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Abstract. We consider possible geometries of magnetic fields in GRB outflows, and their evolution with distance
from the source. For magnetically driven outflows, with an assumed ratio of magnetic to kinetic energy density
of order unity, the field strengths are sufficient for efficient production of γ-rays by synchrotron emission in the
standard internal shock scenario, without the need for local generation of small scale fields. In these conditions, the
MHD approximation is valid to large distances (>∼1019 cm). In outflows driven by nonaxisymmetric magnetic fields,
changes of direction of the field cause dissipation of magnetic energy by reconnection. Much of this dissipation
takes place outside the photosphere of the outflow, and can convert a significant fraction of the magnetic energy
flux into radiation.
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1. Introduction

Several models for cosmic γ-ray bursts (hereafter GRBs)
make use of rapidly rotating compact stellar-mass sources.
Though many details in each case are uncertain, the two
more developed and popular scenarios involve the coales-
cence of two compact objects (neutron star + neutron
star or neutron star + black hole) and the collapse of
a massive star to a black hole (collapsar) (Mészáros &
Rees 1992; Narayan et al. 1992; Woosley 1993; Paczyński
1998). Both lead to the same system: a stellar mass black
hole surrounded by a thick torus made of stellar debris
or of infalling stellar material partially supported by cen-
trifugal forces. An other interesting proposition (Usov
1992; Kluzniak & Ruderman 1998; Spruit 1999) associates
GRBs with highly magnetized millisecond pulsars.

The energy release by such a source can be fed from
various reservoirs. In the case of a thick disk + black hole
system, the burst can be powered by the accretion of disk
material by the black hole or by extracting directly the ro-
tational energy of the black hole via the Blandford-Znajek
mechanism. In the case of a highly magnetised millisecond
pulsar the energy release comes from the rotational energy
of the neutron star.

Luminosities as high as those of GRBs cannot be radi-
ated in the close vicinity of the source. The energy released
must first drive a wind which rapidly becomes relativistic.
Its kinetic energy is then converted into γ-rays (produc-
ing the prompt emission of the GRB) at large radii via
the formation of shocks, probably within the wind itself
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(internal shock model) (Rees & Mészáros 1994; Daigne &
Mochkovitch 1998). The wind is finally decelerated by the
external medium, which leads to a new shock responsible
for the afterglow emission observed in X–rays, optical and
radio bands (external shock model) (Katz 1994; Rhoads
& Paczynski 1993; Sari & Piran 1997; Wijers et al. 1997).

The Lorentz factor Γ of the relativistic wind must
reach high values (Γ ∼ 102–103) both to produce γ-rays
and to avoid photon–photon annihilation along the line of
sight, whose signature is not observed in the spectra of
GRBs (Goodman 1986, see also Baring 1995). This lim-
its the allowed amount of baryonic pollution in the flow
to a very low level and makes the production of the rela-
tivistic wind a challenging problem. Only a few ideas have
been proposed and none appears to be fully conclusive at
present.

However it is suspected that large magnetic fields play
an important role. This is obvious in models using a highly
magnetised millisecond pulsar, but in the case of a thick
disk + black hole system a magnetic wind is also probably
more efficient than the initial proposition where the wind
is powered by the annihilation of neutrino–antineutrinos
pairs along the rotational axis (Berezinskii & Prilutskii
1987; Goodman et al. 1987; Ruffert et al. 1997). The mag-
netic field in the disk could be amplified by differential
rotation to very large values (B ∼ 1015 G) and a magnet-
ically driven wind could then be emitted from the disk
(Thompson 1994; Mészáros & Rees 1997). under severe
constraints on the field geometry and the dissipation close
to the disk, large values of the lorentz factor can then be
reached (Daigne & Mochkovitch 2000c, 2000a).

The emission of photons at large radii via the for-
mation of shocks is perhaps better understood than the
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central engine. It is believed that a non–thermal popula-
tion of accelerated electrons is produced behind the shock
waves and synchrotron and/or inverse Compton photons
are emitted. A magnetic field is then required. In the case
of the afterglow emission, the external shock is propagat-
ing in the environment of the source, and the magnetic
field has to be locally generated by microscopic processes
(Mészáros & Rees 1993; Wijers 1997; Thompson & Madau
2000). In the case of the prompt γ-ray emission which is
probably due to internal shocks within the wind, such a lo-
cally generated magnetic field is also usually invoked (Rees
& Mészáros 1994; Papathanassiou & Mészáros 1996; Sari
& Piran 1997; Daigne & Mochkovitch 1998). It has also
been pointed out that a large scale field originating from
the source could play the same role (Mészáros & Rees
1993, 1997; Tavani 1996).

The argumentation in this paper is organized as fol-
lows. In Sect. 2 we show that for typical baryon loading,
the particle density in the outflow is so large that the MHD
approximation is appropriate out to distances of the or-
der 1020 cm. This will turn out to be larger than the other
relevant distances.

Due to the baryon loading, the GRB case is therefore
different from the essentially baryon-free pulsar wind case
(e.g. Usov 1994), where the MHD approximation breaks
down much earlier, and plasma theories of large amplitude
electromagnetic waves (LAEMW) are applied. The GRB
case is actually simpler than the pulsar case in this respect.

The evolution of the magnetic field can therefore be
dealt with in MHD approximation. In Sect. 3 we discuss
how the strength and configuration of the field in the out-
flow depends on assumptions about the central engine.
This is done first without allowing for decay of the field
by internal MHD processes. In Sect. 4 we show that the
field strengths so obtained are sufficient to produce syn-
chrotron and/or inverse Compton emission in the standard
internal shock model, without the need for local genera-
tion of microscopic magnetic fields. In Sect. 5 we then
argue that internal MHD processes are, in fact, likely to
cause magnetic field energy density to be released during
the outflow. This may be a significant contributor to the
observed emission. The efficiency of conversion of the pri-
mary energy of the central engine to observable γ-rays can
also be much higher than in internal shock models. The
arguments are summarized again in Sect. 7.

2. The validity of the MHD approximation

In this section, as well as throughout this paper, a prime
denotes quantities measured in the rest frame of the out-
flowing matter, unprimed quantities are measured in the
“laboratory” frame (understood here as a frame at rest
relative to the central object of the burst).

