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Abstract

A minimal model of a moist equatorial atmosphere is presented in which

the precipitation rate is assumed to depend on just the vertically averaged

saturation deficit and the convective available potential energy. When wind

induced surface heat exchange (WISHE) and cloud-radiation interactions are

turned off, there are no growing modes. Gravity waves with wavenumbers

smaller than a certain limit respond to a reduced static stability due to

latent heat release, and therefore propagate more slowly than dry modes,

while those with larger wavenumbers respond to the normal dry static sta-

bility. In addition, there exists a stationary mode which decays slowly with

time. For realistic parameter values, the effect of reduced static stability

on gravity waves is limited to wavelengths greater than the circumference

of the earth. WISHE and cloud-radiation interactions both destabilize the

stationary mode, but not the gravity waves.
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1 Introduction

Moist convection, surface fluxes, and radiation play a fundamental role in the large-scale

dynamics of the tropical atmosphere to a much greater degree than in middle latitudes.

Many attempts have been made to characterize this role in simplified models. These

models fall into two broad categories, convergence-driven models and quasi-equilibrium

models.

• Convergence-driven models: Convection in models of this type is driven either by

low-level mass convergence or moisture convergence. Variations on such models

are legion, but early examples are the models of Yamasaki (1969), Hayashi (1971),

Lindzen (1974). Following Lindzen’s terminology, these are generally called wave-

CISK models, where CISK stands for conditional instability of the second kind

(Charney and Eliassen, 1964). Such models are currently looked upon with disfa-

vor for a variety of reasons. In particular, they ignore surface energy fluxes and

variations in tropospheric humidity, the effects of which tend to be stronger than

the effects of large-scale convergence in driving convection. They also tend to pro-

duce modes with the largest growth rates at the smallest scales, contrary to the

original expectation of explaining large-scale tropical dynamics.

• Quasi-equilibrium models: Starting with Emanuel’s (1987) model of the Madden-

Julian oscillation (Madden and Julian, 1971, 1972, 1994; see also Yano and Emanuel,

1991; Emanuel 1993), a series of models have been proposed which invoke the no-

tion that deep convection exists in a state of near-equilibrium with the processes

which destabilize the tropical environment to convection. This idea owes its ori-

gin to Arakawa and Schubert (1974). A noteworthy model of this type is that

proposed by Neelin and Yu (1994). This model uses a simplified version of the

Betts-Miller cumulus parameterization to treat convection (Betts, 1986; Betts and

Miller, 1986; Betts and Miller, 1993). This parameterization implements a form of

convective adjustment, which is a type of quasi-equilibrium model. Typically, in
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models of this type, unstable modes do not occur unless helped along by some pro-

cess beyond free tropospheric dynamics, such as spatially varying surface energy

fluxes.

Interestingly, the above model types consider deep convection and surface latent and

sensible heat fluxes, but typically ignore the possibility that radiation might play more

of a role than that of a uniformly distributed energy sink. However, recently numerical

models have demonstrated the key effects of cloud-radiation interactions in modulating,

and possibly even driving large-scale disturbances in the tropics (Slingo and Slingo,

1988, 1991; Randall, Harshvardhan, Dazlich, and Corsetti 1989; Sherwood, Ramanathan,

Barnett, Tyree, and Roeckner, 1994; Raymond, 2000a, 2001). Basically, middle to

upper level stratiform cloudiness produced by deep convection reduces outgoing longwave

radiation (OLR) to space, resulting in differential heating between cloudy and clear

regions, which tends to reinforce the pre-existing convection. This effect may be strong

enough to destabilize otherwise stable large-scale modes. Raymond (2001) proposed

that cloud-radiation interactions are a primary driver of the Madden-Julian oscillation.

The convective quasi-equilibrium hypothesis by itself provides an incomplete de-

scription of tropical convection (Emanuel, Neelin, and Bretherton, 1994). Needed in

addition is a model of how convection reacts to variations in the humidity of the atmo-

sphere. The Betts-Miller cumulus parameterization postulates a very simple model in

this regard. If the column-integrated water vapor exceeds that required to produce a

target relative humidity profile, the excess is removed as precipitation over a period of

a few hours. If it is less than needed, deep convection is turned off in favor of a shal-

low, non-precipitating convection scheme. Other quasi-equilibrium models such as the

Arakawa-Schubert scheme (Arakawa and Schubert, 1974) are typically more complex in

their behavior, but nevertheless react systematically in some way to varying humidity

profiles.

