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Large Scale Measurement and Characterization of

Cellular Machine-to-Machine Traffic
M. Zubair Shafiq, Lusheng Ji, Alex X. Liu∗, Jeffrey Pang, and Jia Wang

Abstract—Cellular network based Machine-to-Machine (M2M)
communication is fast becoming a market-changing force for a
wide spectrum of businesses and applications such as telematics,
smart metering, point-of-sale terminals, and home security and
automation systems. In this paper, we aim to answer the following
important question: Does traffic generated by M2M devices im-
pose new requirements and challenges for cellular network design
and management? To answer this question, we take a first look at
the characteristics of M2M traffic and compare it with traditional
smartphone traffic. We have conducted our measurement analysis
using a week-long traffic trace collected from a tier-1 cellular
network in the United States. We characterize M2M traffic from
a wide range of perspectives, including temporal dynamics, device
mobility, application usage, and network performance.

Our experimental results show that M2M traffic exhibits sig-
nificantly different patterns than smartphone traffic in multiple
aspects. For instance, M2M devices have a much larger ratio of
uplink to downlink traffic volume, their traffic typically exhibits
different diurnal patterns, they are more likely to generate
synchronized traffic resulting in bursty aggregate traffic volumes,
and are less mobile compared to smartphones. On the other hand,
we also find that M2M devices are generally competing with
smartphones for network resources in co-located geographical
regions. These and other findings suggest that better protocol
design, more careful spectrum allocation, and modified pricing
schemes may be needed to accommodate the rise of M2M devices.

I. INTRODUCTION

Smart devices that function without direct human interven-

tion are rapidly becoming an integral part of our lives. Such

devices are increasingly used in applications such as telehealth,

shipping and logistics, utility and environmental monitoring,

industrial automation, and asset tracking. Compared to tra-

ditional automation technologies, one major difference for

this new generation of smart devices is how tightly they are

coupled into larger scale service infrastructures. For example,

in logistic operations, the locations of fleet vehicles can be

tracked with Automatic Vehicle Location (AVL) devices such

as the CalAmp LMU-2600 [6] and uploaded into back-end au-

tomatic dispatching and planning systems for real-time global

fleet management. More and more emerging technologies also

heavily depend on these smart devices. For instance, a corner

stone for the Smart Grid Initiative is the capability of receiving
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and controlling individual customer’s power usage on a real-

time and wide-area basis through devices such as the electric

meters equipped with Trilliant CellReader [24] modules.

This kind of leap in technology would not be possible

without the support of wide area wireless communication in-

frastructure, in particular cellular data networks. It is estimated

that there are already tens of millions of such smart devices

connected to cellular networks world wide and within the

next 3-5 years this number will grow to hundreds of millions

[2], [3]. This represents a substantial growth opportunity for

cellular operators as the increase in mobile phone penetration

rate is flattening in the developed world [11], [25].

M2M devices and smartphones share the same network

infrastructure, but current cellular data networks are primarily

designed, engineered, and managed for smartphone usage.

Given that the population of cellular M2M devices may soon

eclipse that of smartphones, a logical question to ask is: What

are the challenges that cellular network operators may face

in trying to accommodate traffic from both smartphones and

M2M devices? Existing configurations may not be optimized

to support M2M devices. In addition, M2M devices may

compete with smartphones and impose new demand on shared

resources. Hence, to answer this question, it is crucial to

understand M2M traffic patterns and how they are different

from traditional smartphone traffic. The knowledge of traffic

patterns can reveal insights for better management of shared

network resources and ensuring best service quality for both

types of devices.

In this paper, we take a first look at M2M traffic on a

commercial cellular network. Our goal is to understand the

characteristics of M2M traffic, in particular, whether and how

they differ from those of smartphones. To the best of our

knowledge, our study is the first to investigate the charac-

teristics of traffic generated by M2M devices. We summarize

our key contributions below.

• Large Scale Measurement: We conduct the first large

scale measurement study of cellular M2M traffic. For our

study, we have collected anonymized IP-level traffic traces

from the core network of a tier-1 cellular network in the

United States. This trace covers all states in the United

States during one week in August 2010. This trace contains

M2M traffic from millions of devices belonging to more than

150 hardware models. In addition, we have also collected

anonymized traffic traces from millions of smartphones from

the same cellular network. Overall, we find that M2M devices

generate significantly less traffic compared to smartphones.

Furthermore, in our trace, we observe that the number of

M2M devices is also significantly smaller than the number of
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smartphones. However, the number of new M2M devices and

their total traffic volume is increasing at a very rapid pace. In

fact, a longitudinal comparison of M2M traffic in this cellular

network showed that total M2M traffic volume has increased

more than 250% in 2011 since previous year. In comparison,

Cisco reported that mobile data traffic grew “only” 132%
in 2011, which is almost half of the increase observed for

M2M traffic [4]. Consequently, it is important to understand

the peculiarities of M2M traffic, especially its contrast to the

traditional smartphone traffic, for future network engineering.

In this study, we compare M2M and smartphone traffic in

the following aspects: aggregate volume, volume time series,

sessions, mobility, applications, and network performance.

• Aggregate Traffic Volume: We jointly study the distribu-

tions of aggregate uplink and downlink traffic volume. Our

major finding is that, though M2M devices do not generate as

much traffic as smartphones, they have a much larger ratio of

uplink to downlink traffic volume compared to smartphones.

Since existing cellular data protocols support higher capacity

in the downlink than the uplink, our finding suggests that net-

work operators need careful spectrum allocation and manage-

ment to avoid contention between low volume, uplink-heavy

M2M traffic and high volume, downlink-heavy smartphone

traffic.

• Traffic Volume Time Series: We analyze the traffic volume

time series of M2M devices and smartphones. Our analysis

shows that different M2M device models exhibit different

diurnal behaviors than smartphones. However, some M2M

device models do share similar peak hours as smartphones.

Hence, M2M traffic imposes new requirements on the shared

network resources that need to be considered in capacity plan-

ning, where network is usually provisioned according to peak

usage. Another finding from time series analysis is that some

M2M device models generate traffic in a synchronized fashion

(like a botnet [23]), which can result in denial of service due

to limited radio spectrum. Therefore, M2M protocols should

randomize such network usage to avoid congesting the radio

network.

• Traffic Sessions: To understand the usage behavior of

individual devices, we conduct session-level traffic analysis

in terms of active time, session length, and session inter-

arrival time. We find that high traffic volume does not always

correlate with more active time. This finding calls for new

billing schemes, which go beyond per-byte charging models.

We also find that M2M devices have different session length

and inter-arrival time characteristics compared to smartphones.

This finding can be utilized by device manufacturers to improve

battery management and by network operators to optimize

radio network parameters for M2M devices.

• Device Mobility: We compare the mobility characteristics

of M2M devices and smartphones from both device and

network perspectives. We find that M2M devices, with a

few exceptions, are less mobile than smartphones. We also

find that M2M and smartphone traffic competes for network

resources in co-located geographical regions. This finding

indicates that careful network resource allocation is required

to avoid contention between low-volume M2M traffic and high-

volume smartphone traffic.

