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Large scale meta-analysis characterizes genetic
architecture for common psoriasis associated
variants
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Psoriasis is a complex disease of skin with a prevalence of about 2%. We conducted the

largest meta-analysis of genome-wide association studies (GWAS) for psoriasis to date,

including data from eight different Caucasian cohorts, with a combined effective sample size

439,000 individuals. We identified 16 additional psoriasis susceptibility loci achieving

genome-wide significance, increasing the number of identified loci to 63 for European-origin

individuals. Functional analysis highlighted the roles of interferon signalling and the NFkB

cascade, and we showed that the psoriasis signals are enriched in regulatory elements from

different T cells (CD8þ T-cells and CD4þ T-cells including TH0, TH1 and TH17). The

identified loci explain B28% of the genetic heritability and generate a discriminatory genetic

risk score (AUC¼0.76 in our sample) that is significantly correlated with age at onset

(p¼ 2� 10�89). This study provides a comprehensive layout for the genetic architecture of

common variants for psoriasis.
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P
soriasis is a chronic and complex multi-genic
immune-mediated skin disease1 affecting around 2%
of European-origin individuals2. Previous association

studies of psoriasis have identified over 60 psoriasis susceptibility
loci3–18, 47 of which are associated with the risk of
psoriasis in European-origin populations. These findings have
greatly advanced the understanding of disease mechanisms
and associated pathways. Thus, the IL23R, IL12B, IL23A and
TRAF3IP2 loci suggest a prominent role of the IL23 signalling
pathway and promotion of TH17 responses; whereas the
TNFAIP3, NFKBIA, NFKBIZ, TNIP1 and RELA loci suggest dys-
regulation of the NFkB pathway in disease pathogenesis19,20.
Approximately half (22) of the 47 European-origin loci were
identified in cohorts containing a large proportion (Z50%) of
samples genotyped using the Immunochip9,16,17,18, a platform
that focuses on genetic variants from promising signals identified
in previous association studies of autoimmune diseases18.
However, restricting analysis to markers genotyped (B110,000)9

or well-imputed (B700,000)17 on the Immunochip limits
exploration of the full genome for susceptibility loci. Here,
we present the largest genome-wide association study (GWAS)
meta-analysis for psoriasis to date in European-origin individuals.
We identified 16 new disease susceptibility regions, and we also
revealed various functional networks and gene regulatory signals
associated with psoriasis, providing novel insights into the
immunopathogenesis of psoriasis.

Results
Meta-analysis of GWAS studies. We gathered genotype data
from both published5–9,17,18 and new cohorts, consisting of seven
genome-wide association studies (GWAS) and one Immunochip
data set (Supplementary Table 1). The effective sample size of the
combined data set (that is, the size of a sample with equal
numbers of cases and controls that possesses equivalent statistical
power to the meta-analysis) is B40,000 samples (Supplementary
Table 1); with 430,000 individuals for the GWAS component, it
is about three times larger than the previous meta-analysis with
the biggest GWAS component3,9,17. After quality control, we
performed genotype phasing21 and imputation22 using
haplotypes from the 1,000 Genomes project23. We then carried
out logistic regression on each data set to determine genetic
associations. Genomic inflation factors were below 1.05 for all
data sets (Supplementary Table 1). Because the case definition for
one of the GWAS cohorts (23andMe) was based on self-reported
information, we used the risk allele frequencies for known loci in
cases and controls in other cohorts to estimate the proportion of
misclassified phenotypes (Supplementary Figs 1 and 2).
Surprisingly, our results indicated that around 4% of the
unaffected controls in the 23andMe cohort reported that they
had psoriasis. To address this issue, we implemented a statistical
approach24 to adjust the summary statistics in this dataset for bias
caused by response misclassification in logistic regression25. As
shown in Supplementary Fig. 3, this adjustment could correct for
the downward bias of the estimated ORs and s.e.’s, at the cost of a
substantial decrease in effective sample size.