In order to maintain the necessary current there must
be enough plasma available. As an example, consider the
case of a magnetized outflow with magnetic field of al-
ternating direction, as happens in a pulsar-like model
(Sect. 3.4). We approximate this as a plane sinusoidal wave

with a wave number k and a angular frequency Ω:

E = E sin(kz − Ωt)ex (1)

B = B sin(kz − Ωt)ey. (2)

In a frame comoving with the fluid the field strength is
time-independent, hence the phase speed of the wave in
the lab frame is Ω/k = βc. From the induction equation
∇× E = −∂tB/c the relation between the electrical and
magnetic field amplitudes is E = βB. Ampère’s equation
gives the current density, j = −Ω/(4π)B(β−1−β) cos(kz−
Ωt)ex, or, with Γ = (1 − β2)−1/2:

j =
ckB

4πΓ2
· (3)

(The same result is obtained if the current density is cal-
culated in MHD approximation in the comoving frame
and then Lorentz transformed back into the lab frame.)
The current that can be maintained by the outflowing
medium is limited by the density of charged particles n.
The maximum current density (in the comoving frame) is
j′m = n′ec, when the particles are given their maximum
speed c. In the lab frame this current density is (Melatos
& Melrose 1996)

jm = nec/Γ. (4)

If j gets larger than jm the simple ansatz of an elec-
tromagnetic wave travelling with the same speed as the
plasma cannot hold any longer. Thus flux freezing is im-
possible and MHD is not sufficient any more to describe
the problem.

Plasma physical instabilities can set in at current den-
sities much lower than (4). They will produce an anoma-
lous resistivity in the plasma so that an electric field is
present also in the rest frame of the plasma. The elec-
tric field due to this resistivity is small, however, com-
pared to the magnetic field strength as long as the charged
particle density is larger than the minimum density. The
MHD approximation in this sense is then a good one on
large scales, in spite of the presence of small scale plasma
processes.

If the outflow has a finite duration τ , and a constant
speed βc in this time interval, it moves as a shell of width
βcτ ≈ cτ . When the shell (assumed spherical) has ex-
panded to a radius r, the particle density measured in the
lab frame is n(r) = M/(2πr2cτmp) where M is the total
mass ejected and mp the proton mass. With (3) and (4),
the minimum particle density nc is

nc(r) =
kB

4πeΓ
· (5)

If internal MHD processes can be neglected, the total
electro-magnetic energy Eem of the shell is conserved (see
Sect. 3). The field strength in the lab frame is then

B =

√

2Eem

cτr2
· (6)
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With (5), and the known density n(r), we thus find that
the MHD approximation breaks down when the shell has
reached the critical radius

rc =
eEk

Ωmpc

√

2

Eemτc
=

e

Ωmpc

√

2

ξ(ξ + 1)

E

cτ
(7)

where Ek = ΓMc2 is the kinetic energy, ξ = Eem/Ek (in
the lab frame) and E = Eem + Ek is the total energy.
Assuming ξ to be of the order unity we have

rc ≈ e

Ωmpc

√

E

cτ
= 3.2 1020 cm · E1/2

52 Ω−1
4

( τ

3 s

)−1

. (8)

The processes discussed in this paper happen well within
time scales smaller than rcr/c, and the MHD is justified.

In baryon-free cases, the expected values of ξ may be
much higher (Usov 1994), as in the typical pulsar-wind
scenarios (Kennel & Coroniti 1984; Begelman & Li 1992;
Blackman & Yi 1998), and the critical radius for MHD
condition correspondingly smaller. Such low baryon load-
ing seems rather unlikely, however, for the currently pro-
posed scenarios for GRB engines. Outflows from accre-
tion disks, merging stars, and supernova envelopes are
all intrinsically highly baryon loaded environments, and
have some difficulties reaching baryon loadings as small
as η ∼ 10−3−10−4. Even in the rapidly magnetized msec
neutron star scenario (Spruit 1999), emergence of mag-
netic fields from the star at the required short time scales
is likely to imply that some baryonic mass is lifted together
with the magnetic fields.

3. Field geometries

A burst of duration τ produces a shell of width d = cτ ,
travelling outward at a speed βc. The observed radiation
from this shell is produced when it has expanded to a
radius r ≫ d. This thin shell carries with it magnetic
field lines from the source, which we call “trapped field
lines”. For the rest of this section, we assume a relativistic
outflow, β ≈ 1.

3.1. Trapped fields

If reconnection processes inside the shell can be neglected,
the field lines are frozen in the expanding shell. If B =
(Br, Bθ, Bφ) (in spherical coordinates), and the width of
the shell is constant, the components then vary with dis-
tance as Br ∼ r−2, Bθ ∼ Bφ ∼ r−1. This is because the
radial component is divided over the surface of the spheri-
cal shell, while the components parallel to the shell surface
decrease with the circumference. More formally, the induc-
tion equation ∂tB = ∇× (u × B) has the components

∂tBθ = (r sin θ)−1∂φ(uθBφ − uφBθ)

−r−1∂r(r(urBθ − uθBr)) (9)

∂tBφ = r−1(∂r(r(uφBr − urBφ))

−∂θ(uθBφ − uφBθ)). (10)

d=cτ

Fig. 1. Evolution of an initial dipole field by a radial outflow
(schematic). Top left: initial field configuration. Top right: view
on a larger scale, when the outflow, of finite duration τ , now
moves in a shell of width cτ . It has stretched the field interior
to the shell into a radial field. Lower left: reconnection in the
low-density interior region restores the dipole field near the
source. Lower right: as the shell moves out its thickness be-
comes small compared the distance travelled, and the further
evolution depends on reconnection processes inside the shell

Assuming constant radial outflow (ur = const., uθ = uφ =
0) and spherical symmetry (∂θ = ∂φ = 0) the time evolu-
tion in a comoving fluid element is

dBθ,φ

dt
= ∂tBθ,φ + ur∂rBθ,φ = −r−1 dr

dt
Bθ,φ. (11)

Hence the tangential field Bt = (Bθ, Bφ) ∼ r−1. Since the
expansion factor is very large between the source and the
radius from which the emitted radiation reaches us, the
radial component (varying as ∼r−2) can be neglected and
the field is almost exactly parallel to the surface of the shell
(Fig. 1). If the width of the shell is constant, the magnetic
energy in the shell em =

∫

B2
t dS is constant. The magnetic

field thus carries a constant fraction of the kinetic energy
of the outflow. Depending on how large this fraction is, the
trapped field can be sufficient to produce the synchrotron
emission proposed in internal shock models, without the
need for “in situ” field generation mechanisms (Medvedev
& Loeb 1999).

How many field lines are trapped in the outflow, and
hence which fraction of the outflow energy is magnetic,
depends on conditions near the source. We consider here
the representative possibilities.

3.2. A “passive” magnetic field

First consider a fireball expanding from the surface of a
central object (not specified further) of radius R and a
dipolar magnetic field of moment µ. We assume that the
magnetic field plays no role in the driving of the outflow,
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but that it can confine plasma up to its own energy density
B2/8π.