• Application Usage: We also study the contribution of

different applications to the aggregate traffic volume of M2M

devices and smartphones. We find that M2M traffic mostly

uses custom application protocols for specific needs, which

is undesirable because it is difficult for network operators to

understand and mitigate adverse effects from these protocols

compared to standard protocols.

• Network Performance: The network performance results

of M2M traffic, in terms of packet loss ratio and round trip

time, show strong dependency on device radio technology

(2G or 3G) and expected device environment (e.g. indoors

vs. outdoors). This implies that network operators will need

to be cognizant of a large population of M2M devices on

legacy networks even as they re-provision spectrum for 4G

technologies to support newer smartphones.

The rest of this paper proceeds as follows. We first provide

details of our collected trace in Section II. Sections III–VIII

present measurement analysis of M2M and smartphone traffic.

Finally, we conclude in Section IX.

II. DATA

A. Data Set

The data used in this study is collected from a nation-wide

cellular network operator in the United States that provides

2G and 3G cellular data services. It supports GPRS, EDGE,

UMTS, and HSPA technologies. Architecturally, the portion

of its network that supports cellular data service is organized

in two tiers. The lower tier, the radio access network, provides

wireless connectivity to user devices, and the upper tier, the

core network, interfaces the cellular data network with the

Internet. More details about cellular data network architecture

can be found in [21].

The data collection apparatus that produced the trace used

in our study is deployed at all links between Serving Gateway

Support Nodes (SGSN) and Gateway GRPS Support Nodes

(GGSN) in the core network. This apparatus is capable of

anonymously logging session level traffic information at 5
minute intervals for all IP data traffic between cellular devices

and the Internet. In other words, each record in the trace is

a 5-minute traffic volume (i.e., TCP payload size in bytes)

summary aggregated by unique device identifier and applica-

tion category. Each record also contains the cell location of

the device at the start of the session. Each record is originally

timestamped according to the standard coordinated universal

time (UTC), which is then converted to the local time at

the device for our analysis. This trace was collected during

one complete week in August 2010. Geographically, the trace

covers the whole United States.

Applications are identified using a combination of port

information, HTTP host and user-agent information, and other

heuristics. Overall, traffic is classified into the following

17 categories: (1) appstore, (2) jabber, (3) mms, (4)

navigation, (5) email, (6) ftp, (7) gaming, (8) im,

(9) miscellaneous, (10) optimization, (11) p2p, (12)

apps, (13) streaming, (14) unknown, (15) voip, (16)

vpn, and (17) web. POP3 and IMAP traffic is classified

as email. Additional control channel information is used

to identify voip traffic. Most HTTP traffic is classified as
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streaming or web based on mime type. Some heuristics

are employed to identify non-HTTP p2p traffic. Gnutella and

BitTorrent tracker-based HTTP traffic is also labeled p2p.

User-agent information is used to identify specific mobile

app traffic such as appstore. Port number information

is used to identify other traffic classes. Many low volume

applications are jointly labeled as miscellaneous. The

remaining unclassified traffic is labeled as unknown. More

information about application classification can be found in

[10], [20].

B. M2M Device Categorization

The data set contains traffic records for all cellular devices,

so we first need to separate M2M devices from the rest.

Furthermore, because M2M devices are usually developed for

specific applications, significant behavioral differences are ex-

pected between M2M devices for different target applications.

Thus, it is reasonable to sub-divide M2M devices into cate-

gories based on their intended application to better understand

the unique traffic characteristics of different M2M categories.

We start this process by identifying the hardware model of

each cellular device using the device’s Type Allocation Code

(TAC), which is part of the unique identifier of each cellular

device. Although the records in our data set are anonymized,

the TAC portion of the unique identifier is retained. Thus,

the hardware model of each cellular device is obtained by

consulting the TAC database of the GSM Association.

Because there is no rigorous definition for M2M devices or

standard ways for determining their application categories, and

many devices have multiple uses, knowing the device model is

not sufficient for identifying a device with certainty as M2M

device nor for identifying its M2M category. Towards this

end, we adopt the device classification scheme of a major

cellular service provider as a base template for categorizing

M2M devices [1]. To supplement and verify this template, we

also use public information such as production brochures and

specification sheets. In total, we have classified more than 150
device models as M2M devices, and further divide them into

the following 6 categories.

1) Asset Tracking: These M2M devices are used to remotely

track objects like cargo containers and other shipments. These

devices are often coupled with other sensors for tasks like

temperature and pressure measurement. In our trace, about

18% devices belong to this category.

2) Building Security: These M2M devices are typically used

to manage door access and security cameras. In our trace,

about 14% devices belong to this category.

3) Fleet: These M2M devices are used to monitor vehicle

locations, arrivals, and departures and provide real-time access

to critical operational data for logistic service providers. In our

trace, about 51% devices belong to this category.

4) Miscellaneous (Misc.): These M2M devices are generic

cellular communication modems with embedded system data

input and output ports such as serial, I2C, analog, and digital.

They provide network connectivity for customized solutions.

In our trace, about 9% devices belong to this category.

5) Metering: These M2M devices are mostly used for remote

measurement and monitoring in agricultural, environmental,

and energy applications. In our trace, about 6% devices belong

to this category.

6) Telehealth: These M2M devices are mostly used for remote

measurement and monitoring in healthcare applications. In our

trace, about 2% devices belong to this category.

We acknowledge that due to lack of more detailed usage

information and ambiguity in device registry databases, our

classification may contain some errors. To limit such errors,

we try to be as conservative as possible when deciding

whether to include a M2M device model in our study. For

example, cellular routers are generally excluded from this

study because the actual end devices behind these routers

cannot be identified. For cellular modems and modules, we

exclude models with data interfaces likely used by modern

day computers such as USB, PCI Express, and miniPCI but

keep those with UART, SPI, and I2C interfaces. Note that

we may miss some M2M devices in our analysis that are

not active and hence they do not not appear in our trace.

For the sake of comparing M2M and typical human-generated

traffic characteristics, we have also included in our study traffic

records from a uniformly sampled set of smartphone models,

covering millions of smartphone devices.

C. Data Set Characteristics

Given the device categorization, we now investigate the

following two basic characteristics of devices in our data set.

First, we plot the cumulative distribution functions (CDFs)

of record counts for smartphone and M2M devices in Fig-

ure 1(a). Note that “M2M” is the weighted average of the

aforementioned six M2M device categories. We observe that

M2M devices have lesser number of records as compared to

smartphones. We note that about 40% of M2M devices have

less than 100 records in our trace, while this number is up

to 1000 for smartphones. We also observe diversity across

different M2M device categories. Asset tracking, fleet, and

misc. devices have significantly more records as compared to
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Fig. 1. Distributions of record count and number of unique days that devices
appear in our trace.
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building, metering, and telehealth devices. M2M devices may

have lesser number of records as compared to smartphones

because they often have one-off appearance in our trace.

