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I. Learning with Stochastic Gradient Descent
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Example

Binary classification

– Patterns x.

– Classes y = ±1.

Linear model

– Choose features: Φ(x) ∈ Rd

– Linear discriminant function: fw(x) = sign
(
w>Φ(x)

)
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SVM training

– Choose loss function

Q(x, y, w) = `(y, fw(x)) = (e.g.) log
(
1 + e−y w

>Φ(x)
)

– Cannot minimize the expected risk E(w) =

∫
Q(x, y, w) dP (x, y).

– Can compute the empirical risk En(w) =
1

n

n∑
i=1

Q(xi, yi, w).

Minimize L2 regularized empirical risk

min
w

λ

2
‖w‖2 +

1

n

n∑
i=1

Q(xi, yi, w)

Choosing λ is the same setting a constraint ‖w‖2 < B.
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Batch versus Online

Batch: process all examples together (GD)

– Example: minimization by gradient descent

Repeat: w ← w − γ

λw +
1

n

n∑
i=1

∂Q

∂w
(xi, yi, w)



Online: process examples one by one (SGD)

– Example: minimization by stochastic gradient descent

Repeat: (a) Pick random example xt, yt

(b) w ← w − γt
(
λw +

∂Q

∂w
(xt, yt, w)

)
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Second order optimization

Batch: (2GD)

– Example: Newton’s algorithm

Repeat: w ← w −H−1

λw +
1

n

n∑
i=1

∂Q

∂w
(xi, yi, w)



Online: (2SGD)

– Example: Second order stochastic gradient descent

Repeat: (a) Pick random example xt, yt

(b) w ← w − γtH−1
(
λw +

∂Q

∂w
(xt, yt, w)

)
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More SGD Algorithms

Adaline (Widrow and Hoff, 1960)

Qadaline = 1
2

(
y − w>Φ(x)

)2
Φ(x) ∈ Rd, y = ±1

w ← w + γt
(
yt − w>Φ(xt)

)
Φ(xt)

Perceptron (Rosenblatt, 1957)

Qperceptron = max{0,−y w>Φ(x)}
Φ(x) ∈ Rd, y = ±1

w ← w + γt

{
yt Φ(xt) if ytw

>Φ(xt) ≤ 0
0 otherwise

Multilayer perceptrons (Rumelhart et al., 1986) . . .

SVM (Cortes and Vapnik, 1995) . . .

Lasso (Tibshirani, 1996)

Qlasso = λ|w|
1

+ 1
2

(
y − w>Φ(x)

)2
w = (u1 − v1, . . . , ud − vd)
Φ(x) ∈ Rd, y ∈ R, λ > 0

ui ←
[
ui − γt

(
λ− (yt − w>Φ(xt))Φi(xt)

)]
+

vi ←
[
vi − γt

(
λ + (yt − w>t Φ(xt))Φi(xt)

)]
+

with notation [x]+ = max{0, x}.

K-Means (MacQueen, 1967)

Qkmeans = min
k

1
2(z − wk)2

z ∈ Rd, w1 . . . wk ∈ Rd

n1 . . . nk ∈ N, initially 0

k∗ = arg mink(zt − wk)2

nk∗ ← nk∗ + 1
wk∗ ← wk∗ + 1

nk∗
(zt − wk∗)
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II. The Tradeoffs of Large Scale Learning
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The Computational Problem

• Baseline large-scale learning algorithm

Randomly discarding data is the simplest

way to handle large datasets.

– What is the statistical benefit of processing more data?

– What is the computational cost of processing more data?

• We need a theory that links Statistics and Computation!

– 1967: Vapnik’s theory does not discuss computation.

– 1981: Valiant’s learnability excludes exponential time algorithms,

but (i) polynomial time already too slow, (ii) few actual results.
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Decomposition of the Error

E(f̃n)− E(f∗) = E(f∗F)− E(f∗) Approximation error (Eapp)

+ E(fn)− E(f∗F) Estimation error (Eest)

+ E(f̃n)− E(fn) Optimization error (Eopt)

Problem:

Choose F, n, and ρ to make this as small as possible,

subject to budget constraints

{
max number of examples n
max computing time T

Note: choosing λ is the same as choosing F.
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Small-scale Learning

“The active budget constraint is the number of examples.”

• To reduce the estimation error, take n as large as the budget allows.

• To reduce the optimization error to zero, take ρ = 0.

•We need to adjust the size of F.

Size of F

Estimation error

Approximation error

See Structural Risk Minimization (Vapnik 74) and later works.
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Large-scale Learning

“The active budget constraint is the computing time.”

•More complicated tradeoffs.

The computing time depends on the three variables: F, n, and ρ.

