual bursts. At

the same time, we observe a significant loss when Eqn. (4) is

used instead. This suggests that detecting which geometric

bursts come from the same scene structure is more impor-

tant than the exact weighting function. We also show that

the performance of the proposed method depends only little

on the exact definition of what constitutes a place.

There is one obvious difference between visual and ge-

ometric bursts: visual bursts (and similarly co-occurrence

sets) are defined independent of the feature’s position in the

image. In contrast, geometric bursts essentially correspond

to geometrically consistent regions in the images. We tried

to account for this difference by dividing the query image
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Figure 4. Two images from the San Francisco dataset prominently

displaying the same building from different sides.

into tiles and counting the number of geometric bursts per

tile rather than per feature, but this did not improve the re-

sults (improper setting of tile size even worsens the results).

There is one obvious situation in which the weighting

scheme fails: consider the building in Fig. 4. If all inliers

are found on a surface visible from many places, down-

weighting them will have no effect on the ranking. In such

cases, higher-level information is needed, e.g., reasoning

based on the outlines of the nearby buildings.

5. Experimental Evaluation

In this section, we evaluate the weighting schemes for

geometric bursts proposed in Sec. 4 on two standard bench-

mark datasets for place recognition, San Francisco [7] and

Pittsburgh [35]. We show that accounting for geometric

bursts significantly improves the recall in the high precision

regime as well as the overall recall.

San Francisco Landmarks dataset [7]. The San Fran-

cisco dataset consists of 1.06M database images extracted

from about 150k panoramic images captured by a vehi-

cle driving through the streets of San Francisco. The 803

query images are taken with multiple mobile phones. Each

database image is annotated with a “carto id” denoting the

building visible in the image and a list of relevant “carto

ids” is also provided for each query image. A query image

is then considered to be successfully localized if the top-

ranked database image is annotated with a relevant “carto

id”. We use the 2014 version of the ground truth [2].

Pittsburgh dataset [35]. The database photos for the Pitts-

burgh dataset were obtained by extracting 254k perspec-

tive images from about 10.6k panoramas downloaded from

Google Street View (which leads to a rather large distance

between the panorama locations). 24k query images then

come from a separate set of Google Street View panoramas

taken from Google’s Pittsburgh Research Dataset. Both sets

of panoramas have quite accurate GPS coordinates which

defines the localization task: A query image is consid-

ered being localized if the GPS position of the top-ranked

database photo is within 25m of the query image’s position.

Place recognition pipeline [2]. We use our own implemen-

tation of a state-of-the-art location recognition system [2],

referred to as DisLoc, to perform image retrieval and spatial

verification. DisLoc uses 64-bit Hamming embedding [15]

to compute the similarity between a query and database fea-

ture, which is weighted based on the density of the descrip-

tor space surrounding the database feature. As a result, less

weight is assigned to matches found in dense parts of the de-

scriptor space, effectively down-weighting visual elements

that appear often. Inter-image visual burstiness weighting

[16] is used to handle visual burst. As in [2], upright Root-

SIFT [1, 20] descriptors are extracted from Hessian-Affine

keypoints [21] and are assigned to the closest out of 200k

words. To lessen quantization artifacts, each query feature

is assigned to its 5 closest words. As in [2], fast approxi-

mate spatial verification with an affine model [24] is used to

verify the top-200 images found by the retrieval step. Fig. 2

shows that our implementation performs slightly worse than

[2], i.e., the improvements reported in this paper do not

come from a better implementation.

5.1. Baseline Comparisons

First, we compare the weighting schemes for geometric

bursts proposed in Sec. 4 with two baselines: the raw inlier

count and the effective inlier count [14,27]. The latter mea-

sure is defined as follows: each inlier feature in the query

image covers the area Ai contained in a circle of radius r
around itself, with r set to 12 pixels in our experiments.

Given n inliers, the effective inlier count is computed as

Ieff =
|
⋃

i Ai|
∑n

i=1 |Ai|
· n , (9)

where |Ai| = π · r2 denotes the size of the area covered

by the ith inlier feature. Eqn. (9) thus compares the actual

area covered by all inliers with the area that can be cov-

ered if none of the circles are overlapping. This measure

down-weights inliers found in a small region of the query

image. Following the setup from [7], we obtain precision-

recall curves by varying a threshold on the number of in-

liers for the raw count and thresholds on the weighted inlier

counts for the effective and the two burstiness inlier counts.