We performed meta-analysis of 9,113,515 markers with good
imputation quality22 (r2

Z0.7) in at least four data sets, using the
inverse-variance approach26. Of 47 known psoriasis susceptibility
loci, 42 (89%) achieved genome-wide significance (pr5� 10-8)
(the remaining five yielded pr2� 10-4; Supplementary Table 2).
Notably, we identified 16 new psoriasis susceptibility loci
achieving genome-wide significance (Table 1 and Fig. 1;
Supplementary Note; Supplementary Figs 4–6). Meta-analysis
using all but the 23andMe dataset showed suggestive evidence
(pr2� 10� 5) for all new loci. Moreover, inclusion of the

23andMe data led to genome-wide significant findings for 14 of
the 16 new loci, as only two loci achieved significance without the
23andMe data (Supplementary Table 3). Among the novel loci,
the 19q13.33 region has been reported to reach genome-wide
significance in a joint analysis of GWAS for Crohn’s disease and
psoriasis15, and in a contemporary analysis of exome array data.
The adjusted ORs from the 23andMe cohort did not differ
significantly from those of the other seven data sets (p¼ 0.2). We
also found no significant heterogeneity of ORs among studies for
all new loci (Cochran’s Q p values 40.05). Furthermore, all new
loci reached genome-wide significance under a random effects
model27.

Genetic architecture and risk scores. By increasing the number
of European-origin psoriasis susceptibility loci to 63, we were able
to explore the genetic architecture of psoriasis in greater detail.
Interestingly, seven (44%) of the new loci were identified using
only GWAS data sets (Supplementary Table 3), as the Immu-
nochip data does not provide good genotype coverage of these
regions. Moreover, only two new loci were identified in the 186
non-contiguous regions that underwent dense genotyping in the
Immunochip platform28. As shown for other complex traits29, we
found that the minor allele frequencies (MAFs) of the associated
signals are negatively correlated (r¼ � 0.57; p¼ 2� 10� 8) with
the risk allele effect sizes of the disease loci (Fig. 2a;
Supplementary Table 4; Supplementary Fig. 7). Thus,
rs76959677 has the largest effect size (OR¼ 1.28) and the
smallest MAF (¼ 0.04) among the new loci (Table 1).
Altogether, the 63 loci account for over 28% of the estimated
heritability30,31, as compared to 26% using only known loci. Our
estimations are very similar to those obtained using other
approaches, as shown in Supplementary Table 5. To evaluate
whether the susceptibility loci could be used to discriminate
between affected and unaffected individuals in our sample, we
used the effect sizes and imputed dosages from our cohorts to
compute genetic risk scores (GRS), and associated them with the
disease status. Figure 2b shows receiver operating curves (ROC)
plotting the true positive rate versus false positive rate under
different GRS thresholds. The area under the curve (AUC) is 0.76,
suggesting GRS has discriminative power for predicting disease
status among individuals in these cohorts5–9,15. Age-at-onset
has emerged as a key clinical and stratification feature for
psoriasis32–34. To examine the correlation between age-at-onset
and the GRS, we analysed 6,251 psoriatic patients for whom this
information was available. Our results show that the GRS is
inversely correlated with age-at-onset (Spearman r¼ � 0.25;
p¼ 2� 10� 89); mean age-at-onset was 34.9 years for psoriatic
patients in the lowest fifth percentile of GRS, compared to 20.4 in
those in the highest fifth percentile (Fig. 2c). This correlation
remains significant after removing the MHC signal from the
calculation (r¼ � 0.08; p¼ 2� 10� 11).