Second, to rule out the one-off appearance hypothesis, we plot

the probability distribution functions (PDFs) of the number of

unique days smartphone and M2M devices appear in our trace

in Figure 1(b). We observe some differences across M2M de-

vice categories; however, overall M2M and smartphones both

have the most fraction of devices that appear on all days of the

week in our trace. Therefore, we can conclude that differences

observed in Figure 1(a) are not simply because M2M devices

appear sporadically in our trace. The observations from these

two plots provide us a first evidence of difference in network

activity of smartphone and M2M devices, and across M2M

device categories.

In the following sections, we conduct a detailed analysis

and comparison of M2M and smartphone traffic characteristics

in our data set. The traffic characteristics analyzed in this

paper include aggregate data volume, volume time series,

session analysis, mobility, application usage, and network

performance. Note that some results presented in this paper

are normalized by dividing with an arbitrary constant for

proprietary reasons. However, normalization does not change

the range of the metrics used in this study. Furthermore,

the missing information due to normalization does not affect

the understanding of our analysis. These characteristics are

discussed below in separate sections.

III. AGGREGATE TRAFFIC VOLUME

When a new technology emerges and it has to share

resources with existing parties, a natural first question is the

level of competition and how different parties can better co-

exist. This is why we first study and compare the distribution

of aggregate traffic volume for M2M devices and smartphones.

Moreover, we also investigate whether the long established

perception of traffic volume being downlink heavy remains

true for M2M devices [16].

Figure 2 shows the CDFs of downlink and uplink nor-

malized traffic volume for M2M devices and smartphones

separately. The normalized traffic volume ranges between 1

(about 1KB) and 4 (maximum volume for M2M devices). For

M2M, we show both the distributions for all M2M devices

together and for each M2M category. We first notice that

different device categories exhibit strong diversity in aggregate

downlink and uplink traffic volume distributions. However,

we do observe a consistent relative ordering of CDFs for

different device categories. We note that the average downlink

and uplink traffic volume for smartphones is about two orders

of magnitude larger compared to all M2M device categories.

Within M2M device categories, misc. category has the largest

downlink traffic volume, followed by asset category; whereas,

building security and fleet categories have the smallest down-

link traffic volume. A similar ordering is also observed for

uplink traffic volume.

We now study the distribution of ratios of uplink traffic

volume to downlink traffic volume. For the sake of clarity, we

plot the ratios after taking their logarithm, denoted by Z. The

positive values of Z represent more uplink traffic volume than
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Fig. 2. CDFs of aggregate downlink and uplink traffic volume.

downlink traffic volume and its negative values represent more

downlink traffic volume than uplink traffic volume. It is not

surprising that approximately 80% of smartphone devices have

Z ≤ 0; thereby, indicating larger downlink traffic volumes.

However, this trend is reversed by large margin for all M2M

device categories, which all have Z > 0 for more than 80% of

devices indicating larger uplink traffic volumes. This finding

provides another evidence that M2M traffic has significantly

different characteristics compared to traditional smartphone

traffic. Comparing different M2M device categories, we ob-

serve that building and metering categories have the lowest

average Z values; whereas, asset and telehealth have the

highest average Z values. Such differences provide insight into

the functionality of M2M device categories.

Summary: Overall, the average per-device traffic volume of

M2M devices is much smaller than that of smartphones.

However, the strength of M2M devices is really in the

size of their population. As M2M population continues to

increase, how network operators efficiently support a large

number of low volume devices will become an important

issue. Our finding that M2M traffic has more uplink volume

than downlink volume shows that M2M devices act more as

“content producers” than “content consumers”. Interestingly,

this difference coincides with the paradigm shift in web and

mobile computing towards user-centric content generation.

The momentum of such a shift may eventually question the

assumptions for optimization approaches exploiting downlink

asymmetry of network traffic [14].
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Fig. 3. Downlink and uplink traffic volume time series.

IV. TRAFFIC VOLUME TIME SERIES

Having gained an understanding of aggregated M2M traffic

volume, we next study the temporal dynamics of M2M traffic

volume. It would be interesting to know whether M2M devices

exhibit similar daily diurnal pattern as smartphones. One

particular use of such information is to evaluate the potential

benefits of incentive programs such as billing discounts en-

couraging non-peak time usage. This information can also be

utilized to group devices into separate clusters with different

billing schemes. Time series analysis is also helpful for gaining

insights into the operations of M2M devices.

As mentioned in Section II, the logged traffic records

contain timestamps at 5-minute time resolution. Therefore, we

can separately construct averaged traffic volume time series

for smartphones and all M2M device categories. We plot

these averaged uplink and downlink traffic volume time series

in Figure 3. While the daily diurnal pattern is evident for

both M2M and smartphone traffic, the comparison of Figures

3(a) and (b) reveals the following two interesting differences.

First, the volume of downlink traffic dominates that of uplink

traffic for smartphones, whereas these are relatively same

in M2M traffic time series. This finding follows our earlier

observations in Section III. Second, we also observe that peaks

in smartphone traffic time series are wider, starting in the

morning and prolonging up to mid-night, whereas peaks in

M2M traffic time series are narrower, ending by the evening

time; and M2M traffic volume exhibits significant reduction

during weekend compared to weekdays while smartphone

traffic volume remains virtually unchanged. It appears that

smartphone traffic time series is coupled with human “waking”

hours while M2M traffic time series is coupled with human

“working” hours. This is a strong indication that currently a

majority of M2M devices are employed for business use. They

are not yet in the mainstream for residential users, or as tightly

integrated into people’s daily life as smartphones.

We have also separately plotted averaged uplink and down-

link traffic volume time series for all M2M device categories

in Figures 3(c)–(h). We observe strong diurnal variations for

all M2M device categories. However, the weekday-weekend

pattern comparison reveals different results for most M2M

categories, illustrating that M2M categories indeed behave

vastly differently from each other due to the different appli-

cations they serve. The previously mentioned association of

M2M traffic time series with daily business activity cycle is

highlighted the most by Figure 3(d) (Building), where each

working day pattern displays not only elevated volume during

working hours but also two peaks which in time coincide

with the beginning and the end of typical business hours.

Contrastingly, we see that there is virtually no difference in

traffic volume for the metering category for different days.

Frequency Analysis: On a finer scale, we observe repetitive
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Fig. 4. Periodograms containing power spectral density estimate of traffic
volume time series.

spikes in time series of most M2M device categories. To

investigate these high frequency spikes in more detail, we

plot the periodograms of some downlink and uplink traffic

volume time series in Figures 4(a) and (b), respectively. The

periodogram is an estimate of power spectral density, or

frequency spectrum, of a given signal and is defined as:

S(f) =
1

FsN

∣

∣

N
∑

k=1

xke
−j(2πf/Fs)k

∣

∣

2
,

where f is the frequency in Hertz, N is the total number

of signal samples, and Fs is the sampling frequency [22]. In

this study, we have Fs = 5 minutes and N = 2, 016. The x-

axis in Figure 4 represents time period on logarithm scale and

y-axis represents power in decibels (dB) for each frequency.

