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Microbiomes in the human body have profound impacts 
on many aspects of human health, especially those in the 
gut, which are closely associated with the occurrence and 

development of many diseases1,2. Comprehensive evaluations of 
the relationship between microbiota and disease are significant to 
improving health. Biomarkers correspond to biological indicators 
to measure and evaluate the biological states of individuals, such 
as differentially expressed genes or differentially abundant bacte-
ria3. Accurate identification of biomarkers helps to facilitate clini-
cal diagnosis and improves clinical prognosis prediction4,5. Most 
previous studies have identified key bacteria as biomarkers based 
on variation in abundance between healthy and diseased groups6–8. 
However, confounding factors between studies often mask the real 
features of microbial communities and thus may lead to unreli-
able conclusions. Although several studies have sought to address 
the challenge by correcting statistical parameters or microbial pro-
files9,10, the dependence on additional clinical information limits 
their applications. Statistical tools such as combat11 and limma12, 
which were developed to remove batch effects in the analysis of 
microarray expression data, also exhibit poor performance due to 
the sparsity feature of the microbial datasets. Consequently, compu-
tational methods for the integration of microbiome data from dif-
ferent cohorts are urgently needed.

In the human gut, the interaction of microbial species, rather 
than microbes alone, maintains community structure and provides 
a stable environment for commensals, in which co-occurrence net-
works contribute to an understanding of the relationship between 
different taxa13–15. A number of studies have demonstrated that 
the application of co-occurrence networks can simplify the iden-
tification of disease-related biomarkers and thus improve clinical 
prediction models16–18. Nevertheless, great challenges in network-
based microbiome analysis remain, especially when integrating net-
works of multiple cohorts. For example, different cutoff selections 
substantially alter the topological structures of networks and thus  

correspond to different microbial interactions. In addition, the sam-
ple size in microbiome studies also influences the network structure. 
The most common tactic in data integration is to combine networks 
directly based on microbial interaction pairs. However, this kind of 
method fails to consider divergence among different datasets. An 
integrated network ranking approach to predict regulatory genes 
involved in the host response has been proposed19. Taking perturba-
tion into account, its application in microbial analysis is still limited.

In this study we have developed an algorithm called Network 
Module Structure Shift (NetMoss), which focuses on the shift of net-
work modules to evaluate the importance of bacteria between differ-
ent states. By applying NetMoss to both simulated and real datasets, 
we demonstrate that it can efficiently reduce batch effects and 
identify more robust biomarkers that were neglected by traditional 
abundance-based methods. Furthermore, from a network perspec-
tive, we have found that, in pandisease microbiome studies, many 
gut bacteria are multidisease-related rather than disease-specific. 
The application of our network-based method greatly improves the 
efficiency of integrating multiple datasets and promotes the identi-
fication of microbial biomarkers for clinical diagnosis.

Results
Batch effect confounds integration of large-scale cohorts. 
Multipopulation cohorts are currently widely used in the analysis 
of case–control studies; however, one of the most striking problems 
when integrating different datasets is the batch effect. On the one 
hand, different studies usually employ various experimental and 
computational methods during sample collection, processing and 
data generation, causing extensive biases in microbial profiles. On 
the other hand, taxon abundance varies substantially in different 
studies due to divergence in community composition and structure, 
which may lead to false interactions and network structures (Fig. 1a).  
For these reasons, direct integration of different datasets may cover 
the authentic characteristics of microbial communities and generate 
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strong bias. Overall, to solve the problem of the integration of large 
microbiota datasets, more reliable approaches are urgently needed.