Functional interpretation of GWAS data. To evaluate the
underlying disease mechanisms responsible for these genetic
signals, we applied a recently-developed algorithm termed mini-
mum distance-based enrichment analysis for genetic association
(MEAGA)35 to simultaneously query biological functions and
pathways, as well as protein-protein interactions, for enrichment
among genes mapping to the identified psoriasis loci. We found
87 significantly enriched functions/pathways (false discovery
rater0.1, Supplementary Table 6). As expected, many of these
are immune-related functions such as lymphocyte differentiation/
regulation, Type I interferon, pattern recognition and response to
virus/bacteria (Fig. 3a; Supplementary Fig. 8). Among the
enriched functions, ‘Regulation of I-kB kinase/NF-kB cascade’
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(Supplementary Fig. 9) contains genes from 11 associated loci,
and three of them are novel (CHUK in 10q24.31, IKBKE in 1q32.1
and FASLG in 1q24.3). When taken together with genes (that is,
TNIP1, TNFAIP3 and NFKBIA) mapping to known psoriasis loci
that are well-appreciated as components of NF-kB signalling, our
results further implicate this pathway in the pathophysiology of
psoriasis. Other novel loci containing genes involved in the
enriched functions identified by MEAGA include KLRK1
(12p13.2) (‘regulation of leukocyte mediated cytotoxicity’) and
PTEN (10q23.31) (‘regulation of response to external stimulus’).
We next asked whether the observed association signals are
enriched among gene regulatory regions that have been mapped
to different immune cell subsets in publicly-available databases36.
Our results (Fig. 3b; Supplementary Table 7) show that the
psoriasis signals are most enriched among enhancers in CD4þ

T-helper (Th0, Th1 and Th17) and CD8þ cytotoxic T cells, in
concordance with the previous study36. Indeed, thirteen of our
novel loci (81%) either themselves harbour or are in high linkage
disequilibrium (r2

Z0.8) with SNPs mapping to enhancers in

these cell types (Supplementary Table 8). These results
complement previous studies in providing functional
characterization for psoriasis-associated loci37,38. We then
screened for existing drugs targeting genes from the psoriasis
susceptibility loci in different drug databases39,40. We found that
seven genes from six novel loci are targets for 18 different
drugs (Supplementary Table 9). Interestingly, some of these drugs
(that is, aminosalicylic acid41, mesalazine42 and sulfasalazine43)
have been used to treat psoriasis in clinical practice.

Discussion
Rather than relying on following up promising signals, here we
show that the utilization of newer, less costly GWAS assays
to interrogate the entire genome in follow-up samples is a
cost-effective approach capable of revealing subtle genetic signals.
In addition, we have implemented an approach used in
epidemiology studies to adjust a misclassified binary outcome24.
To our knowledge, this is the first large genetic association study
to compare outcomes using specialist-diagnosed versus self-

Table 1 | Newly identified psoriasis associated loci.

Chr Pos Marker RA NRA RAFcase RAFcont ORs P value Direction� Nearby genes

1 78450517 rs34517439 A C 0.13 0.12 1.18 4.43� 10� 9 þ ? þ þ þ þ ? þ FUBP1
1 172675097 rs12118303 C T 0.19 0.17 1.12 3.02� 10� 10 þ þ þ þ þ þ þ þ FASLG
1 206655331 rs41298997 T C 0.19 0.18 1.13 2.37� 10� 8 þ þ þ þ þ þ þ þ IKBKE
10 64369999 rs2944542 G C 0.62 0.60 1.08 1.76� 10�8 þ þ þ þ � þ þ þ ZNF365
10 89824771 rs76959677 G A 0.05 0.04 1.28 2.75� 10�8 þ þ þ þ þ þ ? þ PTEN, KLLN, SNORD74
10 102038641 rs61871342 G A 0.57 0.55 1.10 1.56� 10�9 þ þ � þ þ þ ? þ CHUK
11 65593444 rs118086960 T A 0.49 0.47 1.12 6.89� 10� 9 þ þ þ þ þ þ ? þ CFL1, FIBP, FOSL1
12 10597207 rs11053802 T C 0.69 0.67 1.11 4.17� 10� 9 þ þ þ þ þ þ ? þ KLRK1, KLRC4
12 112059557 rs11065979 T C 0.47 0.45 1.08 1.67� 10�8 þ þ � þ þ þ þ þ BRAP, MAPKAPK5
12 122668326 rs11059675 A G 0.48 0.46 1.10 1.50� 10� 8 þ þ þ � þ þ ? þ IL31
13 99950260 rs9513593 G A 0.19 0.18 1.12 3.60� 10� 8 þ þ þ � þ þ þ þ UBAC2, RN7SKP9
14 98668778 rs142903734 AAG A 0.81 0.79 1.12 7.15� 10� 9 þ þ þ þ þ þ þ þ RP11-61O1.1
15 31637666 rs28624578 T C 0.85 0.83 1.18 9.22� 10� 10 þ þ þ þ þ þ ? þ KLF13
17 73890363 rs55823223 A G 0.15 0.13 1.15 1.06� 10�8 þ þ þ þ þ þ þ þ TRIM47, TRIM65
18 12857002 rs559406 G T 0.47 0.45 1.10 1.19� 10� 10 þ þ � þ þ þ þ þ PTPN2
19 49206417 rs492602 G A 0.49 0.46 1.11 6.57� 10� 13 þ þ þ þ þ þ þ þ FUT2