We observe distinct spikes in the periodograms corresponding

to multiple time periods, e.g. 1 hour, 30 minutes, and 15
minutes, strongly suggesting the timer-driven nature of many

M2M operations. The perfect alignment of the spikes in Figure

3(f) and (g) to one, half, and quarter hour marks in time also

suggests that these timers are highly synchronized. Such syn-

chronized communication by large number of devices is highly

undesirable both for the M2M application service providers

and cellular network operators because it may create disruptive

congestion at various locations in the infrastructure [23]. It

is noteworthy that such sub-hour frequency components are

absent for smartphone traffic time series, highlighting peculiar

nature of M2M traffic. For a causal analysis of the spikes

in Figure 3, we have manually analyzed the traffic logs for

potential patterns. Our analysis showed that all spikes are

caused by coordinated activities from thousands of devices

belonging to the same device models, not by a small number

of “outliers”. For instance, spikes for misc. category are caused

by traffic belonging to thousands of devices of a particular

model exactly at hour marks.

Time Series Clustering: Until now we have only examined

the averaged time series for M2M device categories. To gain

more fine-grained insights, we construct more than 150 M2M

device model traffic time series from our trace, each represent-

ing averaged time series of individual devices of respective

device models at 5-minute time resolution. Likewise, we

construct individual device traffic time series at the same time

resolution. However, the time series of individual devices at

5-minute time resolution over the duration of one week are

less useful because they are highly sparse. To reduce their

sparsity, we change the time resolution to 1 hour and also

average them across all days. Therefore, the time series of

individual devices each contain 24 data points representing

hourly time series averaged over all days of the week.

With these two sets of time series (device models and

individual devices) at hand, we now aim to find some structure

across them by clustering together similar traffic time series. In

this paper, we utilize discrete wavelet transform to analyze and

compute similarity score between time series at multiple time

scales [7]. Wavelet transform is a generalized form of Fourier

transform, which resolves it as a series of sines and cosines

of different frequencies. Using discrete wavelet transform, a

traffic time series is decomposed into multiple time series,

each containing information at different scales that range from

coarse to fine. There are several well-known wavelet families

whose qualities vary according to several criteria. We need

to select an appropriate wavelet type for our given problem.

We explored a wide range of wavelet types. However, we

focus on the results based on the well-known Daubechies-

1 wavelet type, which is computationally and memory-wise

efficient and is known to appropriately handle discontinuities

[7]. Note that the traffic time series in our data, especially at

finer time resolutions, often contain discontinuities. We rely on

Daubechies-1 to smooth out these discontinuities. The wavelet

transform can be applied for varying decomposition levels to

capture varying levels of detail (or scales). In this paper, we

have used Coifman and Wickerhauser’s well-known method

to select the optimal number of decomposition levels [8].

The basic idea of this method is to select the decomposition

level for which the joint information entropy of approximation

and detail is minimized. We applied this method separately

for device model and subscriber traffic time series and then

selected the optimal decomposition level at the 95th percentile.

Using the aforementioned criterion, we chose the optimal

decomposition level to be 5 and 3 for device model and

subscriber time series respectively.

Given the wavelet decompositions of device model and

subscriber time series, we aim to group time series into distinct

clusters. Towards this end, we need to select appropriate

similarity metric and clustering mechanism to group them.

We first note that the length of all traffic time series is

the same. Therefore, we can compute one-to-one difference

between any two given time series and compute its l2 norm

to quantify their dissimilarity. This continuous definition of

similarity between two traffic time series allows us to apply

hierarchical clustering. In this clustering method, we start by

considering each traffic time series as a separate cluster and

then recursively combine two clusters that have the smallest

distance between them. Here we need to define the distance

between two clusters each of which may contain more than

one traffic time series. A well-known method is called Ward’s

method, which selects to merge two clusters for whom the

increase in the sum of squared distances is minimum [13]. We
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Fig. 5. Dendrograms for hierarchical clustering.

use the Davies-Bouldin index to select the optimal number of

clusters from dendrogram, which is known to result in com-

pact and well-separated clusters [13]. Figure 5(a) shows the

dendrogram for hierarchical clustering of M2M device model

traffic volume time series. The x-axis represents the indices of

time series and y-axis represents the l2 norm distance metric.

In the dendrogram, we visually observe an obvious grouping of

device models into well-separated clusters. Using the Davies-

Bouldin index, the optimal number of clusters is selected

to be four for M2M device model dendrogram. Similarly,

Figure 5(b) shows the dendrogram for hierarchical clustering

of individual device traffic volume time series. We observe

a different structure in this dendrogram as compared to the

one in Figure 5(a). Here we note that the bottom-right of the

tree contains several clusters, each containing one or a small

number of individual device time series. Intuitively, these small

clusters potentially represent outliers whose distance to other

clusters is fairly large. We visually observe two clusters on the

bottom-left of Figure 5(b), each containing a major chunk of

time series. After separating out the sparse outlying clusters,

these two clusters are selected as optimal by the Davies-

Bouldin index. To further study the clusters identified using the

above-mentioned methodology, we plot their centroids with

point-wise standard deviations in Figures 6 and 7. In these

figures, the dark red lines represent the centroids, the blue

lines represent point-wise standard deviations, and the light

red lines in the background represent the member time series

for each cluster.

Figure 6 shows device model clusters where we label the

identified centroids based on two of their temporal charac-

teristics: traffic volume and diurnal variations. We label a

cluster centroid as high volume if its average normalized daily

peak volume for weekdays is more than ≈ 0.5. Otherwise,

the cluster centroid is labeled as low volume. Similarly, we

label the cluster centroids based on the diurnal variations in

the following way. Let DI denote the diurnality coefficient,

and Vmax(d), Vmin(d), and Vavg(d) denote the maximum,

minimum, and average traffic volumes, respectively, on day

d of a traffic time series spanning |D| days. The diurnality

coefficient is quantified as:

DI =
1

|D|

∑

∀d∈D

Vmax(d)− Vmin(d)

Vavg(d)
.

If the diurnality coefficient of a cluster centroid is more than

1.0 then it is labeled as high diurnality. Otherwise, it is

labeled as low diurnality. Using this labeling methodology,

we label the identified clusters as low volume-low diurnality

(LV-LD), low volume-high diurnality (LV-HD), high volume-

low diurnality (HV-LD), and high volume-high diurnality (HV-

HD). We now study the composition of these labeled clusters
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Fig. 6. Cluster centroids identified using device models traffic time series.

with respect to the categories defined in Section II. Table I

shows the composition of the identified clusters across all

categories and the largest value in every row is marked as

bold. We note that asset tracking and fleet device models

mostly belong to HV-HD cluster. Furthermore, we note that

building security and telehealth device models mostly belong

to LV-HD cluster. These observations follow our intuition that

the activity of these device models is tightly coupled with

human activities. They also indicate that building security and

telehealth device models tend to generate low traffic volume.