Assume first that the expansion is kinematic, i.e. that
the magnetic field is weak and its backreaction on the flow
can be neglected. The number of field lines trapped in the
outflow is equal to the flux of field lines outside crossing
the dipole’s equator outside the radius R:

Φ =
πµ

R
· (12)

This flux is a Lorentz invariant, so that the field strength
of the shell (as measured in the frame of the central engine)
is of the order B = Φ/(2πrcτ), or

B ≈ B0
R2

rcτ
(13)

where B0 = µ/R3. Whether this is a large field strength,
compared with the kinetic energy density Γρc2, depends
on the assumed dipole moment µ. An upper limit to the
dipole moment follows from the requirement that the en-
ergy of the burst should be able to open the field lines of
the central object. Let the energy of the burst be ΓMc2,
where Γ the asymptotic Lorentz factor of the outflow and
M the baryon load. If this energy was initially confined
in a region of size R (the size of the central engine), the
magnetic field strength B0 in the confining dipole field of
the source must satisfy

B2
0

8π
<

ΓMc2

4
3πR3

(14)

in order for the field to be opened up by the fireball.
With (13), the magnetic energy density at distance r then
satisfies

B2

8π
< ek

R

3cτ
, (15)

where ek is the kinetic energy density in the shell:

ek =
ΓMc2

4πr2cτ
· (16)

For most central engine models considered, the duration of
the burst is long compared to the light travel time across
the source, R/cτ ≪ 1. A “passive” model, in which the
magnetic field does not play a role in driving the outflow,
therefore can only yield field strengths in the shell which
are small compared with kinetic energy density. Even at
such a low field strength, however, the magnetic field can
become important for synchrotron emission in internal
shocks, as discussed below in Sect. 4.

3.3. Active magnetic fields

In magnetic models for GRB engines, the magnetic field
serves to extract rotation energy from a rapidly rotating
relativistic object. The details of such magnetic extrac-
tion (especially three-dimensional ones) are still somewhat
uncertain, but basic energetic considerations are simple.
Rotation of the mass-loaded field lines induces an az-
imuthal field component Bφ. Let the distance from the

Ω

d=cτ λ=2πc
Ω

Fig. 2. Field configuration in quasi-spherical magnetic out-
flow driven by a perpendicular rotator (“pulsar-like” case)
(schematic). Left: view in the equatorial plane, with dots and
pluses indicating field lines into and out of the plane of the
drawing. Right: top view from the rotational pole. Bottom
right: same view on larger scale, at a later time t ≫ τ

rotating object where this component is equal to the ra-
dial field be r0. Except for cases with large baryon loading
that are probably not relevant for GRB engines, r0 is of
the order of the Alfvén radius, which can lie anywhere
between the surface of the object R and the light cylin-
der rL = c/Ω. The energy output L transmitted by the
azimuthal magnetic stress (BφBr/4π) is then of the or-
der L ≈ Ωr3

0B
2
r (r0). For a field dominated by its dipole

component µ, this yields a luminosity

L = Ωµ2/r3
0. (17)

For r0 = rL, this yields (by order of magnitude) the pul-
sar spin-down formula for an inclined dipole rotating in
vacuum, emitting an electromagnetic wave from its light
cylinder.

The energy estimate (17) does not tell what the field
configuration in the outflow looks like. The possibilities
for dissipation of magnetic energy inside the outflow de-
pend strongly on this configuration, which in turn depends
on the nature of the magnetic field of the central engine.
An important distinction is whether the rotating magnetic
field is axisymmetric or nonaxisymmetric. In the nonax-
isymmetric case, the outflow contains magnetic fields vary-
ing on the rather small scale πc/Ω, the wavelength of the
outgoing wave. In such a field, internal dissipation turns
out to be much more likely to be important than in an
axisymmetric field, where the length scale of the field is
of the order of the distance r. In the following, this is
illustrated with a few specific cases.
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3.3.1. Ratio of magnetic to kinetic energy

Estimate (17) only gives the total luminosity. Which frac-
tion of it is in the form of kinetic energy and which in
magnetic energy depends on more physics. At one extreme
is Michel’s (1969) model, in which the outflow consists of
cold (pressureless) matter accelerated exclusively by the
magnetic field. In this case, the ratio α = Em/Ek of mag-
netic to kinetic luminosity is of the order ξ ∼ Γ2 ≫ 1.
At large Lorentz factors, the energy is almost entirely in
electromagnetic form, in this model. This is probably a
property of the special geometry of the model, in which
the flow is limited to the equatorial plane. If outflow in
other directions is considered, much smaller values of ξ
result (Begelman & Li 1994).

At the other extreme, consider a case in which most
magnetic energy is released inside the light cylinder, in the
form of a dense pair plasma (by some form of magnetic
reconnection, for example). The result would then be just
like the hydrodynamic expansion of a simple (Goodman
1986; Paczyński 1986) pair plasma fireball, and the result-
ing outflow would have ξ ≪ 1. If some but not all energy
is dissipated close to the source, intermediate values of
ξ would result. Since these important questions have not
been resolved yet, we keep ξ as a free parameter in the fol-
lowing. Where necessary we assume that it typically has
values or order unity.

3.4. Nonaxisymmetric quasi-spherical outflow

Assume we have a perpendicular rotator, i.e. the rotat-
ing object has its dipole axis orthogonal to the rotation
axis. At the source surface r0, the rotating field is then
strongest at the equator, and one expects the energy flux
to be largest near the equatorial plane. With each rota-
tion, a “stripe” consisting of a band of eastward and one
of westward azimuthal field moves outward (Fig. 2, see
also Coroniti 1990; Usov 1994). Assuming the outflow to
be relativistic, the width λ of such a stripe in the rest
frame of the central object is λ = 2πc/Ω. The (absolute
value of the) azimuthal flux Φ in each half-wavelength is
of the order of the poloidal flux outside the source surface
r0, Φ ≈ 2πµ/r0. For spherical expansion of this amount
of azimuthal flux, the field strength at distance r is then

Bφ ≈ Φ

rλ
=

µ

r0rLr
(18)

while the the total (magnetic plus kinetic) energy density
ek is

ek + em =
L

4πr2c
· (19)

Hence with (17) the ratio of magnetic energy density to
total energy density (in the lab frame) is of the order

em/(ek + em) ≈ r0

rL
· (20)

3.5. Jet

Consider a collimated outflow along the axis of rotation
(Fig. 3). This might be achieved by magnetic models in
which the azimuthal field collimates the flow towards the
axis by hoop stress (Bisnovatyi-Kogan & Ruzmaikin 1976;
Blandford & Payne 1982; Sakurai 1985). In such a model,
one assumes an axisymmetric (about the rotation axis)
poloidal field, which is wound up into an azimuthal field
wrapped around the axis. Let the opening angle of the
outflow be θ (assumed constant), and ̟ the cylindrical
radius. At the source surface ̟0 = θz0 the poloidal and
azimuthal field components are equal, and in the absence
of magnetic reconnection processes

Bφ = Bp0(̟0/̟) = Bp0(z0/z), (21)

Bp = Bp0(z0/z)2. (22)

If the collimation angle is small, the field as seen in a
frame comoving with the jet is a slowly varying, nearly
azimuthal field. Such a field is known to be highly unsta-
ble to kink instabilities (e.g. Bateman 1980). They operate
on a time scale τk of the order of the Alfvén crossing time,
i.e. τk = ̟/vA. Though the details of this process have
not been worked out for jets (see however Lucek & Bell
1996, 1997), it is likely that the release of magnetic energy
operates in two steps. In the first step, kink instability
transforms the axisymmetric configuration into a nonax-
isymmetric, helical, configuration. For an application to
jets, see Königl & Choudhuri (1985). This step is fast, op-
erating on the Alvén crossing time. At this stage, the field
has already lost much of its collimating ability, since the
average azimuthal field strength has decreased in favour of
a less ordered field component. During the instability, the
so-called magnetic helicity is conserved, however, so that
only a fraction of the magnetic energy is released. The
further release of magnetic energy depends on reconnec-
tion processes. As discussed in Sect. 5, this is also likely to
proceed on a time scale proportional to the Alfvén cross-
ing time, though somewhat slower than the kink process
itself.