• Example.

If we choose ρ small, we decrease the optimization error. But we

must also decrease F and/or n with adverse effects on the estimation

and approximation errors.

• The exact tradeoff depends on the optimization algorithm.

•We can compare optimization algorithms rigorously.
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Test Error versus Learning Time

Computing Time

T
es

t 
E

rr
o

r

Bayes Limit
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Test Error versus Learning Time

Computing Time

T
es

t 
E

rr
o

r

10,000 examples

1,000,000 examples
100,000 examples

Bayes limit

Vary the number of examples. . .
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Test Error versus Learning Time

Computing Time

T
es

t 
E
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o

r

10,000 examples

1,000,000 examples
100,000 examples

Bayes limit

optimizer a
optimizer b
optimizer c

model I
model II
model III
model IV

Vary the number of examples, the statistical models, the algorithms,. . .
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Test Error versus Learning Time

Computing Time

T
es

t 
E

rr
o

r

10,000 examples

1,000,000 examples
100,000 examples

Bayes limit

optimizer a
optimizer b
optimizer c

model I
model II
model III
model IV

Good Learning
Algorithms

Not all combinations are equal.

Let’s compare the red curve for different optimization algorithms.
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III. Asymptotic Analysis

Léon Bottou 18/37



Asymptotic Analysis

E(f̃n)− E(f∗) = E = Eapp + Eest + Eopt

Asymptotic Analysis

All three errors must decrease with comparable rates.

Forcing one of the errors to decrease much faster

- would require additional computing efforts,

- but would not significantly improve the test error.
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Statistics

Asymptotics of the statistical components of the error

– Thanks to refined uniform convergence arguments

E = Eapp + Eest + Eopt ∼ Eapp +

(
log n

n

)α
+ ρ

with exponent 1
2 ≤ α ≤ 1.

Asymptotically effective large scale learning

– Must choose F, n, and ρ such that

E ∼ Eapp ∼ Eest ∼ Eopt ∼
(

log n

n

)α
∼ ρ .

What about optimization times?
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Statistics and Computation

GD 2GD SGD 2SGD

Time per iteration : n n 1 1

Iters to accuracy ρ : log 1
ρ log log 1

ρ
1
ρ

1
ρ

Time to accuracy ρ : n log 1
ρ n log log 1

ρ
1
ρ

1
ρ

Time to error E :
1

E1/α log
2 1
E

1

E1/α log 1
E log log 1

E
1
E

1
E

– 2GD optimizes much faster than GD.

– SGD optimization speed is catastrophic.

– SGD learns faster than both GD and 2GD.

– 2SGD only changes the constants.
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Experiment: Text Categorization

Dataset

– Reuters RCV1 document corpus.

– 781,265 training examples, 23,149 testing examples.

Task

– Recognizing documents of category CCAT.

– 47,152 TF-IDF features.

– Linear SVM.

Same setup as (Joachims, 2006) and (Shalev-Schwartz et al., 2007) using plain SGD.
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Experiment: Text Categorization

• Results: Hinge-loss SVM
Q(x, y, w) = max{0, 1− yw>Φ(x)} λ = 0.0001

Training Time Primal cost Test Error
SVMLight 23,642 secs 0.2275 6.02%
SVMPerf 66 secs 0.2278 6.03%
SGD 1.4 secs 0.2275 6.02%

• Results: Log-Loss SVM
Q(x, y, w) = log(1 + exp(−yw>Φ(x))) λ = 0.00001

Training Time Primal cost Test Error
TRON(LibLinear, ε = 0.01) 30 secs 0.18907 5.68%
TRON(LibLinear, ε = 0.001) 44 secs 0.18890 5.70%
SGD 2.3 secs 0.18893 5.66%
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The Wall
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IV. Learning with a Single Pass
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Batch and online paths

t

t
*

*

1 Best training 
set error.

True solution,
Best generalization.ONLINE

one pass over 
examples {z1...zt}

BATCH
many iterations on
examples {z1...zt}

w

w
w

w

Léon Bottou 26/37



Effect of one Additional Example (i)

Compare

w∗n = arg min
w

En(fw)

w∗n+1 = arg min
w

En+1(fw) = arg min
w

[
En(fw) +

1

n
`
(
fw(xn+1), yn+1

)]

n+1w* nw*

E (f   )

E
n+1
n

(f   )wn+1

n w
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Effect of one Additional Example (ii)

• First Order Calculation

w∗n+1 = w∗n −
1

n
H−1
n+1

∂ `
(
fwn(xn), yn

)
∂w

+ O
(

1

n2

)
where Hn+1 is the empirical Hessian on n + 1 examples.