Similarly, we observe that metering device models mostly

belong to LV-LD cluster. This observation follows our earlier

finding from Figure 4 that metering devices tend to download

or upload data after periodic time intervals throughout the day.

Finally, we observe that misc. device models mostly belong

to HV-LD clusters. Similar to metering device models, misc.

device models also tend to generate traffic after periodic time

intervals throughout the day resulting in low diurnality.

For individual device traffic volume time series clustering,

we identified a handful number of outlier clusters and two

main clusters containing a majority of devices. We plot the

centroids of two main clusters and one of the outlier clusters

in Figure 7. The cluster centroid in Figure 7(a) shows strong

diurnal behavior with higher traffic volume during day time
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Fig. 7. Cluster centroids identified using individual device traffic time series.

as compared to night time; therefore, we label this cluster as

diurnal. On the other hand, the cluster centroid in Figure 7(b)

does not show any diurnal characteristics and is labeled as

flat. We also show an outlier cluster in Figure 7(c), which

consists of devices generating traffic volume spikes at late

night. To gain insights from the clustering results of individual

device traffic volume time series, we study their composition

across various M2M device categories. Table II shows the

cluster composition results with the largest value in every

row marked as bold. We have similar observations for device

level clustering as we previously had for device model traffic

volume time series clustering. For instance, asset tracking

and fleet devices mostly belong to the diurnal cluster. Misc.,

metering, and telehealth devices, with spiky traffic volume

time series, mostly belong to the outlier cluster. Finally,

building security devices mostly belong to the flat cluster. The

individual device level clustering results further improve our

understanding about M2M traffic behavior.

Summary: In this section, we have presented time series

analysis for M2M traffic volume. Just like that of smartphones,

M2M traffic volume also exhibits strong daily diurnal pattern.

However, M2M traffic volume peaks correspond to people’s

TABLE I
COMPOSITION OF DEVICE MODEL CLUSTERS.

LV-LD LV-HD HV-LD HV-HD

% % % %

Asset 13.1 16.1 23.5 33.3

Building 13.1 19.3 11.7 0.0

Fleet 26.2 29.2 5.9 61.2

Misc. 34.5 25.8 47.1 5.5

Metering 13.1 3.2 5.9 0.0

Telehealth 0.0 6.4 5.9 0.0

working hours while smartphone traffic volume peaks corre-

spond to waking hours, which indicates that a majority of

M2M devices are employed for business use. The overlap

between M2M peaks and smartphone peaks suggests that

incentive based leverage mechanism such as off-peak time

pricing for encouraging better sharing of network capacity

can be beneficial. Towards this end, we presented a clustering

algorithm which classifies M2M device models into four

primary cluster categories, which can serve as a guideline

to network operators in determining how to differentiate

pricing for different device models. Specifically, high volume

and high diurnality traffic results in higher peak load and

wasted resources during non-peak hours. Therefore, devices

belonging to high volume and high diurnality cluster should

be charged relatively more than those belonging to low volume

and low diurnality cluster. We have also investigated fine-

grained features in traffic volume time series for different

categories and uncovered the differences in behaviors among

different M2M categories. For example unlike other M2M

categories, metering devices show only weak diurnal pattern,

suggesting that the traditional approach of scheduling service

down time in early morning hours may not be the best for

them. Finally, the surprising discovery of synchronized com-

munication among M2M devices highlights the importance

of developing and imposing standard traffic protocols and

randomization methods. Such synchronized communication

can be discouraged by employing 95th percentile pricing [9].

V. SESSION ANALYSIS

We now analyze and compare session-level traffic char-

acteristics of M2M devices and smartphones. Understanding

session duration and inter-arrival distribution is a time honored

tradition for the telecommunication industry because they are

important inputs for network resource planning and manage-

ment. Such information is valuable for cellular network oper-

ators too because device active time corresponds more closely

to radio resource usage than aggregate traffic volume [18].

Moreover, being able to accurately estimate session timing

parameters not only improves radio resource use efficiency

for cellular operators, it also helps M2M service providers

to better design their devices and protocols for better battery

management.

Towards this end, we first formally define a session and then

study different metrics based on session-level information.

A flow consists of all packets in a given transport layer

connection, including TCP and UDP. To study characteristics

of flows at a given time resolution, we need to define equally-

spaced time bins denoted by ∆i where i = 1, 2, ... and

TABLE II
COMPOSITION OF INDIVIDUAL DEVICE TIME SERIES CLUSTERS.

Diurnal Flat Outlier

% % %

Asset 16.9 15.7 4.8

Building 11.8 19.1 15.7

Fleet 57.1 47.5 44.6

Misc. 8.3 11.1 12.0

Metering 2.3 3.8 9.6

Telehealth 3.6 2.8 13.3
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|∆| denotes the magnitude of time bin and i is the index

variable. Recall from Section II that the smallest available

time resolution in our traffic trace is 5 minutes; therefore,

we use |∆| = 5 minutes in this analysis. We look at flow

arrivals in 5 minute time bins as a binary random process,

which is denoted by {Ft : t ∈ T, F ∈ {0, 1}} and where 0
and 1 respectively denote absence or presence of flow arrival,

respectively. We now define a session as a run of flow arrivals

in consecutive time bins, where a flow spanning multiple time

bins is marked for all time bins during its span. A session

is denoted by S{tx(i),ty(i)}, where tx(i) and ty(i) are the

times corresponding to the first flow arrival and the last flow

arrival of i-th session. In the following text, we separately

investigate several metrics that capture diverse characteristics

of the session arrival process.

Active Time: The first metric that we study is device active

time, denoted by Tactive, which is the total amount of time

in our week-long trace when a device is sending or receiving

traffic. In our study, it is calculated by multiplying number of

unique time bins in which we have at least one flow arrival by

the bin duration. Using this metric, we are primarily interested

in studying the impact of devices on the network in terms

of radio channel occupation. Note that a given time bin may

have multiple flow arrivals but they are all mapped to 1.

Mathematically, active time is defined as:

Tactive =
∑

∀t∈T

Ft (counts) =
∑

∀t∈T

Ft ∗ |∆| (time units).

In Figure 8(a), we plot the CDFs of active time for smart-

phones and all M2M categories defined in Section II. The

x-axis represents active time, which ranges from a minimum

of |∆| = 5 minutes to a maximum of one week (i.e. the

duration of trace collection). We first observe significant

diversity in active time of devices of smartphone and all M2M

categories. Our second observation is that smartphones tend

to have significantly more active time compared to all M2M

device categories. The median active time for smartphones

is approximately 2 days, which is approximately 30% of the

total trace time duration. It is important to note that active

time cannot be accurately related to the interaction time of

users with smartphones because of the following two reasons.

First, users can interact with smartphone without actually

generating network traffic, e.g. playing offline games. Second,

some applications may generate background traffic when the

user may not be actually interacting with the smartphone. We

also observe diversity in the distributions of active time across

M2M device categories. Misc. and asset tracking categories,

with high aggregate traffic volume per device, have the largest

active time values among all categories. It is noteworthy that

the fleet category, despite small aggregate traffic volume per

device, have above average active time values. This observa-

tion suggests that fleet devices tend to generate well spread

out traffic across different time bins. We have also verified

this conjecture from the data. Finally, telehealth and metering

devices have the smallest active time among all M2M device

categories.