Raymond (2000b) proposed a particularly simple relationship between humidity and

precipitation over warm tropical oceans, namely that the precipitation rate is inversely
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proportional to the vertically averaged saturation deficit. This hypothesis is clearly

an oversimplification, but is roughly borne out by observation. For instance, figure 1

shows a scatter plot of the monthly averaged values of precipitation rate and column

water vapor within 20◦ of the equator. Since the temperature profile in the tropics

is nearly the same everywhere, the column water vapor is just a constant minus the

vertically integrated saturation deficit. Though significant scatter exists, there is clearly

a relationship between the column water vapor and the precipitation rate in this figure.

(The correlation may or may not be weaker on daily time scales. This issue remains to

be explored.)

In all likelihood, the precipitation rate depends also on the convective available po-

tential energy (CAPE), though the nature of this dependence is considerably less certain

than the dependence on saturation deficit.

The Betts-Miller cumulus parameterization is an example of a parameterization in

which the precipitation rate is largely determined by the saturation deficit and the

CAPE. The saturation deficit dependence is straightforward — column water vapor in

excess of that which corresponds to a certain mean relative humidity is precipitated out

on a time scale of a few hours.

The dependence of precipitation on CAPE is a bit more subtle. The usual causes of a

CAPE value in excess of the equilibrium value prescribed by the parameterization are a

decrease in the temperature of the middle troposphere or an increase in the moist static

energy of the boundary layer. The parameterization responds in both cases by adjusting

the target temperature profile over a period of a few hours to restore the target CAPE

value. If the cause of the CAPE perturbation is excess moisture in the boundary layer,

this moisture is mixed through the depth of the troposphere, and then precipitated out

by the humidity relaxation process. On the other hand, a decrease in mid-tropospheric

temperature increases the relative humidity, triggering additional precipitation as well.

In both cases, increased CAPE results indirectly in increased precipitation, though the

amount depends on the mechanism of CAPE increase.
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The purpose of this paper is to develop a minimal model of the interaction between

precipitation, radiation, surface fluxes, and free tropospheric tropical dynamics. In order

to simplify the treatment as much as possible, rotation is omitted. This may be less

restrictive than it first appears, because the zonal dynamics of equatorial Kelvin waves

are identical to those of gravity waves in a non-rotating environment. An additional

assumption is that all disturbances have a sinusoidal vertical structure with a vertical

wavelength equal to that of the gravest mode in the tropical troposphere. If Mapes (1993,

2000) is correct, this may constitute a serious over-simplification, but we feel justified

in using it in our initial attempt at a minimal model. An additional consequence of

this assumption is that no heating or moistening can occur at the surface. This would

be a problem in models establishing the global base state, but should not be a serious

limitation for disturbances of the type being studied here.

The key hypothesis of the model is that the precipitation rate depends only on the

vertically averaged saturation deficit and the CAPE. In the context of the linearization

and the vertical mode truncation, this reduces to a dependence of the precipitation

perturbation on the tropospheric temperature and humidity perturbations, where the

base state is one of radiative-convective equilibrium. As we shall see, the large-scale

dynamics of the model depends critically on the sensitivity of precipitation rate to these

perturbations.

2 Model and analytical solutions

Our model is Boussinesq and non-rotating with a rigid lid at the tropopause. The hydro-

static governing equations are linearized about a state of rest and radiative-convective

equilibrium, and highly simplified thermodynamics are invoked so as to make the solu-

tion of the model equations analytically tractable. The omission of rotation eliminates

most tropical disturbances, leaving gravity waves as the only free modes. The rigid lid

is a significant over-simplification, but is justifiable in the present context.
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2.1 Linearized governing equations

The linearized governing equations used in the model are the horizontal momentum

equation, the hydrostatic equation, mass continuity, and equations for scaled versions of

the potential temperature, mixing ratio, and equivalent potential temperature:

∂u

∂t
+

∂p

∂x
= 0 (1)

∂p

∂z
= b (2)

∂u

∂x
+

∂w

∂z
= 0 (3)

∂b

∂t
+ ΓBw = sB (4)

∂q

∂t
+ ΓQw = sQ (5)

∂e

∂t
+ ΓEw = sE (6)

The horizontal and vertical wind components are u and w, the kinematic pressure pertur-

bation is p, and b = gθ′/θ0, where g is the acceleration of gravity, θ′ is the perturbation

from a reference profile of potential temperature θ0(z). The quantity

ΓB =
g

θ0

dθ0

dz
(7)

is the square of the Brunt-Väisälä frequency.