�Direction of the effect of the risk allele in the eight data sets in the order of: PsA GWAS, CASP GWAS, Kiel GWAS, Genizon GWAS, WTCCC2, Exomechip w/GWAS content, PAGE Immunochip and
23andMe GWAS, proceeding from left to right. ‘?’ means the marker is not imputed well in the corresponding cohort. NRA, Non-risk allele; OR, odds ratio; RA, risk allele; RAF, risk allele frequency.
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reported affectation and to adjust for response misclassification.
Of note, we observed that disease allele frequencies and ORs were
underestimated in an independent study that defined psoriasis
status based on the electronic health records44. This may be
because psoriatic lesions appear similar to other common skin
diseases, including atopic eczema and seborrhoeic dermatitis,
leading to misdiagnosis. Our results illustrate the importance of
correcting misclassification of disease outcome as large-scale
data-mining of phenotypes becomes more common. The disease-
associated loci define a GRS that is capable of discriminating
case-control status in our sample (AUC¼ 0.76). Similar results
have been reported in the Chinese population45 as well as a
smaller European-origin sample46. In concordance with previous
studies45,46, we found that the GRS is also strongly inversely
correlated with age-at-onset of psoriasis, with the MHC
comprising much of this effect (Fig. 2c). The strong association
between HLA-Cw6 and streptococcal infection in juvenile-onset

psoriasis may explain part of this association47. However,
correlations between genetic risk allele load and age-at-onset
are not universal in complex genetic disorders 48,49, and the
relationship between GRS and age-at-onset needs to be explored
on a disease-by-disease basis. While we did not find any
disease-associated variants that alter protein structure in new
loci, we demonstrated significant enrichment for genes involved
in immune system function among the known and novel genetic
signals. We also found significant enrichment of psoriasis genetic
signals in active chromatin domains in Th1 and Th17 cells
(Fig. 3). Among the individual candidates (Supplementary Note),
FASLG encoding Fas ligand, IKBKE encoding IKK-e, CHUK
encoding IKK-a, IL31 encoding the cytokine IL-31, KLRK1
encoding NKG2D, a killer cell lectin-like receptor and PTPN2
encoding T-cell protein tyrosine phosphatase, all play prominent
roles in T-cell activation, signalling and/or effector function.
By guiding further functional investigation into the roles of these
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variants in the regulation of their target genes, as well as further
functional investigation of these targets, these results will serve as
an important framework guiding future research into the
pathogenesis and treatment of psoriasis.

Methods
Data sets. The collection of samples for the five GWAS (PsA, CASP, Kiel,
Genizon and WTCCC2) and the Immunochip dataset were described
previously5–7,9,18. The new Exomechip cohort, consisting of 6,463 genetically
independent psoriasis cases and 6,096 unrelated controls of European Caucasian
descent collected in North America and Sweden, was genotyped using the
Affymetrix Axiom Biobank Plus Genotyping Array at the Affymetrix facility
(Santa Clara, CA). All human subjects provided written informed consent and were
enrolled according to the protocols approved by the institutional review board for
human subject research of each institution, in adherence with the Declaration of
Helsinki principles. The basic array contains 246,000 genome-wide markers,
265,000 exome coding SNPs and indels, and 95,000 eQTL, pharmacogenomic and
novel loss-of-function variants, which was supplemented by addition of 77,000
custom markers consisting of (1) 50,000 novel rare variants identified in targeted
sequencing of known psoriasis loci, (2) 15,000 additional evenly distributed
markers to enhance GWAS coverage, (3) 10,000 1,000 Genome variants in
ENCODE-predicted regulatory regions for normal human epidermal keratinocyte
(NHK) cell lines, (4) 1,000 markers associated with other autoimmune diseases and
(5) 1,000 markers representing skin eQTLs identified from our analyses of
the psoriatic skin transcriptome. Psoriasis cases in these cohorts were
dermatologist-diagnosed, and all studies were approved by the ethical committees
of their respective institutions. In this study, we did not segregate psoriasis
subphenotypes (that is, psoriatic arthritis, cutaneous-only psoriasis18); therefore
our cohorts include psoriasis cases that might have developed psoriatic arthritis,
and this is especially true for the PsA GWAS, in which all included cases have
psoriatic arthritis.