Average Session Length: Another metric that we study is

average session length Lavg , which is defined as the average
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Fig. 8. CDFs of active time, average session length, session inter-arrival,
and memory.

count of consecutive time bins with flow arrivals. Mathemat-

ically, for a device with n sessions Lavg is defined as:

Lavg =

n
∑

i=1

ty(i)− tx(i) + 1

n
.

Note that session lengths are potentially inflated because

session timeouts may be missed due to the coarse measurement

granularity. Figure 8(b) shows the CDFs of average session

length for M2M devices and smartphones. We note that a

significant chunk of devices for all categories have average

session lengths smaller than or equal to 5 minutes (left most

points). However, remaining devices do have average session

lengths significantly larger than the minimum value. For

instance, 10% devices of misc. category have average session

lengths larger than one hour, which reflects the way these

devices operate. It is also interesting to note that smartphones

typically have significantly smaller average session lengths

compared to asset tracking, fleet, and misc. categories. Among

M2M categories, telehealth, metering, and building security
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have the smallest average session lengths.

Average Session Inter-arrival: We also study the average

session inter-arrival metric, which is defined as the average

of inter-arrival times between consecutive sessions. Using the

earlier notion, we can mathematically define average session

inter-arrival Tavg as follows:

Tavg =

n−1
∑

i=1

tx(i+ 1)− ty(i)

n− 1
.

Figure 8(c) shows the CDFs of average session inter-arrival

time for smartphone and M2M categories. We observe an

approximately opposite trend as compared to active time

and average session length for M2M device categories. For

instance, metering and telehealth categories, with relatively

small active time and average session lengths, have relatively

large average session inter-arrival time with median values of

approximately 9 hours. On the other hand, asset tracking and

fleet categories have relatively relatively small average session

inter-arrival time with median values of less than 3 hours.

Smartphones tend to have even smaller average session inter-

arrival time, where approximately 80% of devices have less

than one hour average session inter-arrival time.

Burstiness of Session Arrivals: Another useful metric for the

flow arrival process is burstiness. Burstiness jointly takes into

account the runs of zeros and ones in a binary random process.

As mentioned earlier in this section, we have modeled the flow

arrival process as a binary random process, where arrivals

are not independent. Given the assumption of conditional

independence between consecutive flow arrivals, we can model

the burstiness of the discrete flow arrival process using a 1st

order and 2 state discrete time Markov chain. This Markov

chain is also known as the Gilbert-Elliot model and is shown

in Figure 9. The two states of the Markov chain represent

the arrival or non-arrival of a session in a given time bin;

for instance, state 0 refers to non-arrival and state 1 refers to

arrival of a session. A suitable metric to model the burstiness

of the Gilbert-Elliot model is its memory, which is denoted by

µ and is defined as: µ = 1− P0|1 − P10 , where −1 ≤ µ ≤ 1.

Furthermore, µ = 0 corresponds to zero memory, µ ≥ 0
corresponds to persistent memory, and µ ≤ 0 corresponds

to oscillatory memory. When µ = 0, the probability of

a session arrival at any time instance is independent of

whether or not there was a session arrival in the previous

time bin, i.e. the process is memory-less. Figure 8(d) shows

the CDFs of memory for smartphone and M2M categories.

We again observe significant differences across smartphones

and M2M devices. Specifically, we note that more than 50%
smartphones have oscillatory memory, whereas, more than

80% M2M devices have persistent memory. This indicates

that most M2M devices, on average, tend to show persistence

in network activity, i.e. a time bin with no flow arrival is

… …

0 1

P1|0

P0|-1

P1|1

P0|0

Fig. 9. Gilbert-Elliot Markov chain to model burstiness of session arrivals.

likely to be followed by another without flow arrival and a

time bin with flow arrival is likely to be followed by another

with flow arrival. Among M2M device categories, building

security category has the largest percentage of subscribers with

negative memory values, indicating the presence of oscillatory

memory. These subscribers are more likely to follow an active

time bin with an inactive time bin and an inactive time bin

with an active time bin. The rest of the M2M device categories

only have a small fraction of subscribers with negative memory

values.

Summary: Once again, M2M traffic sessions exhibit rather dif-

ferent characteristics from smartphone traffic sessions. Overall

M2M devices are active for traffic for much less time than

smartphones. M2M traffic sessions occur much less frequently;

however, M2M traffic sessions are more bursty. Consequently,

the values of Radio Resource Control (RRC) timeouts of M2M

devices can be decreased to avoid excessive radio channel oc-

cupation. Likewise, the values of RRC timers of smartphones

can be increased to avoid excessive state transitions that result

in degraded network performance [18]. It is also worth noting

that 3 out of 6 M2M categories have about 80% of the devices

with average session time lasting less than 5 minutes. This

indicates that byte volume of data traffic for these devices

is likely not an accurate reflection of their network resource

use due to disproportional amount of control plane overhead

for establishing and tearing down short sessions. The large

differences between different M2M categories also advocate

for differentiated RRC configurations for different categories.

VI. MOBILITY

In this section, we study and compare the mobility charac-

teristics and geographical distribution of M2M devices and

smartphones. Mobility patterns for different devices, con-

structed from our nation-wide trace, helps establishing an un-

derstanding for how much they move. Understanding mobility

patterns for different devices has a direct impact on network

resource planning. More importantly, we are interested in

investigating how the locations of M2M device population

are distributed relative to those of smartphones. Previously

in Section IV, we have discovered that M2M traffic volume

peaks overlap with those of smartphones in time. Here we

investigate whether they also overlap in space.

It is important to note that cell identifiers derived from

information collected within the core network are not con-

sidered an accurate approximation for device location. This is

because many low-level radio access network operations such

as handoffs of mobile devices between cells are not exposed

to the core network. However, we consider such inaccuracy

acceptable for three reasons. First, Xu et al. reported that al-

though cell-sector information collected from the core network

is not exact for the purpose of being used as device location,

the median error is < 1 kilometer [26]. Second, we do not

use the locations of the cell tower to proximate user device

locations. We simply count the number of unique cells a device

is involved with. Finally, the scope of our study covers the

whole United States, compared to which cell-level errors at

kilometer scale are rather minor.
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Fig. 10. CDFs of unique cells for Smartphone and M2M categories.