As in the quasi-spherical outflow case, we ignore this
internal dissipation of the magnetic energy for the mo-
ment, and return to it in Sect. 5. For a jet expanding with
fixed opening angle θ (see Fig. 3), the field strength then
varies as r−1 and the magnetic energy is constant with
distance. Since only a fraction of the magnetic energy is
released in the kinking process, the ratio of magnetic to
kinetic energy density is still of the order found in axisym-
metric magnetic jet calculations (e.g. Camenzind 1987),
i.e. of order unity:

em/ek ∼ O(1). (23)

4. The emission expected from internal shocks

4.1. Typical parameters of an internal shock

The internal shock model assumes that the initial dis-
tribution of the Lorentz factor in the shell is highly
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d=cτ

Fig. 3. Jet-like outflow of finite duration, magnetically driven
by an axially symmetric rotator. Left: configuration near the
source, showing how the field in the outflow is wound into a
toroidal (azimuthal) field. Right: large scale view after a time
long compared to the duration τ . The field in the outflow is
now a “pancake” of toroidal flux. Sketch ignores nonaxisym-
metric processes like kink instability and subsequent reconnec-
tion, which can release energy from this configuration

variable. Rapid layers catch up with slower ones leading
to internal shocks propagating within the relativistic shell.
The hot material behind the shock waves is radiating effi-
ciently and produces the observed prompt γ-ray emission
of GRBs (Rees & Mészáros 1994; Kobayashi et al. 1997;
Daigne & Mochkovitch 1998; Panaitescu & Mészáros 1999;
Daigne & Mochkovitch 2000b). We only summarize here
the basic assumptions of the model. For details see Daigne
& Mochkovitch (1998).

Consider two layers of equal mass (for simplicity) and
of Lorentz factor Γ1 and Γ2 (Γ1 > Γ2) which are emitted
on a timescale tvar. They will collide at a radius

rIS ≃ 2Γ2
1Γ

2
2

Γ2
1 − Γ2

2

ctvar ∼ Γ2ctvar (24)

∼ 3 1015 cm ·
(

Γ

300

)2(
tvar
1 s

)

, (25)

where Γ is as usual the mean Lorentz factor of the flow.
The average energy which is dissipated per proton in this
shock is given by

ǫ = (Γint − 1)mpc2 (26)

with

Γint =
1

2

[

√

Γ1

Γ2
+

√

Γ2

Γ1

]

. (27)

With Γ1/Γ2 = 4, which corresponds to a mildly relativistic
shock (vrel = 0.88c), this gives ǫ ∼ 240MeV.

It is generally assumed (Rees & Mészáros 1994;
Papathanassiou & Mészáros 1996; Sari & Piran 1997;
Daigne & Mochkovitch 1998) that behind the shock wave

a fraction of the electrons come into (at least partial)
equipartition with the protons and become highly rela-
tivistic. If a fraction αe of the dissipated energy goes into
a fraction ζ of the electrons, their characteristic Lorentz
factor (in the comoving frame) will be

Γ′

e ≃
αe

ζ

ǫ

mec2
, (28)

which, for complete equipartition and Γ1/Γ2 ∼ 4, yields
Γ′

e ∼ 100–200 if ζ ∼ 1 and Γ′
e

>∼ 104 − 2 104 if only a
small fraction of the electrons are accelerated (ζ <∼ 0.01.
For some theoretical arguments in favour of such an as-
sumption, see e.g. Bykov & Mészáros 1996). Such highly
relativistic electrons can emit γ-rays by the synchrotron
and/or the inverse Compton process. A magnetic field is
however required.

4.2. Locally generated versus large–scale magnetic field

The magnetic field involved in the synchrotron radiation
is usually assumed to be generated locally by microscopic
processes. Such a process has been proposed by Medvedev
& Loeb (1999). (This is also assumed for the external
shock propagating in the interstellar medium and respon-
sible for the afterglow; see however Thompson & Madau
2000.) If this magnetic field is also into equipartition with
the protons and electrons, it will have typical values of

B′

eq ≃
√

8π αeqn′ǫ, (29)

where αeq ≤ 1/3 and n′ is the comoving proton number
density, which can be estimated by

n′ ≃ Ek

4πr2Γ2c3mpτ
(30)

≃ 2.0 107 cm−3 · r−2
15 Ek,52

(

Γ

300

)−2

τ−1
1 . (31)

For typical radii r ∼ 1015–1016 cm and αeq ≃ αe ≃ 1/3,
this leads to B′

eq ∼ 100–1000G depending on the contrast
Γ1/Γ2.

If the GRB is powered magnetically, however, the out-
flow is naturally magetized. (One good reason for assum-
ing magnetic powering is that alternatives like νν̄ annihi-
lation are energetically inefficient.) As shown in Sect. 3,
the magnetic energy content of the outflow is constant as
long as internal dissipation of magnetic energy can be ne-
glected. For the three cases considered, the ratio αLS of
the (large scale-) magnetic to kinetic energy density is

αLS ≡ B2/(8πeK) ∼ R/(cτ), (32)

αLS ∼ r0/rL, (33)

αLS ∼ O(1), (34)

for a passively expanded source field, a magnetically
driven quasi-spherical outflow and a magnetically driven
collimated jet respectively (cf. Eqs. (15, 20, 23)). For
source sizes R = 106–107 cm and durations τ = 0.3–30 s
the passively expanding field case has αLS ∼ 10−6–10−3.
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The magnetically driven quasi-spherical outflow would
yield higher values, αLS ∼ 0.1−1, assuming r0/rL ∼
0.1−1. A magnetically driven jet would have a αLS ∼ 1.
(These values hold as long as internal dissipation of mag-
netic energy can be ignored (Sect. 5)).