To evaluate potential bias in different microbiota datasets, we 
collected 2,742 gut microbiota datasets from seven independent 
colorectal cancer (CRC) studies representing three different coun-
tries (China, Germany and the United States; Supplementary Table 
1). First, we explored the heterogeneity among different batches. 
Principal coordinates analysis (PCoA) indicated that the difference 
among studies was much greater than that between case–control 
groups (Kruskal–Wallis rank sum test, P < 0.001; Fig. 1b). Similar 
patterns were also observed in the results of the independent 
Wilcoxon rank sum test (Fig. 1c) and the blocked Wilcoxon test (Fig. 
1d). Among all 665 genera from the seven CRC studies, although 
142 were significantly different (false discovery rate (FDR) < 0.01), 
very few were shared by multiple studies. Specifically, only eight dif-
ferential bacteria were shared by at least three studies, five by four 
studies, and none by more than five studies (Fig. 1c). Even for those 
shared bacteria, the alteration in abundance varied greatly in dif-
ferent studies (Fig. 1d). For example, the genus Fusobacterium was 

significantly enriched in diseased individuals in most CRC studies 
but exhibited higher abundance in the healthy group in CRC2 (Fig. 
1d; FDR < 0.01). In contrast, the genus Lachnospira was more abun-
dant in the disease group in CRC2, but had higher abundance in the 
healthy group in other studies. Such discrepancies indicate that the 
conclusion is less convincing when ignoring batch effects during the 
integration of different cohorts.

We then attempted to explore the difference of network struc-
ture among different batches. Network topology in each CRC 
study was examined with different tools and different thresholds 
(Supplementary Fig. 1). Although the topological parameters of 
all seven studies tended to decrease as the threshold of correlation 
coefficients increased, the situation varied among studies (Fig. 1e). 
For example, when the threshold increased from 0 to 0.1, the num-
ber of edges in the CRC1 and CRC2 network decreased sharply 
while those in the other networks dropped more smoothly. The 
same tendency was observed in the variation of average degree (Fig. 
1e), suggesting that the study size affects the topological structure of 
networks. In addition, small networks appear to be more sensitive 
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Fig. 1 | Batch effects and challenges in meta-analysis of the gut microbiota. a, Common challenges in the integration of multiple datasets. b, Principal 
coordinates analysis based on the relative abundance of control samples (open points) and CRC samples (filled points) from seven studies. Box plots 
represent differences among seven studies or between case and control groups. In the box plots: center line, median; box, interquartile range (IQR; the 
range between the 25th and 75th percentiles); whiskers, 1.5 × IQR; dots, outliers. Two-sided Wilcoxon test or Kruskal–Wallis rank sum test. ***P < 0.001; 
**P < 0.01; *P < 0.05. c, The number of differentially abundant bacteria with a two-sided Wilcoxon test in each study. The numbers on the leaves 
correspond to the unique differential bacteria of each study, and differential bacteria shared by multiple studies are shown in the central circle. d, Top: the 
bar height represents the meta-analysis significance of gut microbial genera derived from blocked Wilcoxon tests (top). Bottom: heatmap representing 
the fold change within individual studies. Bacteria are ordered by meta-analysis significance. e, The distribution of edges under different thresholds of 
microbial networks constructed from seven CRC studies. Inset: average degree under different thresholds; different colors of lines represent seven CRC 
studies, respectively. The gray regions indicate the 95% confidence intervals.
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to the choice of threshold. Consequently, the selection of different 
thresholds in network analysis may lead to different conclusions.

For clarity, we constructed co-occurrence networks of the seven 
studies. The results indicated that the microbial interactions were 
much weaker in large studies than in small studies (Supplementary 
Figs. 1 and 2). We speculate that microbial profiles in large cohorts 
are distributed more evenly; thus, the network structure is much 
looser than that in small communities. Accordingly, great differ-
ences were observed in the comparison of networks of different 
sizes when the threshold changed rapidly (Fig. 1e). Owing to the 
lack of appropriate normalization, neither the classic differential 
abundance method nor the previous integration network method 

can achieve satisfactory performance for the integration of various 
microbiota datasets.