Device Mobility: We quantify mobility in terms of the number

of unique cells to which a device connects. It is noteworthy

that a device can be stationary and still connect to multiple

cells at different time instances when it is in the coverage area

of multiple cell sectors simultaneously. Figure 10 shows the

CDFs of unique cells for different M2M device categories and

smartphones. We observe that devices of M2M categories ap-

pear across less unique cells compared to smartphone devices,

with the exception of asset tracking category. This is expected

because asset tracking devices are typically connected to

automotive vehicles for transportation of goods and tend to

transmit more frequent updates, e.g. temperature and check-

in information. Interestingly, fleet devices are less mobile

than asset tracking devices and even smartphones. This is

probably because fleet devices in our trace are mostly used

by car rental companies and tend to transmit less frequent

updates, e.g. milage and accidents. Overall, while we might

intuitively believe that asset tracking and fleet devices are more

mobile than the average smartphone, our results show that the

difference is rather insubstantial. Furthermore, as expected,

we observe that building security and metering devices appear

across the least number of cells.

Geographical Distribution: We now investigate the geo-

graphical distribution of M2M traffic. Towards this end, we

first plot the Voronoi diagrams for traffic volume of cell-level

aggregated M2M and smartphone traffic in Figure 11. The

geographical region shown in this figure covers more than

1 million square kilometers, spanning multiple states in the

United States (about 1/9 of its total area). The Voronoi dia-

grams are generated by partitioning the 2D space, containing

points representing base station locations, into polygons such

that each polygon contains one base station and every point

in a given polygon is closer to its base station than others.

Note that the polygons in the Voronoi diagrams represent cells

covering varying geographical areas. The clusters of cells cov-

ering small geographical areas appear around major population

centers. The colors of polygons representing the traffic volume

show that cells typically carry more smartphone traffic than

M2M traffic. We plot the distributions of cell-level aggregated

traffic volume for smartphones and M2M devices in Figure 12,

which verify our earlier observation. From the perspective of

network operators, we are interested in identifying locations

with highest traffic volume for smartphones and M2M devices.

Towards this end, in the rest of this section, we focus on

the top-10% cells in terms of traffic volume for smartphones

and M2M devices. These correspond to the right-hand side

tails of the distributions plotted in Figure 12. Furthermore,

we want to identify geographical dependencies among their
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Fig. 12. PDFs of cell-level traffic volume for M2M and Smartphone devices.

locations for the top-10% cells for smartphones and M2M

devices. The three possible types of geographical dependencies

between two sets of locations are: attraction, repulsion, and

independence. Attraction or repulsion between two sets of

location respectively indicate correlation or anti-correlation,

whereas independence indicates no correlation at all.

A well-known method to characterize geographical depen-

dency between two sets of points is based on the nearest

neighbor statistics [5]. Specifically, for two sets of points i and

j, we can define Gij(h) as the probability that the distance

from a randomly selected point i to the nearest event j is

less then or equal to h. Likewise, we can define Fj(h) as the

probability that the nearest point j to a random point is less

then or equal to h. If the two sets of points are geographically

independent then Gij(h) = Fj(h). Given i and j respectively

point to the top-10% locations for M2M and smartphone

traffic in terms of traffic volume, Figure 13(a) plots Gij

(Smartphone-M2M) and Fj (Point-M2M) for varying values

of h. A theoretical Poisson line is also plotted for reference,

which indicates the expected pattern if both sets of points are

independently distributed as homogeneous Poisson processes.

We observe that both Gij and Fj significantly depart from the

theoretical Poisson line and they are also not close to each

other. This observation indicates that the point sets i and j do

not follow homogeneous Poisson distribution and are also not

independently distributed of each other. The question remains



12

         x      
 
  x 
        x

     
  
  x 
  
  
  
  x
     

  
  x    

     x   
      x

     
    x 

  
  
  
  x  

      
 x
   
 
     
x
       

  x
    
 
    x

         x   
  
    x   

      x
     

    x     
    x      

   x 

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

h

C
D

F

 

    
  
 
 
o

  
  
 

 

 
  
o
 
 
  
     o

 
 
 
    
  o
     

   
 o     

    o
    
  
   o 

        o         o
         o         o 

        o       
o

         + 
     

   +
   
   
   +
   
  
  
  +
  
  
  
  
 +
  
  
  
  
 +
  
  
  
  
 +
  
  
  
  
 +
  
   
   
 + 
   
   
  +
   
    
  + 
    
    +

    

Point−M2M

Smartphone−M2M

Poisson

(a) Nearest Neighbor

 

    
 
   o
  
   
  
  o
    
     o
   
   
   o
   
      o
     
    o   
      o  
       o  
       o     

    o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o         o   

0.0 0.5 1.0 1.5 2.0 2.5

0
.0

0
.2

0
.4

0
.6

0
.8

h

L
 −

 h

 
        x         x         x  

       x         x         x   
      x         x         x         x         x         x         x         x         x         x         x         x         x         x         x

         x         x         x         x         x       
  x         x         x         x    

     x         x         x         x     
    x         x         x         x         x         x         x   

      x         x         x     
    x         x         x         x         x         x         x   

         x     
    x         x

         x         x         x         x         x         x
         x     

    x      
   x         x         x         x         x         x         x         x         x         x         x         x         x         x         x

         x         x   
      x         x   

      x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x   



M2M−Smartphone

independence

0.05 envelopes

(b) Cross-L

Fig. 13. Point pattern interaction analysis for high volume M2M and
Smartphone cell locations.

if the point sets show attraction or repulsion to each other.

This question is also addressed by the relative positioning of

Gij and Fj lines, where Gij line rises above Fj . This pattern

shows that we have more than expected high volume M2M

locations nearest to high volume smartphone locations. This

indicates that these point sets are attracted to each other.

Another well-known method to study the geographical

dependency of two point sets i and j, called cross-L, is based

on Ripley’s cross-K function [5]. It is denoted by L̂ij(h)− h
and is defined as:

L̂ij(h)− h =

√

K̂ij(h)

π
− h,

where K̂ij is the empirical Ripley’s cross-K function and h
denotes the distance. The empirical Ripley’s cross-K function

is defined as:

K̂ij = E(# type j points ≤ h from an arbitrary i point)/λj .

Here λj is the average intensity of point set j and E(.) is the

expectation operator. Positive and negative values of L̂ij(h)−h
respectively indicate attraction and repulsion between two

point sets. The co-independence is indicated if the L̂ij(h)−h
remains between the estimated confidence envelope lines for

co-independent homogeneous Poisson processes. This method

overcomes one limitation of the nearest neighbor analysis

that it is not restricted to only considering the closest points.

However, it is also limited because it gives us the average

impression of all points in the data set and may overlook

small-scale local dependencies. Figure 13(b) shows the plot

of L̂ij(h) − h for varying values of h. We again observe a

significant attraction pattern between high volume M2M and

smartphone traffic locations. These two sets of experiments

jointly provide a strong evidence that high volume M2M and

smartphone traffic locations are attracted to each other.

Summary: Most M2M devices, except asset tracking devices,

are more likely to remain within a smaller geographical area

compared to smartphones. On the other hand, the geographical

distribution of M2M device population, especially those with

high traffic volume, exhibits “attraction” to high volume

smartphone devices. In other words, the information provided

by the analysis of mobility characteristics of M2M devices

is mixed for network operators. While M2M devices are less

mobile, which suggests that service optimization is easier to

conduct because it only involves a small area, the co-location

of high volume M2M devices with smartphone devices brings

more chance for congestion in such areas.