The corresponding comoving magnetic field in all
cases is

B′

LS ∼ 1

Γ

√
8παLSeK ∼

√

8παLSn′mpc2 (35)

which leads to (using the estimation of n′ given by
Eq. (31)):

B′

LS ≃ 500 G · α1/2
LS r−1

15 E
1/2
k,52

(

Γ

300

)−1

τ
−1/2
1 . (36)

We see that

B′
eq

B′
LS

≃
(

αeq

αLS

)1/2
ǫ

mpc2
(37)

and that, depending on the values of αeq and αLS, the large
scale magnetic field naturally has strengths comparable
with the equipartition fields usually invoked.

4.3. Synchrotron and inverse–compton emission

Synchrotron emission by accelerated electrons in a mag-
netic field occurs at a typical energy (observer frame)

Esyn = 1.7 10−8 eV · ΓB′Γ′2
e . (38)

Consider first the case where a large fraction of the elec-
trons takes part in the acceleration process, ζ ∼ 1. If the
equipartition is complete – equal amounts of energy in
protons and electrons (and magnetic fields if locally gen-
erated) – we then have Γ′

e ∼ 50–500 so that for B′ ∼ 100–
1000G the synchrotron photon energy

Esyn = 50 eV ·
(

Γ

300

)

B′

3Γ
′2
e,2 (39)

is usually in the UV band (we don’t consider here the high
contrasts Γ1/Γ2 ≃ 1000 which could produce synchrotron
photons directly in the gamma-ray range even if ζ ∼ 1.
Such high contrasts are probably not realistic in view of
the difficulty to accelerate a wind to high Lorentz factors).
γ-rays can then be produced by inverse Compton scatter-
ing on the synchrotron photons. We are in the Thomson
limit where

w =
Γ′

eE
′
syn

mec2
≃ 3 10−5 · B′

3Γ
′3
e,2 ≪ 1 (40)

so that

EIC ≃ Γ′

e
2
Esyn (41)

≃ 500 keV ·
(

Γ

300

)

B′

3Γ
′4
e,2. (42)

The fraction of the electron energy which is radiated in the
γ-ray range has been computed by Daigne & Mochkovitch
(1998) and is given by

αIC ≃ τ∗Γ
′
e
2

1 + τ∗Γ′
e
2 , (43)

where the optical τ∗ depth of the layer of relativistic
electrons is the solution of the equation

τ∗Γ
′

e
2
(

1 + τ∗Γ
′

e
2
)

≃ 0.3 · αe

αeq
(44)

≃ 0.06 ·
( ǫ

200 MeV

) αe

αLS
, (45)

for an equipartition field and a large–scale magnetic field
respectively. Low values of the magnetic field increase the
efficiency αIC but B′ cannot be too small because (i) EIC

must stay in the γ-ray range and (ii) the typical time–
scale of the radiative process t′rad must be shorter than
the expansion time t′ex, otherwise the hot layer is cooling
adiabatically. These two time–scales are

t′ex ≃ r

Γc
≃ 100 s · r15

(

Γ

300

)−1

(46)

and

t′rad ≃
t′syn

1 + τ∗Γ′
e
2 (47)

≃ 6 s

1 + τ∗Γ′
e
2 B′−2

3 Γ′−1
e,2 . (48)

The radiative efficiency (energy loss by radiation versus
adiabatic cooling) is then of the order

frad ≃ t′ex
t′ex + t′rad

· (49)

We see that (i) for the equipartition magnetic field these
two conditions limit αeq/αe to the range 0.01–1 yielding
low total efficiencies, αIC × frad ∼ 0.4–0.1; (ii) for a pas-
sively expanded source field (αLS ∼ 10−6–10−3) it is im-
possible to produce γ-rays for the lowest values of αLS

(both because EIC is too low and frad is very small). For
αLS ∼ 10−3 the magnetic field is still weak but for short
bursts (n′ is higher) or high contrasts of Lorentz factors
(ǫ is higher) it is possible to produce a γ-ray burst with
a total efficiency αIC × frad ∼ 0.6 which is then quite
high; (iii) for a magnetically driven quasi-spherical outflow
(αLS ∼ 0.1–1) the radiative efficiency is high (frad ∼ 1),
and there is no difficulty to produce γ-rays via the in-
verse Compton emission. However the efficiency of the
IC process becomes very low if αLS is to close to unity
(αIC ∼ 0.02 for αLS = 1) and is still low (αIC ∼ 0.2) for
αLS = 0.1. Values of ǫ larger than 200MeV does not im-
prove this efficiency much. (iv) For a magnetically driven
jet the situation is very close to the previous case with
αLS ∼ 0.1 and the IC efficiency is then very low.

We consider now the other extreme case where only a
small fraction of the electrons are accelerated: ζ <∼ 0.01.
The Lorentz factor of the electrons then reaches very high
values of 5000–50000 and γ-rays can be produced directly
by synchrotron emission:

Esyn ≃ 500 keV ·
(

Γ

300

)

B′

3Γ
′2
e,4. (50)



H. C. Spruit et al.: Large scale magnetic fields and their dissipation in GRB fireballs 701

We are in the Klein–Nishina limit where

w =
Γ′

eE
′
syn

mec2
≃ 30 · B′

3Γ
′3
e,4 ≫ 1. (51)

The fraction of the energy which is directly radiated by
synchrotron photons is now given by

αsyn ≃ τ∗Γ
′
e
2
/w

1 + τ∗Γ′
e
2/w

(52)

and the optical depth is solution of a more complex equa-
tion (the opacity has decreased compared to the Thomson
regime by a factor depending on w):

τ∗Γ
′
e
2

w

(

1 +
τ∗Γ

′
e
2

w

)

≃ 0.3 · αe

αeq

3

8w2
(1 + ln (2w)) (53)

≃ 0.06
( ǫ

200 MeV

)

× αe

αLS

3

8w2
(1 + ln (2w)) , (54)

for the equipartition and large–scale magnetic field respec-
tively. As before we also need to check that the radiative
time–scale

t′rad ≃ 0.06 s

1 + τ∗Γ′
e
2/w

B′−2
3 Γ′−1

e,4 . (55)

is shorter than t′ex. This is now always the case (frad ∼ 1)
except for the lower values of αLS (10−6) or for the last
internal shocks occurring far from the source.

We then can conclude that (i) for an equipartition field
αeq has to be of the same order as αe in order for the syn-
chrotron process is to produce γ-rays at high efficiency
(αsyn > 0.9). (ii) For a passively expanded source field the
case αLS ∼ 10−6 is again excluded because of an extremely
low efficiency and a typical energy which is more in the
X–rays range. The case αLS ∼ 10−3 suffers the same limi-
tations as before, the efficiency is only αsyn ∼ 0.1. (iii) For
a magnetically driven quasi-spherical outflow and a mag-
netically driven jet the situation is similar to the equipar-
tition case: the efficiency is very high (αsyn > 0.9 for a
quasi-spherical outflow and αsyn > 0.6 for a jet).