Integration of networks using a univariate weighting method. 
Considering that the networks constructed from large studies 
exhibit weak microbial interactions, directly integrating datasets 
with different sizes into one network might mask the real micro-
bial features of large datasets. To address this, a univariate weighting 
method was introduced in our analysis, whereby a greater weight 
was assigned to the larger dataset to increase its contribution in 
the final integrated network (Fig. 2a). We first verified the method 
in a pairwise permutation test, in which any two networks were  
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Fig. 2 | integrating multiple studies using a network-based method. a, Workflow of network integration using the univariate weighting method. Different 
colors correspond to different studies. The number in the right panel corresponds to the correlation coefficients of each pair of bacteria in the networks. 
Zero corresponds to bacteria without interaction. b, Contribution rates of each CRC study in the combination of two study groups, in which red represents 
the larger study and gray the smaller study. c, Contribution of each study in the integrated network from the case (top) or control group (bottom).  
d, Pairwise network distance among 127 integrated networks using the univariate weighting method (lower left triangle) and unweighted method (upper 
right triangle). e, Network distance of integrated networks that include the same number of studies. In the box plots: center line, median; box, IQR (the 
range between the 25th and 75th percentiles); whiskers, 1.5 × IQR; dots, outliers. f, Correlation between the distance of networks and difference of samples 
using the univariate weighting method (red line) and unweighted method (gray line), respectively. The shaded regions indicate the 95% confidence 
intervals. g, Network distance between seven CRC networks and the integrated network constructed using four different strategies.
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integrated into one network. As shown in Fig. 2b, among all com-
binations of two study groups, the large study had a greater contri-
bution to the integrated network, with the contribution increasing 
with the sample size of the included study. Similar results were 
observed in the integration of all seven networks: the larger the 
community size, the greater its contribution to the final integrated 
network (Fig. 2c), suggesting that this univariate weighting method 
can efficiently highlight the strength of large studies in the final net-
work and reduce bias in the process of integration.

To further verify whether the univariate weighting method can 
remove batch effects in the process of integration, we permutated 
the seven studies to generate 127 different integrated networks 
(the number of studies included in the integrated networks ranged 
from one to seven). Compared to the situation with the traditional 
unweighted method, the distribution of network distance with the 
univariate weighting method not only exhibited a more even pat-
tern (Fig. 2d), but also decreased more sharply with an increas-
ing number of studies included in the integrated networks (Fig. 
2e), demonstrating that integration of different datasets based on 
the univariate weighting method can reduce heterogeneity among 
studies. Notably, the univariate weighting method also showed 
a significantly higher correlation between network distance and 
sample dissimilarity (Fig. 2f; P < 0.001), suggesting its better per-
formance in describing variation among studies. To explore the dif-
ferences among different methods, we constructed networks using 
four different strategies: (1) integrating datasets simply based on 
abundance without removing batch effects (unprocessed); (2) inte-
grating datasets based on the univariate weighting method; (3–4) 
integrating datasets based on abundance and removing batch effects 
using combat (3) or limma (4). Consistent with previous studies, the 
traditional methods showed inferior performance in batch effects 
removal on the microbial datasets (Supplementary Fig. 3). By con-
trast, the univariate weighting method showed a lower distance 
between the final integrated network and seven original networks, 
indicating its good performance in capturing original biological fea-
tures (Fig. 2g).

Prediction of transition using a network-based algorithm. To 
delineate the transition from health to disease and to identify key 
bacteria during this process, we propose a NetMoss algorithm to 
perform network-based differential analysis (Fig. 3a; more details 
are provided in the NetMoss algorithm section in the Methods). We 
first generated two simulated networks to confirm that the NetMoss 
algorithm is able to measure variation in network structure between 
different states (Fig. 3b,c). After perturbation, 30 out of 40 submod-
ules transitioned from module 1 to module 2, implying an alteration 
from health to disease (Fig. 3c). We then calculated the NetMoss 
scores of these 40 taxa in the integrated network to confirm whether 
our method can distinguish transited submodules from others. The 
results showed that a majority of transited submodules (86.7%) 
could be predicted by the NetMoss score (Fig. 3d), indicating its 

great performance in identifying driver bacteria associated with 
state transition.