Quality control. For each dataset, we removed samples with high missingness
(42%) or a high inbreeding coefficient (|F|40.03), and we also removed markers
with low call rate (o95%), with more than two alleles, or that failed Hardy
Weinberg equilibrium (po1� 10-6). We identified duplicated or highly related
pairs (that is, first and second degree relatives) of individuals among our data
sets using independent markers outside of the known psoriasis susceptibility loci
(‘null markers’)9; this includes samples that were genotyped in multiple cohorts
(for example, the same sample might be genotyped in both the CASP GWAS or
Exomechip cohorts). When related or identical pairs were identified in different
data sets, we preferentially kept the sample from the genotyping platform with the
higher number of markers with genome-wide coverage (Supplementary Table 1).
We used the independent (that is, ld-r2o0.2) markers that are outside the
known psoriasis loci to compute the principal components for each data set;
and for the Immunochip data set, since the platform is enriched with markers

from the immune-associated regions, we first conducted a meta-analysis using
the CASP, Kiel, and WTCCC2 cohorts and identified independent markers
which have meta-analysis P values 40.5 as ‘null markers’ to compute the
principal components. We then used principal components to remove
the population outliers to ensure all analysed individuals were of European
ancestry9.

23andMe cohort. The 23andMe cohort was drawn from the customer base of
23andMe, Inc., a personal genetics company. The samples from this cohort were
genotyped on one of four platforms: the V1 and V2 platforms were variants of
the Illumina HumanHap550 BeadChip with additional custom content; the V3
platform is a variant of the Illumina OmniExpressþ BeadChip, with custom
content; the V4 platform is a fully custom design, including lower redundancy
subsets of V2 and V3 SNPs with coverage of low allele frequency coding variants,
as well as 570,000 additional SNPs. Research participants included in the
cohort provided informed consent and answered surveys online according to the
23andMe human subject protocol, which was reviewed and approved by Ethical &
Independent Review Services, a private institutional review board. The ‘psoriasis’
phenotype combines self-reported psoriasis diagnoses from several sources
available on the 23andMe website: (i) Medical History Survey; (ii) Roots into the
future intake form; (iii) research snippet. There are three choices (yes, no, not sure)
for each psoriasis-related question from each source. We merged the yes/no
responses from these questions, with inconsistent responses scored as missing:
cases have at least one positive response and no negative responses, and controls
have at least one negative response and no positive responses. We also derived
responses from two additional questions derived from the IBD Community Survey
and Health Intake Form, regarding whether the individual has been diagnosed with
psoriasis to define cases (when any response is a yes) and controls (when it is not a
case and at least one response is control).

Imputation and association. We performed haplotype phasing21 and
imputation22 for each dataset. For imputation, we used haplotypes from all
populations in the 1,000 Genomes Project phase 1 (release 3) as a reference panel23.
We then analysed markers with imputation quality greater than 0.7 in at least half
(that is, 4) of the data sets. For each data set, we performed logistic regression using
top principal components and data collection center indicator variables as
covariates to correct for population stratification. We computed the inflation factor
(l) using the ‘null markers’ for the genomic control analysis (Supplementary
Table 1).