In conclusion for this section, a passive expanded
source field is probably too weak in most cases to pro-
duce a γ-ray burst without a locally generated magnetic
field, but in the two other cases described in this paper, a
magnetically driven quasi-spherical outflow and a magnet-
ically driven collimated jet, there is no difficulty to pro-
duce γ-rays without any need of a supplementary field.
The efficiencies of the radiative process in these magnet-
ically driven cases are comparable to those already cal-
culated for an equipartition field. In particular, as was
already pointed out in Daigne & Mochkovitch (1998), this
efficiency is expected to be higher if the γ-rays are directly
produced by synchrotron emission (which is possible if
only a fraction of the electrons are accelerated behind the
shock waves).

5. Magnetic energy release in the outflow

Internal release of magnetic energy can be important for
the γ-ray lightcurves if the time scale is sufficiently fast
that the release is significant before the outflow reaches
the external shock. It should not be too fast, however.
If the release takes place before the photospheric radius,
i.e. in the optically thick part of the outflow, the inter-
nal energy generated is not radiated away. Instead, it is
converted, through the radial expansion of the shell, into
kinetic energy.

Assume that the outflow is driven by the rotating mag-
netic field of the central, compact object, i.e. that the field
strength estimates (20) or (23) apply. Depending on the
field configuration at the source, the field in the flow can
be nonaxisymmetric to a greater or lesser degree, and de-
pending on the nature of the acceleration process it can
be quasi-spherical or more collimated along the rotation
axis. Consider again the two cases discussed in Sect. 3.

In the perpendicular rotator case, the field consists of
“stripes” of alternating polarity, in which the field energy
can be released by reconnection. In the axisymmetric jet
case, the field is unstable to a kinking process. The mag-
netic field in both cases is far from a minimum energy con-
figuration (a potential field). The free energy it contains is
available if it can be released on a sufficiently short time
scale.

The initial perturbations from which the MHD insta-
bilities grow are likely to be present at significant ampli-
tude, from the start of the outflow, except in the unlikely
event that the field configuration of the source is highly
symmetric. Thus we may assume that the ordered config-
urations of Figs. 2 and 3 significantly change to more dis-
ordered ones within an MHD instability time scale. These
more disordered configurations then are subject to fast
reconnection processes.

Reconnection takes place on time scales governed by
the Alfvén speed. It depends on plasma resistivity as
well, but in practical reconnection configurations (as op-
posed to highly symmetric textbook examples like tearing
mode instability), the resistivity enters only weakly. In
the Sweet-Parker model for 2-D reconnection, for exam-
ple (e.g. Biskamp 1993), it enters through the logarithm
of the magnetic Reynolds number. In more realistic 3-D
modes of reconnection, the basic geometry of reconnection
(a “chain link” kind of configuration) differs from the 2-D
geometries. Also, the reconnection tends to be distributed
over many current sheets instead of a few reconnection
points (see Galsgaard & Nordlund 1996, 1997, for recent
numerical results). The reconnection rate is still weakly
dependent on the resistivity in these 3-D configurations.

5.1. Perpendicular rotator

In the perpendicular rotator, the field in the outflow
changes (in the lab frame) on a length scale L = πc/Ω.
The time scale τr of magnetic energy release scales with
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the Alfvén crossing time over this length scale. In a
comoving frame

1/τ ′

r ≈ ǫv′A/L′, (56)

where ǫ < 1 is a numerical factor of order unity measur-
ing the reconnection speed. In the lab frame, the energy
release time scale is Γ times longer, hence

τr =

{

2πΓ2c
Ωǫv′

A

(perpendicular rotator),
θrΓ
ǫv′

A

(axisymmetric jet).
(57)

As the bulk Lorentz factor Γ tends to infinity, the energy
release becomes arbitrarily slow. This is also understood
by noting that for Γ → ∞, the electromagnetic field of the
outflow in the observer frame becomes indistinguishable
from a pure EM wave in vacuum, whose energy content is
conserved.

The relativistic Alfvén speed is (e.g. Jackson 1999)

vA =
cvB

(c2 + v2
B)1/2

, (58)

where vB = B/(4πρ)1/2 is the nonrelativistic Alfvén
speed.

Let the ratio of magnetic energy flux (Poynting flux)
to kinetic energy flux be ξ:

ξ =
B2

4πΓρc2
=

B′2

4πρ′c2
· (59)

Hence

v′A/c = (1 + 1/ξ)−1/2. (60)

For the models discussed above, ξ ∼ O(1). As long as the
magnetic energy density has not decayed by internal MHD
processes, the comoving Alfvén speed is thus of the order
of the speed of light.

The magnetic dissipation radius, the distance rr from
the source where magnetic energy release becomes impor-
tant, is thus of the order

rr = cτr =
πc

ǫΩ
Γ2(1 + 1/ξ)1/2 (perp. rotator) (61)

= 2 1012 cm · Ω−1
4

(

Γ

300

)2
1

ǫ−1
(1 + 1/ξ)1/2. (62)

The length scale in the comoving frame, L′, is equal to
the wavelength λ′ = 2πcΓ/Ω = 2πrL in the perpendicular
rotator case) or the lateral scale, L′ = θr (in a collimated
outflow).

5.2. Axisymmetric jet

For the case of an axisymmetric outflow along the rotation
axis, the situation is a bit different. The length scale L of
the magnetic field is now the jet radius, L ≈ θr, where
θ is the opening angle of the jet. Since this is measured
perpendicular to the flow, it is the same in the lab and
the comoving frame. In the comoving frame, the time for

an Alfvén wave to communicate over this distance is τ ′
A =

rθ/v′A, in the lab frame τA = Γrθ/vA. This is less than the
time for the flow to reach a distance r, t = r/βc ≈ r/c if

θ <
v′A
Γc

=
1

Γ(1 + 1/ξ)1/2
· (63)

If the jet is wider than this, parts of the flow moving at
angles separated by more than ϑ = (1+1/ξ)−1/2/Γ < 1/Γ
have no time to communicate by an Alfvén wave in the
time elapsed since the start of the flow, and behave as if
they are causally disconnected from each other. Kink in-
stability will thus be limited to an inner core of opening
angle ϑ < 1/Γ. In directions outside this angle, the insta-
bility is suppressed since it has to communicate from one
side to then other across the axis of the jet. This reduces
the fraction of the available magnetic energy that can be
tapped by MHD processes.

On the other hand, magnetic energy release in the in-
ner core so defined already starts very close to the source
(where the length scale ϑr is small). Thus only a frac-
tion of the dissipation will happen in the optically thin,
observable regions.