VII. APPLICATION USAGE

So far in this study we have treated all data bits equally,

simply as “traffic volume”. However, the truth is that not

all bits are equal. For example, a bit that is part of an 8-

bit encoding of a temperature reading obviously has higher

information density than a bit in an image of a thermometer

that displays the temperature. In this section, we attempt to

understand how M2M devices use data traffic by exploring

the application-mix of M2M data traffic.

Recall from Section II that traffic records in our data set

are tagged with application identifiers. These identifiers cover

traffic of 17 different application realms, including HTTP,

email (POP, IMAP, etc.), and all common video streaming

protocols (HTTP streaming, flash, etc.), all of which make

up the vast majority of smartphone traffic volume. Using

this application classification, we can compute application

distribution of traffic volume for all M2M device categories.

We observe that 95% of all flows in our trace belong to TCP.

This observation is in accordance with the findings reported

in prior literature [12], [17], [19]. We provide the averaged

uplink and downlink application distribution of traffic volume

for all M2M device categories in Figure 14. To first average

a device category, we take the ratio of the sum of traffic

volume of all devices and the total number of devices. We

then normalize the averaged traffic application volumes by

their maximum value. We note from Figures 14(a) and (b) that

the traffic of all device categories mostly belongs to unknown

or miscellaneous realms. This indicates that M2M devices

typically use custom protocols that are either not identified

by our application classification methodology, mentioned in

Section II, or they use atypical protocols.

It is interesting to compare application distribution of M2M

traffic with that of smartphone traffic shown in Figure 14(c).

As expected, smartphone traffic mostly belongs to web brows-

ing, audio and video streaming, and email applications. This

is in sharp contrast to what we have observed for M2M traffic.

Summary: M2M devices mostly use custom application pro-

tocols. This makes it more difficult for network operators to

understand and mitigate adverse effects from these protocols

compared to the standard ones such as HTTP. Towards this

end, better standardization of M2M protocols would certainly

be a mutually beneficial solution for both M2M application

service providers and cellular network operators.

VIII. NETWORK PERFORMANCE

We now characterize the network performance of M2M

traffic. We examine network performance in terms of round

trip time (RTT) and packet loss ratio, both of which provide

us unique perspectives of network performance.

Round Trip Time: RTT is an important metric for network

performance evaluation and is a key performance indicator

that quantifies delay in cellular networks. The RTT metric is

especially important for M2M applications that are real-time

critical. It is important to note that RTT measurements can be

potentially biased by differences in the paths between different

cellular devices and the external servers they communicate

with. For this study, we only have RTT measurements for
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Fig. 14. Traffic application distributions of M2M device categories and
smartphone. The application indices along x-axis are: (1) appstore, (2)
jabber, (3) mms, (4) navigation, (5) email, (6) ftp, (7) gaming, (8)
im, (9) miscellaneous, (10) optimization, (11) p2p, (12) apps,
(13) streaming, (14) unknown, (15) voip, (16) vpn, and (17) web.

TCP flows, which are estimated by the time duration between

the trace collecting apparatus seeing a SYN packet and its

corresponding ACK packet in the TCP handshake. Figure

15(a) shows the CDFs of the median RTTs experienced by

each device for smartphones and all M2M device categories.

We observe that all M2M device categories experience larger

RTT compared to smartphones. Furthermore, within M2M

device categories, telehealth devices have smaller RTT than

all other categories. Our manual investigation of hardware

specifications showed that smartphones and telehealth devices

are mostly equipped with 3G modems, in contrast to other

categories that typically rely on 2G modems. 2G RTTs are

larger due to longer delays on the air interface, which explains

these observations. In addition, smartphones are generally

equipped with more powerful processors than M2M devices.

Therefore, faster TCP/IP stack implementations on smartphone

processors can also impact RTT.

Packet Loss Ratio: Packet loss ratio is a key performance

indicator metric that quantifies reliability in cellular networks.

We estimate the packet loss ratio from the fraction of the

observed TCP sequence number range to the observed TCP

payload bytes, summed over all TCP flows. This ratio is

subtracted from 1 to obtain the packet loss ratio. Since most

packet loss occurs in the radio access network (RAN) and our

measurement point is in between the RAN and the Internet,

this metric effectively estimates the downlink packet loss

ratio. Figure 15(b) shows the CDFs of packet loss ratio for

smartphones and all M2M device categories. Similar to the

CDFs of RTT shown in Figure 15(a), we observe differences

for packet loss ratio distribution in terms of third and fourth
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Fig. 15. CDFs of round trip time and packet loss ratio.

quartile values, where smartphones and telehealth devices

experience at least an order of magnitude lower loss ratios

than other M2M device categories due to a larger ratio of 3G

to 2G modems. We also observe that building security devices

have much higher third and fourth quartile loss ratios than

other M2M devices, despite using similar technologies. This

may be due to the placement of these devices indoors where

the signal quality is poorer.

Summary: M2M traffic’s network performance also differs

from that of smartphones. The RTT of M2M traffic is sig-

nificantly larger than smartphone traffic. Careful inspection

of the hardware specifications of M2M devices reveals that

M2M devices generally fall behind smartphones in choice

of cellular technology. A majority of M2M devices still use

2G technologies such as GPRS and EDGE. Although 2G

technologies are often adequate for M2M communication in

terms of data rates, such lagging does present a challenge for

cellular operators because they would need to maintain older

generation services, instead of repurposing 2G spectrum for

newer technologies of higher spectral efficiency. M2M traffic

also generally has higher packet loss ratios. This is probably

because some M2M devices are placed in locations with poor

signal reception. It shows the need for M2M devices to have

screens displaying cellular signal strength like cell phones.

IX. CONCLUSIONS AND FUTURE DIRECTIONS

This paper presents the first attempt to characterize M2M

traffic in cellular data networks. Our study was based on a

week long traffic trace collected from a major cellular service

provider’s core network in the United States. In our analysis,

we compared M2M and smartphone traffic in several aspects

including temporal traffic patterns, device mobility, application

usage, and network performance. We found that although

M2M devices have different traffic patterns from smartphones,

they are generally competing with smartphones for shared

network resources.

Our findings presented in this paper have important implica-

tions on cellular network design, management, and optimiza-

tion. Through better understanding of M2M traffic, cellular

service providers can improve resource allocation mechanisms
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and develop better billing strategies for different categories of

M2M devices. Towards this end, Software Defined Networking

(SDN) can be used for device- or subscriber-aware dynamic

and flexible resource allocation and management [15]. SDN

can also help to isolate or slice cellular network resources

via virtualization to avoid contention between smartphone

and M2M traffic. Note that this isolation or slicing can be

fine-grained for different M2M device categories, or even

different M2M applications. Moreover, delay tolerant and

non-mission critical M2M traffic can be relayed over white

spaces. The aforementioned network design and management

techniques can impact the dynamics of M2M traffic and in turn

may require introduction of novel pricing models by network

operators.
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