Proportion of true positives among 23andMe psoriasis cases. For each of the
previously identified signals from the known psoriasis loci, we compared the
risk allele frequencies in cases and controls estimated from our dermatologist
diagnosed-based data9 with those estimated by the 23andMe cohort. The RAFs in
cases from the dermatologist-diagnosed cohorts are systematically higher than
those in the 23andMe cohort (34 out of 36 loci listed in Tsoi et al.9 manifested
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RAFcase_Tsoi(2012) higher than those estimated in RAFcase_23andMe); while the RAFs
in controls are highly concordant (Supplementary Fig. 1). We hypothesized that
some of the defined cases are false positives (that is, the individuals do not actually
have psoriasis). Assuming the defined cases from the 23andMe cohort contain a
mixture of true cases and controls, we would get:

RAFcase23 and Me ¼ qð ÞRAFcaseTsoi 2012ð Þ þ 1� qð ÞRAFcontrolTsoi 2012ð Þ

where q is the proportion of true positives. The proportion could then be
estimated as:

Medianknown loci
RAFcase23 and Me �RAFcontrolTsoi 2012ð Þ

RAFcaseTsoi 2012ð Þ �RAFcontrolTsoi 2012ð Þ

 !

We estimated that q¼ 0.36. Ignoring the misclassification of psoriasis phenotype, the
16,120 self-reported cases and 254,909 controls of the 23andMe cohort yield an
estimated disease prevalence of 5.9%. But if we assume q¼ 0.36 and correct for
misclassification, then we would obtain a 2.1% prevalence (Supplementary Table 1),
matching the disease frequencies estimated for European-origin populations50.

Adjustment for misclassification of 23andMe cases. We employed
Duffy’s approach to adjust odds ratios and s.e.’s for bias caused by response
misclassification in logistic regression24. If b� and V(b�) are the naive log OR and
its variance for the misclassified case-control data, then by Duffy’s method the
corrected log OR and its variance can be estimated as:

b ¼ b�=
a1 � p�ð Þ a2 � 1þ p�ð Þ
a1 þ a2 � 1ð Þp� 1� p�ð Þ

� �

and

V bð Þ ¼ V b�ð Þ a1 þ a2 � 1ð Þp� 1� p�ð Þ
a1 � p�ð Þ a2 � 1þ p�ð Þ

� �2

þ b�p� 1� p�ð Þð Þ2 Vða1Þ
a1 � p�ð Þ4

þ Vða2Þ
a2 � 1þ p�ð Þ4

� �

Parameters a1 and a2 are the sensitivity and specificity of the binary classification.
For the 23andMe sample we assumed a1¼ 1 (that is, all true cases were reported as
such); using q¼ 0.36, a2 could then be estimated as 0.9611. V(a2) was estimated to
be 2.67� 10� 6 using Monte Carlo simulation based on the observed RAFs for
32,240 case chromosomes from the 23andMe cohort and for 21,176 case and
45,612 control chromosomes from our previous study9. V(a1) was assumed to be 0.
The observed case prevalence in the sample (p�) is 0.0595. Because p� is small,
deviations of our assumptions for a1 and V(a1) from their true values have little
impact on the resulting estimates of b and V(b), which was verified by sensitivity
analysis for a broad range of both parameters (that is, a1¼ 0.5� 1.0 and
V(a1)¼ 0� 0.001).

Meta-analysis and effective sample size calculation. We used the inverse-
variance approach implemented in METAL26 to perform meta-analysis across the
eight data sets. The effective sample size for each dataset (except for the 23andMe
study) was computed as: Neff ¼ 4