To further evaluate the performance of the NetMoss method, 
the Neighbor Shift (NESH) score20 and the Jaccard Edge Index 
(JEI), which are both used to measure the variation of nodes in 
networks, were introduced to compare with our method. We re-
perturbed the simulated network and added different noises to 
benchmark whether the three methods could identify transited 
submodules correctly. As shown in Fig. 3e, when random noises 
were added to taxon 81 to taxon 120, the NetMoss method out-
performed the other two methods on distinguishing transited 
submodules from others. We then altered the noise level on the 
simulated networks and found that the area under the curve (AUC) 
of NetMoss remained high and stable (average AUC = 0.95; Fig. 
3e, Supplementary Fig. 4 and Supplementary Table 2), further 
demonstrating its good performance and consistency on different 
community types. When perturbation occurs, the connection of 
bacteria changes as the structure of the network changes. Unlike 
NESH and JEI, the NetMoss algorithm not only takes node con-
nection into consideration, but it also quantifies the node distance 
between different modules. Even a slight change in the network 
structure can be detected based on this module shift strategy, so 
the NetMoss method shows great advantages in the identification 
of biomarkers compared to other network-based methods.

Identification of biomarkers in integrated CRC networks. To 
identify disease-related bacteria, we integrated seven CRC stud-
ies into two integrated networks (case and control; Fig. 4a) and 
found that great differences existed between the case and control 
groups (Fig. 4b). For example, compared to the control group, 
Actinobacteria in the case group was greatly decreased, but 
Firmicutes was more abundant (Fig. 4b). In particular, in the small 
modules of the case group, the microbial composition was very 
simple, and among the four most common bacterial phyla, only 
Firmicutes was detected (Fig. 4b). Such distinctions indicated that 
the lack of certain bacteria in the microbial network may be associ-
ated with the transition from health to disease. We further retrieved 
66 CRC-relevant bacteria from the gutMDisorder database21 and 
found that the connection strength of marker bacteria was signifi-
cantly higher than that of nonmarker bacteria in both the case and 
control network modules (Fig. 4c; P < 0.001, Wilcoxon test), sug-
gesting the crucial role of these marker bacteria in integrated net-
works. Consequently, it would be an efficient strategy to determine 
disease-related bacteria from case–control network comparisons 
using the NetMoss method.

We then evaluated the accuracy of the NetMoss method using 
66 known CRC-relevant bacteria, with 55 of them being present 
in the combined CRC datasets. A classic statistical test was used to 
identify differentially abundant bacteria between case and control 
groups, and the NetMoss score was used to assess the importance of 
bacteria in the integrated networks. Among the bacteria identified 

Fig. 3 | identifying differential bacteria using the Netmoss algorithm. a, Workflow of the NetMoss algorithm. b, Schematic of module transition between 
control and case networks. c, Module transition based on simulated networks. Random noise was generated and added to the control network (left), 
constituting the case network (right). The red bar corresponds to module 1 (m1), and the blue bar module 2 (m2). d, NetMoss score of each submodule 
during the transition of network states in c. The blue dotted line represents the threshold of the NetMoss score in the simulated networks. Submodules 
with NetMoss scores greater than the threshold correspond to differential network bacteria. Red dots represent submodules that experience transition, 
and gray dots represent submodules that do not transition. The shaded regions indicate the 95% confidence intervals. e, Comparison of submodule 
identification among three network-based methods. From top to bottom: NetMoss, NESH and JEI. The two columns on the left represent the density and 
distribution of submodule scores calculated using the three methods, respectively. In the leftmost column, positive nodes (red) correspond to transited 
submodules and negative nodes (gray) correspond to others. Gray areas in the taxon plots refer to the noise range added to the taxon. The third column 
shows the sensitivity (red) and specificity (blue) under different thresholds. The vertical blue dashed line corresponds to the best threshold to distinguish 
positive and negative nodes, which was determined based on the intersection point of sensitivity and specificity. The gray regions indicate the 95% 
confidence intervals. The rightmost column represents the prediction power of ten times of replication under different noise levels. Detailed AUC values 
are shown in Supplementary Table 2.