5.3. General nonaxisymmetric outflows

The conclusion from the above is that in the case of a per-
pendicular rotator, there is a well defined “magnetic dis-
sipation radius” rr ∼ 1012 cm where most of the magnetic
energy is dissipated. For a purely axisymmetric outflow
along the rotation axis, on the other hand, only a fraction
of the magnetic energy can be released, unless the opening
angle is less than ∼1/Γ. This fraction probably dissipates
close to the source, and not necessarily in the optically thin
region where it could contribute to the observed emission.
In intermediate cases, where both an axisymmetric and
a nonaxisymmetric component are present, the magnetic
field in the outflow changes direction on the length scale
L = πc/Ω, without completely changing direction. In such
cases, the amount of the magnetic energy that can be re-
leased in directions outside the central core ϑ ∼ 1/Γ is of
the order B2

n/8π, where Bn is the nonaxisymmetric part
of the field. This is a significant fraction of the total mag-
netic energy unless the field is nearly axisymmetric. The
axisymmetric jet case, though attractive as a computable
model, is thus rather singular with respect to the question
of magnetic dissipation which we address in this paper.

6. Photospheric radius

The reconnection radii derived above need to be compared
with the radius rp of photosphere in the outflow. If rr is
larger than rp, the dissipation of magnetic energy takes
place mainly in the optically thin regime, and the dissi-
pated energy is radiated away locally. If on the other hand
rr < rp, the energy released from the initially ordered field
configuration increases the internal energy of the plasma.
The radial expansion of the flow converts this energy into
kinetic energy of outflow. Though this may be useful in ob-
taining large Lorentz factors, it also implies that the mag-
netic energy left in the flow by the time it passes through
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the photosphere is small if rr ≪ rp. The net output of
a magnetically driven fireball with magnetic dissipation
taking place mostly in the optically thick regime would
be essentially the same as a standard non-magnetic fire-
ball, with the attendant problem of a low efficiency of the
production of radiation by internal shocks.

The photospheric radius in a steady relativistic outflow
has been derived by Abramowicz et al. (1991). Assume a
total amount of mass M is ejected with a constant Lorentz
factor Γ, at a rate Ṁ which is is constant in the time inter-
val 0 < t < τ , (and zero outside this interval). The radius
at which the optical depth of the expanding shell reaches
unity is then rp = Mκ/(8πcτΓ2), where κ is the opacity.
This a factor 2Γ2 smaller than for photons propagating
through a non-moving shell. This is a consequence of the
expansion of the shell. The optical depth of a moving shell
of constant (in time) density is a Lorentz invariant, hence
the same for photons moving along the direction of the
flow and those moving in the opposite direction (assuming
also that the opacity is energy-independent). In a radial
outflow, however, a photon sees a different history of mass
density depending on its direction.

The result is widely used, e.g. Rees & Mészáros (1994)
and Beloborodov (2000), and is somewhat important for
the quantitative estimates below. Since its correctness is
sometimes questioned, we rederive it here in a different
way from Abramowicz et al. (1991), by working in the
lab frame. Let a photon be released at the inner edge ri

of the expanding shell at time t = 0. With the aid of a
Minkowski diagram, one finds that the photon exits at the
outer edge of the shell at time te = βτ/(1− β) and radius
re = ri + d/(1 − β) where d = βcτ is the shell thickness.
To compute the optical depth traversed by the photon,
we note that by the assumption of a constant outflow rate
the density ρ in the lab frame is only a function of r,

ρ = Ṁ/(4πr2βc). (64)

If the shell were static, the optical depth per unit length
would just be κρ. Since the scattering medium is flowing
outward at speed v = βc, the rate at which the photon
overtakes its scattering centers (per unit length or time in
the lab frame) is 1−β times the rate for a static shell (this
is again easily seen in a Minkowski diagram). Summing up,
the optical depth traversed by the photon is

τi =

∫ ri+d/(1−β)

ri

(1 − β)κρdr

=
Mκ

4πri

1

ri + d/(1 − β)
· (65)

For very small duration τ , this reduces to the optical depth
Mκ/(4πr2

i ) for a shell of mass M and fixed radius ri.

The optical depth is a decreasing function of time
as the shell expands and ri increases. Define now the
photospheric radius rp as the value of ri for which τi = 1.

With 1/(1− β) ≈ 2Γ2 and solving for ri we get

ri = cτΓ

[

(

1 +
Mκ

4π(cτΓ2)2

)1/2

− 1

]

, (66)

The parameter

Mκ

4π(cτΓ2)2
= 1.82 10−5 · E52

ξ + 1

( τ

3 s

)−2
(

Γ

300

)−5

(67)

is small for relevant GRB parameters. Thus we find the
photospheric radius to be

rp =
Mκ

8πcτΓ2
=

Eκ

8πc3τΓ3(ξ + 1)
· (68)

Numerically,

rp = 7.2 1010 cm · (ξ + 1)−1E52

( τ

3 s

)−1
(

Γ

300

)−2

. (69)

As soon as the inner edge of the shell has expanded to this
radius, radiation can escape from the entire shell.

6.1. Pair opacity

In addition to the baryons, pairs could also contribute to
the opacity. The photospheric radius (68) then does not
apply, because it includes only the constant opacity of
scattering on the electrons associated with the baryonic
mass. A general property of GRB fireball models is that
the photosphere lies well outside the region where pairs
contribute to the opacity. We summarize the argument
here.

Assume a steady wind in which pairs dominate the ki-
netic energy flux and the opacity, and in which the kinetic
energy of the pairs is a fraction ξ± of the total luminos-
ity E/τ . Let T ≈ 2 108 K be the temperature at the pair
photosphere (due to the steep dependence of the pair den-
sity on temperature, this value does not depend much on
conditions in the outflow). Ignoring the opacity due to
baryonic matter, the radius of the pair photosphere r± is
(Usov 1994):

r± =

(

ξ±E/τ

4πσSBT 4Γ2

)1/2

(70)

= 2 108 cm · (ξ±E52)
1/2

(

T

2 108 K

)−2(
Γ

300

)−1
( τ

3 s

)−1/2

, (71)

where σSB is the Stefan-Boltzmann constant and ξ± is the
energy fraction in the pairs.

This value is much smaller than the photospheric ra-
dius (68). Thus, for typical baryon-loaded GRB parame-
ters pairs annihilate before they reach the optically thin
domain.

7. Discussion

Magnetic fields may well be the main agent tapping the
rotational/gravitational energy in the central engines of
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GRB (for reviews see Mészáros 1999). Alternatives like
the production of pair plasma fireballs by neutrino anni-
hilation have turned out to have a rather small efficiency
of conversion of gravitational energy (Ruffert et al. 1997).
A fireball powered by magnetic fields (“magic hydrody-
namics”) can in principle produce γ-rays in the same way
as in field-free mechanisms, namely by internal shocks in
the optically thin part of the flow. A well-known problem
with the internal shock mechanism, however, is the low
efficiency of conversion to γ-rays Daigne & Mochkovitch
1998), of the order of a few percent. This is hard to avoid,
since efficient dissipation requires that a significant frac-
tion of the energy in the outflow is in relative motion be-
tween parts moving at different velocities. The required
large variations in Γ lead to dissipation close to the source,
however, in the optically thick regime. The dissipation tak-
ing place further out in the optically thin regime is due to
smaller velocity differences that carry less energy. Ways to
circumvent this limitation have been invented (Kumar &
Piran 2000; Beloborodov 2000; Lazzati et al. 1999). Even
in these schemes, however, it seems unrealistic to expect
the internal shocks to dissipate more than the external
shock, hence the conflict between observed gamma-ray
fluences and actual estimations of the energy dissipated
by the external shock based on the observations of a few
afterglows remains.