The goal of our first experiment is to show that both the

inter-image-weighted inlier count Iinter-image, Eqn. (4), and

the inter-place-weighted inlier count Iinter-place, Eqn. (6), en-

able us to find a better threshold to distinguish between cor-

rect and wrong place recognitions. Thus, in this experi-

ment, we only consider the verified database images with

the largest raw number of inliers found for each query im-

age and do not re-rank based on the weighted inlier counts.

As can be seen in Fig. 5(a-b), the effective inlier count con-

sistently outperforms the raw inlier count, while in turn both

burstiness measures outperform the effective inlier count.

The latter shows that geometric bursts are not restricted to

small image regions.

The improvement in recall we gain by accounting for ge-

ometric bursts is dramatic: At 95% precision, the raw and
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Figure 5. Comparison against baseline measures: (a-b) without

and (c-d) with re-ranking using the respective measure.

effective inlier counts achieve 53.4% respectively 57.3% re-

call on San Francisco. In contrast, our weighting schemes

for geometric burstiness achieve 63.5% and 70.1%. At 90%

precision, the raw and effective counts obtain 7.2% and 18%

recall on Pittsburgh while the inter-image count obtains

25.8% and the inter-place measure achieves 51.1% recall.

These results clearly demonstrate the importance of han-

dling geometric bursts. Interestingly, all measures perform

poorly on the Pittsburgh dataset when a precision higher

than 90% is required. We visually inspected over 400 out of

6381 query images for which the top-ranked database photo

is unrelated but still receives a high weighted inlier score.

One common failure case is that all inliers are solely found

on geometric bursts, e.g., identical facades of a building or

buildings seen from afar. As discussed in Sec. 4.4, such

cases cannot be resolved by considering geometric bursts.

Fig. 5(c-d) demonstrates that accounting for geometric

bursts not only enables a better decision between correctly

and incorrectly retrieved places. It also improves the overall

recall when used for re-ranking.

5.2. Ablation Study

In the next experiment, we evaluate the impact of differ-

ent parameter settings for the burstiness schemes.

Different weighting schemes. We test the impact of differ-

ent weighting schemes for the number of geometric bursts.

For example, we replace the term 1/
√

simgeo,
∑(Qi) in

Eqn. (4) with 1/simgeo,
∑(Qi) to give less weight to in-

liers participating in many geometric bursts. In addition,

we experiment with removing inliers participating in geo-

metric bursts, i.e., inliers to two or more images, respec-

tively places. Fig. 6(a-b) shows the results from this ab-

lation study. As can be seen, the weighting function used

has a large impact on the inter-image count since, e.g.,
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Figure 6. Ablation study for our method on the two datasets. All

results are after re-ranking using the respective measure. Colors

denote different inlier counts, while the line style, e.g., dashed or

dotted, denotes different ways to compute these counts.

simgeo,
∑(Qi) overestimates the number of geometric bursts

for each query feature. Removing inliers participating in

bursts further decreases the performance as it does not ac-

count for the fact that multiple database photos can depict

the same place. The fact that the linear weighting performs

similar as the square-root weighting on Pittsburgh comes

from the fact that the database images are taken further

apart, so there are fewer photos depicting the same place.

In contrast to the inter-image count, the inter-place count

is much less sensitive to the weighting function used, with

the linear weighting performing slightly better than the

other weighting functions. This demonstrates that the main

importance lies in detecting related bursts rather than in the

way bursty inlier features are weighted.

Different place definitions. So far, we have only used

the place clustering scheme described in Sec. 4.2, with the

maximum distance set to dmax = 25m. Next, we compare

this scheme against using a regular grid of side length 25m.

For San Francisco, we also compare against using the “carto

id” of the database images for clustering. For the inter-place

count, we use the linear weighting. The results of the exper-

iments are shown in Fig. 6(c-d). On San Francisco, where

the database images are taken more densely, the adaptive

clustering scheme performs better than the fixed grid, offer-

ing a recall of 71.2% at 95% precision compared to 65.6%

for the fixed grid. However, using the “carto ids” to define

places does not offer a significant advantage.

The sparser sampling on the Pittsburgh dataset leads to

less quantization artifacts. As a result, using either the adap-

tive clustering or the regular grid results in virtually the

same recall-precision curve. Independently of the place def-

inition, the inter-place count gives better results than the
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inter-image count. This again demonstrates the importance

of accounting for the fact that multiple database images can

depict the same part of the scene.