NatuRe ComputatioNaL SCieNCe | VOL 2 | MAy 2022 | 307–316 | www.nature.com/natcomputsci310

http://www.nature.com/natcomputsci


ArticlesNaTure CoMpuTaTioNal SCieNCe

by the two methods, only 32% were marker bacteria using the sta-
tistical test method (FDR < 0.05); in contrast, 68% were successfully 
identified when NetMoss was implemented (NetMoss score > 0.12), 
suggesting that our network-based method substantially improves 
the efficiency of the identification of disease-related bacteria  

(Fig. 4d,e). In particular, some genera showed a relatively high 
NetMoss score—for example, Faecalibacterium, Actinetobacter 
and Parvionas (NetMoss score > 0.99), which have been demon-
strated to be associated with human health or disease (Fig. 4e). It 
should be noted that only 10 out of 43 taxa were identified by both  
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methods, indicating that the abundance-based method and the net-
work-based method should complement each other in differential 
microbiota analysis.

To further explore the differences among the various methods, 
we examined the prediction power using six different strategies. 
The NetMoss group integrated datasets and identified markers 
using our network-based workflow (Fig. 3a), and the other five 
groups integrated datasets and identified markers based on abun-
dance, two of which were further processed using combat or limma 
to remove batch effects. We observed that the efficiency of the  

traditional abundance-based method was very low, ranging from 
16% to 25%, and most CRC markers could not be identified, no 
matter whether batch effects were removed or not (Supplementary 
Figs. 5 and 6a). By contrast, the NetMoss method exhibited a 
much higher AUC among these groups in both the combined and 
uncombined datasets (Fig. 4f–i and Supplementary Fig. 6b,c), dem-
onstrating its robustness to different batches and its advantages in 
large-scale microbiome data integration. As well as at the genus 
level, the efficiency of NetMoss on both amplicon sequence variants 
(ASVs) and species levels was also robust (Supplementary Fig. 7).  
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In the CRC integrated networks, only 116 submodules (17.4%) 
changed between healthy and diseased groups in all modules, and 
such slight variations could not be recognized by other methods. 
The NetMoss algorithm, however, focuses on module shift and is 
more sensitive to perturbation between different networks.

Application in pandisease microbiota studies. Considering the 
complementary role of abundance-based and network-based meth-
ods in identifying disease-related bacteria, we further applied them 
to other diseases to determine the common characteristics of micro-
biota changes in these diseases. We analyzed 11,377 microbiota sam-
ples from public studies of different diseases (Supplementary Table 
1) and found that, compared with the abundance-based method, 
the NetMoss method identified many more bacteria associated 
with disease (Fig. 5a). Intriguingly, these key bacteria exhibited 
two different patterns: some only correlated with a specific disease 
(disease-specific bacteria), whereas others exhibited wide associa-
tions with multiple diseases (multidisease-related bacteria; Fig. 5a). 
Unexpectedly, the latter accounted for the majority in all differen-
tial bacteria (Supplementary Fig. 8a). For example, many genera of 
Enterobacteriaceae and Lachnospiraceae, known as opportunistic 
pathogens, were found to be associated with infection and mul-
tiple diseases, such as CRC, diarrhea and type 2 diabetes6,22,23. We 
identified some of them as biomarkers in over five diseases (Fig. 
5a and Supplementary Fig. 8b). In addition, several studies have 
reported strong associations between hepatitis B virus infection 
and Streptococcus or Bacteroides, which are also key bacteria in the 
occurrence of gestational diabetes mellitus24–26. Although a certain 
degree of abundance difference was observed between the case and 
control groups, most associations between diseases and these bacte-
ria were only identified by using NetMoss (Fig. 5a).

We then focused on the five most prevalent diseases in the public 
datasets (Supplementary Table 1). We examined the prevalence of 
disease-specific bacteria and multidisease-related bacteria in each 
study and found that most biomarkers are multidisease-related 
bacteria (Fig. 5b). For example, four bacteria exhibited substantial 
differences between healthy and diseased groups in five diseases, 
but the number rose to 63 when only two diseases were included 
(Fig. 5c). Moreover, compared to disease-specific bacteria, multi-
disease-related bacteria were found to be much more abundant in 
both healthy and disease populations, confirming the importance of 
these biomarkers in the human gut.