A magnetically powered outflow naturally carries a
magnetic field with it (“Poynting flux”). This raises the
question whether dissipation of this internal magnetic en-
ergy in the outflow can perhaps produce the observed
radiation with a better efficiency.

We have addressed this question by considering a few
possible scenarios for magnetic fields in GRB outflows.
In the first, the “passive scenario”, the magnetic field is
assumed not to be responsible at all for powering the
outflow, but only advected passively by an outflow pro-
duced by something else. We find that the maximum
field strengths possible in this case are small compared
with equipartition with the kinetic energy of the outflow,
but still potentially significant for the effective production
of synchrotron and/or inverse Compton emission in the
internal shock model.

As magnetically-driven models we consider the case
of a quasispherical outflow produced by a rotating non-
axisymmetric magnetic field, and the case of a jet-like
outflow along the axis of a rotating axisymmetric field.
The quasispherical case is like the models produced for the
Crab pulsar (Coroniti 1990; Gallant & Arons 1994). It has
been developed for a completely baryon-free, pure pair-
plasma outflow by Usov (1994). The jet case is similar to
magnetohydrodynamically driven wind models (Blandford
& Payne 1982; Sakurai 1985).

The magnetic field in all these cases is confined in an
outward moving shell of width cτ , where τ is the duration
of the flow. If internal dissipation is ignored in the outflow,
the total magnetic energy in the shell is constant, and
the field strength B varies with distance as r−1 (B and
τ measured in the observer frame). The configuration of

the magnetic field in the shell is different in each case
(see Figs. 1–3). If the central engine is time-dependent,
for example in the form of a series of sub-bursts, magnetic
shells like this are produced by each sub-burst, and the
magnetic flux and energy in the shells is renewed with
each burst (i.e. not limited by the magnetic flux of the
central object).

We find that the MHD approximation (in the sense
that the electric field in the fluid frame is small compared
with the magnetic field) is safe out to large distances from
the source, of the order 1019 cm or more. This is due to
the relatively large amount of baryons in the outflow com-
pared with, say, a pulsar wind situation. This simplifies
the discussion of magnetic energy dissipation at least con-
ceptually, since the energy release can be studied with-
out detailed discussions of plasma processes (though they
may enter again in the discussion of what produces the
radiation).

The field strength in a magnetically driven outflow de-
pends on the extent to which internal MHD processes have
been able to dissipate magnetic free energy in the flow. In
the absence of such processes, the magnetic energy den-
sity is typically of the same order as the kinetic energy
density in magnetically driven flows, and the field is well-
ordered (large scale). In the internal shock model, such
fields are sufficient to produce synchrotron and/or inverse
Compton emission in the γ-ray range. The synchrotron
case is favoured by a higher efficiency during the whole
course of the burst. There are now some observational
evidences that the magnetic field required for the after-
glow emission represents a small fraction of the equiparti-
tion value whereas the prompt γ-ray emission via internal
shocks is possible only with more intense fields close to
the equipartition value (Galama et al. 1999). In the stan-
dard picture where the afterglow is due to the forward
shock propagating in the external medium where no large
scale field is present, it could mean that the generation
of a local magnetic field behind the shock wave is ineffi-
cient. It is then possible that this locally generated field is
also very small behind internal shocks within the shell but
we show here that the large-scale field present in a mag-
netically driven outflow has no difficulty in most cases to
supply the strength necessary for synchrotron and/or in-
verse Compton emission.

The rate of energy release through MHD processes
like instabilities and fast reconnection is governed by the
Alfvén speed. In the rest frame of the outflow, the Alfvén
speed is of the order of the speed of light if the kinetic and
magnetic energy fluxes are similar. In outflows produced
by a perpendicular rotator, the magnetic field changes sign
on the small length scale c/Ω, and most of the magnetic
energy can be dissipated by reconnection. The typical ra-
dius at which the energy release takes place in this case
is ∼1012 cm for standard GRB parameters (1052 erg, 3 s,
Γ = 300). The photospheric radius, on the other hand, is
small (mostly because of the relativistic effect discussed
by Abramowicz et al. 1991), ∼1010 cm. We can thus be
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confident that dissipation of energy stored in the magnetic
field of the outflow occurs in the optically thin regime.

In the case of an outflow produced by a purely ax-
isymmetric rotating magnetic object such changes of sign
do not occur. Energy can still be released by kink insta-
bilities, but for causality reasons these are not effective
outside a narrow cone of angle 1/Γ near the rotation axis
(Sect. 5). The expected amount of magnetic dissipation
in the optically thin regime is quite limited for such an
axisymmetric field. A purely axisymmetric configuration,
however, is a singular case, a priori unlikely for magnetic
fields produced in a transient object like the central engine
of a GRB. In the more likely case that a nonaxisymmet-
ric field component is present as well, the energy in this
component can be released by reconnection in nearly the
same way as in the case of a perpendicular rotator.

Magnetic energy dissipation in the optically thin
regime is probably not as simple as the shock dissipation in
the internal shock model. In particular, the way in which
nonthermal electron distributions are produced still needs
to be investigated. It is likely that nonthermal radiation
is again produced, as in the internal shock model, but the
shape of the radiation spectrum may be more difficult to
compute, as well as the typical time scale of the radiative
process, which should be short compared to the expansion
time scale (see (46): t′ex ∼ 1 s · (Γ/300)−1 at 1013 cm) to
have a high radiative efficiency.

The main attraction of of GRB radiation produced by
magnetic dissipation in a magnetically driven outflow is
the efficiency with which the energy flux from the central
engine can be converted into observable radiation. This
efficiency is limited only by the ratio of Poynting flux to
total energy flux in the flow. In the magnetically driven
cases considered, this ratio can be close to unity. In the
internal shock scenario, on the other hand, only a frac-
tion <∼0.1 of the energy is dissipated in the optically thin
region. Since the bulk kinetic energy of the burst is dissi-
pated in the afterglow, the internal shock model predicts
the afterglows to dominate the energy output, which is
probably inconsistent with current observations. In mag-
netic dissipation models such as those discussed here, the
energy emitted in the afterglow can in principle be ar-
bitrarily small compared with the prompt emission. It is
not yet clear, however, how much of the magnetically dis-
sipated energy can be in the form of γ-rays.
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