1
Ncase
þ 1

Ncontrols

. The effective sample size approach was

computed for each cohort to provide an estimate of the sample size corresponding
to an equal case/control balance, and has the same statistical power to identify true
association. To compute the effective sample size for the 23andMe study, we first
determined the asymptotic relative efficiency (ARE) of the Duffy-corrected log OR
to the log OR that would have been obtained if there had been no misclassification
of disease phenotype. Because both of these OR estimators are convergent and
asymptotically unbiased, the ARE for these two parameters (and their
corresponding Wald chi-square test statistics) is equal to the ratio of their
variances. We determined this variance ratio by simulation. We bootstrap sampled
one of our largest studies with dermatologist-diagnosed phenotypes (the PAGE
Immunochip study) to create 25 data sets mimicking the 23andMe study; that is,
each simulated dataset had 5,803 true cases, 10,317 false cases, and 254,909 true
controls. For each of 28 independent known psoriasis loci with adequate
significance of association in the PAGE Immunochip (po0.001), we determined
the mean variance across the 25 data sets for the Duffy-corrected ORs from
analysis of the misclassified responses and also the mean variance for the ORs from
analysis of the true responses. The ARE for each locus was the ratio of these two
mean variances, and the median ARE for the 28 loci was 0.35. The effective sample
size for the 23andMe study after using Duffy’s adjusted approach was then
estimated by multiplying the effective sample size under no misclassification
(22,715¼ 4/(1/5,803þ 1/265,226) ) by the ARE, yielding an estimate of 7,950
(Supplementary Table 1).

Analysis of psoriasis loci. We performed comparisons between the estimated risk
allele ORs versus MAFs of the best associated markers for each of the 63 loci. In a
recent fine-mapping meta-analysis study (manuscript in preparation), we observed
that a substantial proportion of psoriasis loci harbor secondary independent
signals, and due to the linkage disequilibrium structure the effect sizes from the
primary signals could be over/under estimated if the risk allele of secondary

signals tend to be on the same haplotype of the risk/non-risk alleles of the primary
signals, respectively. Therefore, for each published locus with multiple signals,
we computed the ORs by conditioning on the other independent signal(s) (that is, as
covariates) from the same locus. These values were also used in the calculation of the
variance in liability explained31. We next computed the genetic risk score using the
effect sizes and imputed dosage data for each signal. Let the OR of the risk allele in
signal i be ORi, and the imputed dosage/genotypes for the risk allele be di, the genetic
risk score for an individual among all independent associated signals is computed as:

XL

i¼1

dilnðORiÞ:

Enrichment analysis. We analysed our GW-signficant loci using MEAGA35.
MEAGA employs a graphical algorithm to measure the closeness between
gene-set overlapping genes in the biological interactome, to identify the enriched
functions/pathways among the 63 psoriasis loci. We used the protein-protein
interaction data from BioGRID51 for generating the interactome, and the nine million
markers examined in this meta-analysis as background under the default setting in
MEAGA for the enrichment analysis. 50,000 samplings were used for P value
estimation. We then sought to understand whether the psoriasis signals are enriched
among regulatory elements in different cell types, as predicted by H3K27ac chromatin
marks. We utilized the active enhancers identified from a recent study aiming to use
epigenomics data to fine-map genetic susceptibility loci for complex autoimmune
diseases36. The 33 cell types under study included: Tnaive, Tmem, Treg, Thstim, Th17,
Th1, Th0, Th2, CD8naive, CD8mem, Monocytes, B cell, Lymphoblastoid, B centroblast,
CD34þ , K562, Inferior temporal lobe, Angular gyrus, Mid-frontal lobe, Cingulate
gyrus, Substantia nigra, Anterior caudate, Hippocampus middle, Colonic mucosa,
Duodenum mucosa, Adipose, HepG2, Liver, Pancreatic islets, Kidney, Human skeletal
muscle myoblasts (HSMM), NH osteoblast, Chondrogenic diff. We performed
enrichment analysis by first enumerating the number of associated loci that overlap or
are in linkage disequilibrium (LD) (r2

Z0.8) with markers in regulatory elements, and
then comparing that with the expected number of overlaps. The expected numbers
were estimated by randomly sampling markers from the meta-analysis matching the
LD-block length, MAF, and the number of genes in the LD-block, and counting the
number of times these null markers overlap/in LD with the regulatory elements.

Drug databases. We downloaded data from PharmGKB40 and Drugbank39,
and searched for drugs with potential gene targets from these databases.

Data availability. The data of the Exomechip cohort is available in dbGap
(phs001306.v1.p1). The GWAS statistics from the 23andMe cohort can be
requested by applying to the 23andMe collaboration program.
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