To explore the role of multidisease-related bacteria in the devel-
opment of disease, we compared the differences of network struc-
ture of five diseases. We found that multidisease-related bacteria 
showed a closer network connection and a higher NetMoss score 
compared to specific bacteria (Fig. 5d,e and Supplementary Fig. 8c; 
P < 0.05, Wilcoxon test). Such vital roles in the microbial networks 
suggested they may act as drivers in the development of multiple dis-
eases. To further examine the association among multiple diseases, 
we integrated five disease networks into one combined network. 
Interestingly, unlike healthy controls, taxa from different diseases 
were largely separated from each other, with multidisease-related 
bacteria locating in the hub regions of the combined network (Fig. 
5f and Supplementary Fig. 8e). Such opposite network structures 
between healthy and diseased groups further demonstrated the 
importance of microbial interaction networks in exploring the con-
tribution of gut microbiota to various diseases.

Discussion
Although some algorithms and tools have been developed to tackle 
the problem of batch effects in meta-analysis27,28, most examine dif-
ferential bacteria based on abundance; however, in human gut com-
munities, microbes frequently interact with one another, forming a 
closely connected network14. Perturbation from outside may alter 
the structure of the network and change cooperative or competitive 

relationships among the bacteria. For this reason, the abundance of 
specific bacteria cannot describe the whole picture of the ecosystem, 
let alone the transition from health to disease. Network analysis has 
been widely used in various biological systems16,29,30. However, as 
the structure of the network is often associated with various fac-
tors, such as the size of datasets, selection of cutoffs and construc-
tion methods, it is difficult to compare networks from different 
studies directly. Consequently, integration of different networks is 
necessary to understand microbial interactions. Considering the 
robust characteristic of gut communities, a slight perturbation 
often imposes little effect on the whole structure of the microbial 
networks, and the distinction may only manifest as small variations 
in network submodules. Therefore, focusing on such variations of 
submodules may be a reasonable strategy to discriminate disease-
associated bacteria from others.

CRC is one of the most common cancers across the world, and 
colorectal tumorigenesis is highly associated with gut microbial dys-
biosis31. However, in contrast to genetic signatures, the gut microbiota 
associated with CRC is highly dependent on environmental factors 
such as diet and life style, which differ greatly in different coun-
tries, especially between western and non-western populations32. 
Such divergence poses a significant challenge to the early diagnosis 
of CRC based on microbial biomarkers and usually leads to con-
tradictory results in different microbiome studies. By utilizing the 
NetMoss algorithm, we revealed the importance of Lactobacillus in 
the occurrence of CRC, which was demonstrated to have a protective 
effect for CRC33,34, although it did not show a significant difference in 
abundance between case and control groups. This finding highlights 
the advantage of network-based methods for the identification of 
abundance-insensitive biomarkers. However, the NetMoss method 
still has some limitations. In practice, the clinical progress of CRC 
can be divided into several distinct stages characterized by different 
symptoms and divergent gut microbial compositions35,36. The state of 
patients, such as medicated or not, may also affect their gut micro-
bial structures, resulting in inter-individual variation. However, such 
metadata are generally not available from public datasets, which 
makes it difficult to utilize such information in the NetMoss method. 
Taking detailed clinical factors into consideration will undoubtedly 
improve the accuracy of biomarker identification and may represent 
a new direction towards deep mining of clinical microbiome data.