• Compare with Second Order Stochastic Gradient Descent

wt+1 = wt −
1

t
H−1 ∂ `

(
fwt(xn), yn

)
∂w

• Could they converge with the same speed?

• C2 assumptions =⇒ Accurate speed estimates.
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Speed of Scaled Stochastic Gradient

• Study wt+1 = wt − 1
t Bt

∂ `
(
fwt

(xn),yn

)
∂w + O

(
1
t2

)
with Bt → B � 0, BH � I/2.

• Establish convergence a.s. via quasi-martingales (see Bottou, 1991, 1998).

• Let Ut = H (wt − w∗) (wt − w∗)′. Observe E(fwt
)− E(fw∗) = tr(Ut) + o(tr(Ut))

• Derive Et(Ut+1) =
[
I − 2BH

t + o
(

1
t

)]
Ut + HBGB

t2 + o
(

1
t2

)
where G is the Fisher matrix.

• Lemma: study real sequence ut+1 =
(
1 + α

t + o
(

1
t

))
ut + β

t2 + o
(

1
t2

)
.

– When α > 1 show ut = β
α−1

1
t + o

(
1
t

)
(nasty proof!).

– When α < 1 show ut ∼ t−α (up to log factors).

• Bracket E(tr(Ut+1)) between two such sequences and conclude:

tr(HBGB)

2λmax
BH − 1

1

t
+o

(
1

t

)
≤ E

[
E(fwt)−E(fw∗)

]
≤

tr(HBGB)

2λmin
BH − 1

1

t
+o

(
1

t

)

• Interesting special cases: B = I/λmin
H and B = H−1.
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Asymptotic Efficiency of Second Order SGD.

“Empirical optima” “Second-order SGD”

n E
[
E(fw∗n)− E(fF)

]
= lim

t→∞
t E
[
E(fwt)− E(fF)

]
lim
n→∞

n E
[
‖w∗∞ − w

∗
n‖

2] = lim
t→∞

t E
[
‖w∞ − wt‖2

]

Best training 
set error.

≅

Best solution in F.

Empirical 
Optima

One Pass of 
Second Order
Stochastic 
Gradient wn

n

K/n

w
0 0
= w*

∞w ∞=w*

w*

(Fabian, 1973; Murata & Amari, 1998; Bottou & LeCun, 2003).
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Optimal Learning in One Pass

A Single Pass of Second Order Stochastic Gradient

generalizes as well as the Empirical Optimum.

Experiments on synthetic data

1000 10000 100000

Mse*
+1e−4

Mse*
+1e−3

Mse*
+1e−2

Mse*
+1e−1

100 1000 10000
0.342

0.346

0.350

0.354

0.358

0.362

0.366

Number of examples Milliseconds
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Unfortunate Issues

Unfortunate theoretical issue

– How long to “reach” the asymptotic regime?

– One-pass learning speed regime may not be reached in one pass. . .

Unfortunate practical issue

– Second order SGD is rarely feasible.

– estimate and store d× d matrix H−1.

– multiply the gradient for each example by this matrix H−1.

Léon Bottou 32/37



Solutions

Limited storage approximations of H−1

– Diagonal Gauss-Newton (Becker and Lecun, 1989)

– Low rank approximation [oLBFGS], (Schraudolph et al., 2007)

– Diagonal approximation [SGDQN], (Bordes et al., 2009)

Averaged stochastic gradient

– Perform SGD with slowly decreasing gains, e.g. γt ∼ t−0.75.

– Compute averages w̄t+1 = t
t+1w̄t + 1

twt+1

– Same asymptotic speed as 2SGD (Polyak and Juditsky, 92)

– Can take a while to “reach” the asymptotic regime.
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Experiment: ALPHA dataset

– From the 2008 Pascal Large Scale Learning Challenge.

– Loss: Q(x, y, w) =
(

max{0, 1− y w> x}
)2

.

– SGD, SGDQN: γt = γ0(1 + γ0λt)
−1. ASGD: γt = γ0(1 + γ0λt)
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ASGD nearly reaches the optimal expected risk after a single pass.
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Experiment: Conditional Random Field

– CRF for the CONLL 2000 Chunking task.
– 1.7M parameters. 107,000 training segments.
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SGDQN more attractive than ASGD.
Training times: 500s (SGD), 150s (ASGD), 75s (SGDQN).
Standard LBFGS optimizer needs 72 minutes.
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V. Conclusions
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Conclusions

– Good optimization algorithm 6= good learning algorithm.

– SGD is a poor optimization algorithm.

– SGD is a good learning algorithm for large scale problems.

– SGD variants can learn in a single pass (given enough data)
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