Popularity-based weighting. Fig. 6(c-d) show the re-

sults obtained with the inter-place-popularity-weighted in-

lier count (using the place clustering scheme described in

Sec. 4.2). On the San Francisco dataset, the improvement

compared to the inter-place count is modest as the recall at

95% precision increases from 71.2% to 72.4%. However,

the improvement measured on Pittsburgh is more signifi-

cant as the recall at 90% precision increases from 54.3% to

59.4%. The inter-place-popularity count penalizes database

images that do not come from the place with the largest

number of inliers. The smaller improvement on San Fran-

cisco can be explained by the fact that location recognition

performs better on this dataset, i.e., most of the correctly

retrieved images come from the most popular place.

The maximum recall our implementation can achieve

when verifying the 200 top-ranked images is 87.92% for

San Francisco and 88.98% for Pittsburgh, respectively. Us-

ing the inter-place-popularity count, we achieve a recall@1

of 82.57% for San Francisco and 74.15% for Pittsburgh.

5.3. Comparison with State­of­the­Art

We compare our implementation of DisLoc+inter-place-

popularity with state-of-the-art place recognition [2, 7, 35]

and image-based localization approaches [27, 39]. Since

there is no 3D model for the Pittsburgh dataset, the com-

parison is only performed on San Francisco. [27, 39] use a

3D model provided by [19] while all other methods only

use images. Whereas our approach considers the relation-

ship between inliers in multiple images, all other meth-

ods score images and/or poses independently of each other.

For [7,27,35], we use results kindly provided by the authors

to draw the precision-recall curves.

The Adaptive weights method from [35] does not per-

form spatial verification. Thus, we use the similarity scores

after retrieval to obtain the precision-recall curve. [7] use

histogram equalization before extracting upright SIFT fea-

tures [20] and a GPS prior (Hist.Eq. w/ GPS). The method

from [39] uses a 3D model to vote for the most likely cam-

era pose, followed by a RANSAC-based refinement step

[10]. The Hyperpoints approach from [27] uses a fine vo-

cabulary of 16M words [22] instead of the original point de-

scriptors to obtain the 2D-3D matches required for pose es-

timation. For completeness, we also report the results origi-

nally obtained by [2] with spatial verification (DisLoc+sp).

Fig. 7 shows the results of the comparison. As can be

seen, [2] can significantly outperform existing methods sim-

ply by accounting for geometric bursts. Compared to [7],

we improve recall from 70.1% to 80.5% for 90% precision.

For 95% precision, we improve the 63.5% recall achieved

by [27] to 72.4%. Our recall is close to the 74.2% obtained
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Figure 7. Combining [2] with our proposed scheme for handling

geometric bursts not only provides significantly better results over

the original method but also outperforms state-of-the-art methods

for both place recognition and image-based localization.

inliers Ieff Iinter-image Iinter-place Iinter-place+pop

Oxford105k (mAP) 0.710 0.730 0.708 0.735 0.745

Paris106k (mAP) 0.613 0.619 0.611 0.649 0.682

Table 1. Image retrieval results reporting mean average precision.

by [39] with the help of a GPS prior and higher than the

67.5% reported by [39] without a GPS prior.

5.4. Image Retrieval Results

Finally, we show that handling geometric bursts also im-

proves standard image retrieval performance. We trained

vocabularies with 200k words on Paris6k [25] and Ox-

ford5k [24] for Oxford105k [24] and Paris106k [25], re-

spectively. Spatial verification is performed for the 1000

top-ranked images. Due to a lack of geo-tags, we define

places based on the filename prefixes of the images, e.g.,

“keble”, which corresponds to the original Flickr queries.

Tab. 1 shows the mean average precision (mAP) values ob-

tained with the different (weighted) inlier counts. Both

inter-place burstiness variants outperform the raw and ef-

fective inlier counts, while the inter-image scheme overesti-

mates the number of geometric bursts and performs worse.

6. Conclusions

In this paper, we have shown that geometric bursts, i.e.,

sets of visual elements that appear in a consistent spatial

configuration in multiple unrelated database images, can

significantly impact the recall that can be achieved by lo-

cation recognition approaches. We have proposed a sim-

ple and easy-to-implement method for detecting and down-

weighting geometric bursts. Our approach can serve as a

drop-in replacement for the classic re-ranking after spatial

verification based on the number of inliers and our experi-

mental results show that this simple approach dramatically

increases the recall in the high precision regime. Just by

using our weighting scheme, an existing place recognition

method achieves state-of-the-art localization performance.
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