The NetMoss method greatly facilitates the identification of sig-
nificant biomarkers in the transition from health to disease and helps 
contribute to our understanding of the roles of the human microbiota 
in networks of ecosystems. With the integration of multiple cohorts 
based on this network-based algorithm, we believe that divergence 
among different studies can be largely reduced and that neglected 
details can be elucidated from a more comprehensive perspective.

methods
Datasets. We collected human gut microbiota datasets of different diseases 
from the National Center for Biotechnology Information (NCBI) to construct 
a multipopulation cohort. The keywords we searched in PubMed included ‘gut 
microbiota’, ‘16S’, ‘human’, ‘stool’ and ‘microbiome’. Only samples from adult stool 
were retained for downstream analyses. In total, 5,608 fecal samples of diseased 
individuals and 5,769 samples of healthy control individuals from 78 studies 
were collected in our research, covering 13 countries (Canada, China, Denmark, 
Finland, France, Germany, India, Italy, Japan, Mexico, Spain, Sweden and the 
United States). Among the 37 kinds of disease included in our research, CRC 
was the most prevalent, with 1,455 disease samples and 1,287 healthy samples. 
Accordingly, the processes of method development, validation and differential 
analysis were mainly based on CRC cohorts.

Analysis of 16S rRNA sequences. The raw data of 16S rRNA gene sequencing 
were analyzed using the QIIME237 platform (v2020.2). In brief, the DADA2 plugin 
was used to filter the sequencing reads and construct an ASVs feature table. The 
taxonomy information for the ASVs was assigned against the Silva Database 
(https://www.arb-silva.de) (v138.1) using the classify-sklearn algorithm in the 
feature classifier plugin. Low-abundance ASVs, whose relative abundance did not 
reach 0.1% in at least 10% of the samples, were excluded.
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Network analysis. The co-occurrence network of microbes was constructed with 
SPIEC-EASI38. The topological coefficients of the network were calculated using 
the R package ‘igraph’39. For each case or control group, different sizes of study 
were integrated into one network using the univariate weighting method to remove 
batch effects. Considering that the networks constructed from large studies exhibit 
weak co-abundance patterns, great weights were added to the large networks to 
increase their contribution to the final integrated network and thus reduce bias in 
the integration. The procedure was implemented as follows.

First, a co-occurrence network was constructed based on the abundance matrix 
of each study. Next, every pair of co-abundance patterns between any two taxa was 
aligned. The missing co-abundance patterns were filled with value 0. A univariate 
weighting method was implemented to add different weights to different pairs 
of co-abundance patterns based on the size of each study. During this process, 
the Hedges and Olkin method40 was used to evaluate the conditional deviation 
of the correlation coefficient in each study. For a certain study ni, the conditional 
deviation vi of correlation coefficient ri was calculated as

vi =
1 − r2i
ni − 1

The weight of each pair of co-abundance patterns was defined as

ρ =

∑k
i=1 wiri∑k
i=1 wi

where wi is the reciprocal of vi, and k represents the number of studies.
To demonstrate real ecological processes, module division was conducted using 

WGCNA41, with which microbes interacted cooperatively with one another in one 
single module while interacting competitively between any two modules. In the 
weighted networks, the connection strength of node i was defined as the sum of the 
connections between this node and all other nodes in the network, as

ki =
n∑

j=1
aij

where aij represents the correlation coefficient between node i and node j.
To highlight the importance of nodes in the network module structure, we 

redefined the connection strength of node i as

ki =
n1∑

j=1
aij −

n∑

j=n1+1
aij

where n represents the number of all nodes in the network and n1 represents the 
number of nodes inside a specific module.

NetMoss algorithm. The NetMoss score was used to measure the driving force of 
every node in the transition of the network structure. This was defined as follows. 
First, the correlation matrix of the health state was A = [cij] and the correlation 
matrix of the disease state was A′

=

[
c′ij
]
, where cij is the correlation coefficient of 

node i and node j:

cij = cor(i, j)

To obtain the optimized module structure, linear transformation was 
implemented to convert cij to sij

sij =
1 + cij

2

Thus, the correlation matrices of the health and disease states after 
transformation were B = [sij] and B′

=

[
s′ij
]
, respectively.

The soft threshold β was calculated based on the WGCNA algorithm, and the 
weighted network aij was

aij =
∣∣sij

∣∣β

Thus, the weighted correlation matrices of health and disease states were 
C = [aij] and C′

=

[
a′ij
]
, respectively.