Equations (5) and (6) are inspired by an approximate expression for the equivalent

potential temperature:

θe ≈ θ exp[Lr/(CpTref )] ≈ θ

(

1 +
Lr

CpTref

)

≈ θ +
Lr

Cp
, (8)

where r is the mixing ratio, L is the latent heat of evaporation, Cp is the specific heat

of air at constant temperature, and Tref is a constant reference temperature. In the

last of the series of approximations in the above equation we have set θ ≈ Tref in the

mixing ratio term. Multiplying this equation by g/θ0 and defining e = gθ′e/θ0 and

7



q = gLr′/(Cpθ0), where θ′e and r′ are deviations from reference profiles θe0 and r0, we

find that

e = b + q. (9)

Furthermore, since θe0 = θ0 + Lr0/Cp, we have

ΓE = ΓB + ΓQ (10)

where

ΓE =
g

θ0

dθe0

dz
ΓQ =

gL

Cpθ0

dr0

dz
. (11)

Thus,

sE = sB + sQ. (12)

One of the three equations (4), (5), and (6) is redundant, which we take to be (6).

2.2 Thermodynamic assumptions

Let us first solve (1) - (5) for the special case in which sB = 0 and ΓB is constant,

with rigid horizontal surfaces at z = 0, h. Assuming that all dependent variables are

proportional to exp[i(kx− ωt)], we easily find free gravity wave solutions with

(w, b, q) = (W, B, Q) sin(nπz/h) (13)

and

(u, p) = (U, Π) cos(nπz/h), (14)

where n is a positive integer. The dispersion relation is ω2 = k2ΓB/m2 where m = nπ/h

is the vertical wavenumber. Further development will be limited to consideration of the

fundamental vertical mode (n = 1).

We take h = 15 km, the approximate depth of the tropical troposphere, so that the

vertical wavenumber for the fundamental mode is m = π/h ≈ 2 × 10−4 m−1.

Let us suppose that sB, sQ, and sE all have the vertical structure of the fundamental

mode of the above adiabatic solution, i. e., are proportional to sin(mz), where m = π/h:

(sB , sQ, sE) = (SB, SQ, SE) sin(mz). (15)
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This assumption is weak in the sense that, contrary to observation, moisture perturba-

tions do not occur at the surface. However, the assumption is necessary to maintain the

simplicity of our approach to the problem.

We note that
∫ h

0

sBdz =
2SB

m
= P −R (16)

and
∫ h

0

sQdz =
2SQ

m
= E − P (17)

where P , E, and R are scaled perturbations in the precipitation rate, the surface evap-

oration rate, and the vertically integrated radiative cooling rate. We further assume

that turbulent motions within clouds vertically distribute the effects of latent heat re-

lease, evaporation, and radiative cooling so that their vertical structure is that of the

above-defined fundamental mode. Surface sensible heat fluxes are ignored, an assump-

tion which is reasonable over the tropical oceans, since they are typically a small fraction

of the latent heat fluxes there.

Following Raymond (2000b), we assume that the precipitation rate is inversely pro-

portional to the vertically averaged saturation deficit. A linearized version of this ex-

pressed in terms of the variables of the present model translates to P ∝ Q. In addition,

we assume that increased CAPE, represented by decreased mid-level potential temper-

ature, results in increased precipitation. Let us express these relationships by

P = α
∫ h

0

qdz − µ
∫ h

0

bdz =
2αQ

m
−

2µB

m
. (18)

The constant α−1 is the time scale for the elimination of a mixing ratio anomaly by the

induced precipitation anomaly. Let us call it the moisture relaxation time. Similarly, let

us call µ−1 the buoyancy relaxation time.

An estimate for α may be obtained from an examination of figure 1. Since the

precipitable water anomaly in our model is 2Q/m, the slope of the line in figure 1 is just

∂P/∂(2Q/m). From (18) we find that

α =
∂P

∂(2Q/m)
+ µ

dB

dQ
. (19)
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If there is no systematic dependence of CAPE on saturation deficit, then α is just the

slope of the line relating precipitation rate to precipitable water. This slope increases

with precipitable water, but a reasonable estimate might be α ≈ 1 d−1 ≈ 1.2×10−5 s−1.

Generally, moist tropical environments have smaller CAPE, i. e., larger B, than

dry environments, which means that dB/dQ > 0. Thus, if µ > 0, then α may be

larger than provided by the above estimate. However, if the potential temperature of

the middle troposphere increases by 1 K when the moisture increases by 2 g kg−1, then

dB/dQ ≈ 0.2, and the above estimate of α may not be too far off if µ is comparable in

magnitude to α.