The topological overlap matrix ωij of node i and node j was calculated as

ωij =
lij + aij

min
{
ki, kj

}
+ 1 − aij

where lij = Σuaiuauj, ki = Σaiu; u represents other nodes besides node i and node 
j in the network.

The distance between node i and node j was defined as

dij = 1 − ωij

Then, the distance matrices of the health and disease states were D = [dij] and 
D′

=

[
d′ij
]
, respectively.

Module division was conducted in matrices D and D′, with matrix D 
containing n modules and matrix D′ m modules. The number of intersection 
modules of D and D′ was K (K ≤ mn). The average distance of every node from 
intersection modules to health distance matrix D and disease distance matrix D′ 
was calculated, obtaining N-by-K-order matrices Dmod and D′mod, respectively. The 
differential module distance matrix was defined as

ΔD = D′

mod − Dmod

The NetMoss score of node i in any intersection module is

NMSS(i)A→B =

NeighborsA∑

j
ΔDij −

NeighborsB∑

l

ΔDil

where A and B represent the health and disease networks, respectively; NeighborsA 
represents all neighboring modules in the health network, and NeighborsB 
represents all neighboring modules in the disease network.

The intersection modules represent the stable elements during the transition 
from health to disease, where the transited modules resulted in alteration of the 
network structure. The NetMoss algorithm measures the driving force in the 
transition of the network structure to evaluate the importance of every node.

Module shift stimulation and random noise production. To verify the  
effect of the NetMoss algorithm in the identification of network structure,  
simulated networks were generated. Considering the sparsity of microbiota 
networks, we developed an algorithm to generate a simulated correlation matrix 
with a certain module structure and added random noise to the matrix to  
simulate natural disturbance.

The number of gk unit vectors was selected from vector space RMk to construct 
an Mk-by-gk matrix Uk. The kth module was represented by a gk-by-gk matrix Σk:

Uk = (u1|u2|...|uk)

∑
k
= ρk

(
UT

kUk

)
+ (1 − ρk)I

where k represents the number of modules in the simulation matrix, gk represents 
the size of the kth module, Mk represents the variation range of the correlation 
coefficient inside the kth module, ρk represents the maximum correlation 
coefficient inside the kth module, and I represents the unit vector.

Accordingly, an N-by-N matrix was constructed, with modules Σ1, Σ2, ..., Σk 
arranged on the diagonal in order and the area outside the modules filled with 0.

To produce random noise, the number of c unit vectors was selected from 
vector space Rm to construct an m-by-c matrix Uk. The random noise matrix S was 
selected from a c-by-c matrix Sk:

Uk = (u1|u2|…|uc)

Sk = εk
(
UT

kUk

)

εk = ε1 +
k − 1
r − 1

(εr − ε1)

where r represents the row of the noise matrix, c represents the column of the 
noise matrix, m represents the variation range of noise, εk represents k-order 
noise, in which k = 1 represents the minimum value of noise, and k = r represents 
the maximum value of noise. Finally, random noise matrix S was added to the 
corresponding module matrix to simulate natural disturbance.

Statistical analysis. All statistical analyses were conducted in R and visualized 
using the package ‘ggplot2’. The blocked Wilcoxon test was applied using the R 
package ‘coin’42. Principal coordinates analysis was implemented by the function 
‘pco’ in the R package ‘labdsv’. Co-occurrence networks were visualized using 
Cytoscape43. For all analyses regarding multiple comparisons, we used the 
FDR method to correct for multiple testing. Classification was applied using 
the combined markers, which were identified based on network (NetMoss) or 
abundance (the other five methods) in the combined CRC datasets. For the 
separate classification in each of the seven studies, the combined markers were 
screened using tenfold cross-validation before the prediction.

Data availability
All sequence data supporting the findings of this study were obtained from 
Sequence Read Archive (SRA) of NCBI with the accession numbers listed in 
Supplementary Table 1. Source data are provided with this paper.
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Code availability
The source code for the NetMoss algorithm and data analysis scripts can be 
accessed at Zenodo44. NetMoss has been implemented as an R package, which can 
be accessed from GitHub (https://github.com/xiaolw95/NetMoss).
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