The Betts-Miller parameterization assumes that moisture relaxation takes place in

just a few hours. This would imply that α ≈ (2 h)−1 ≈ 1.4× 10−4 s−1, or more than an

order of magnitude greater than the above estimate. Thus, α is subject to significant

uncertainty.

The optimal value of µ is difficult to estimate. Because of this uncertainty, we shall

examine the consequences of a variety of assumptions for µ.

The bulk flux formula for surface evaporation is

Fq = Cueff∆r (20)

where ∆r is the difference between the saturation mixing ratio at the sea surface tem-

perature and the sub-cloud layer mixing ratio, C ≈ 10−3 is the transfer coefficient, and

the effective wind is

ueff = [(us − uO)2 + W 2]1/2. (21)

The constant W ≈ 3 m s−1 (Miller, Beljaars, and Palmer, 1992), the sub-cloud layer

wind is us, and the the velocity of the ocean relative to the ambient air is uO. (We

have extended the assumption of a background state at rest to one in uniform motion by

working in the reference frame of the moving air, which means that the ocean is moving

in the opposite direction at the ambient wind speed.)
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We linearize Fq in us. The perturbation in Fq is

F ′

q = Cηus∆r (22)

where η = −uO/ueff . We have ignored possible fluctuations in ∆r, since these are not

allowed by the assumed vertical distribution of the moisture perturbation.

Multiplying this equation by the scaling factor Lg/(Cpθ0s), where θ0s is the surface

value of θ0, results in

E = CηU∆q (23)

where us has been equated to U and where ∆q = Lg∆r/(Cpθ0s).

An estimate of the radiative cooling anomaly is somewhat more difficult to obtain, as

an explicit measure of cloudiness is not part of the present model. However, cloudiness

is likely to increase with mixing ratio, which would in turn decrease radiative cooling.

A simple expression of this relationship could therefore be written

R = −γ
∫ h

0

qdz = −
2γQ

m
, (24)

where γ is a rate constant to be determined.

An indirect way to estimate γ is by relating changes in the radiative cooling to

changes in the precipitation rate. Changing from no rain to 15 mm d−1 (the largest

precipitation rate in figure 1) is likely to be associated with a change from clear to

totally overcast conditions, resulting in a decrease in OLR of about 150 W m−2. Since

the surface longwave flux doesn’t vary much with cloudiness, this decrease in OLR

approximates the decrease in longwave cooling. However, according to the results of Cox

and Griffith (1979), deep cloudiness also decreases shortwave heating of the atmosphere

by approximately half the decrease in longwave cooling, making the net decrease in

cooling about half of 150 W m−2, or approximately 80 W m−2.

Condensation leading to rainfall of 15 mm d−1 corresponds to latent heat release

of about 400 W m−2. Eliminating Q between (18) and (24) results in the estimate

γ ≈ −αR/P ≈ (80/400)α = 0.2α. We therefore assume that

γ = εα, (25)
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where we take ε ≈ 0.2. We call ε the cloud-radiative feedback parameter. Chris Brether-

ton (personal communication) independently finds that ε ≈ 0.15, which lends support

to our estimate.

Combining these factors leads to final expressions for the source terms for buoyancy

SB = α(1 + ε)Q− µB (26)

and mixing ratio

SQ = Uδ − αQ + µB, (27)

where δ = mCη∆q/2.

A typical value for the dry static stability is ΓB = 10−4 s−2. The moist static stability

is given by ΓE . Emanuel, Neelin, and Bretherton (1994) estimate that a typical value

of this parameter is ΓE ≈ 0.1ΓB . We will adopt this value. Using ΓE = ΓB + ΓQ, we

therefore find that ΓQ = −0.9ΓB.

2.3 Dispersion relation

Based on (15) - (27), we can now solve the linearized moist atmosphere problem. The

dependent variables take on the same space and time dependence as for the dry problem

in this case, but the dispersion relation becomes

ω3 + i(α + µ)ω2 −

(

k2ΓB

m2
− γµ

)

ω

− iα
k2ΓB

m2

(

ΓE + εΓQ − iδ(1 + ε)m/k

ΓB

)

= 0 (28)

while the polarization relations are

U = (im/k)W (29)

Π = (imω/k2)W (30)

B = −(im2ω/k2)W (31)

Q =
1

α − iω

(

−ΓQ −
iµm2ω

k2
+

iδm

k

)

W. (32)
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The dispersion relation may be non-dimensionalized by defining a dimensionless fre-

quency Ω = ω/α and wavenumber κ = kΓ
1/2

B /(αm):

Ω3 + iσΩ2 − [κ2 − ε(σ − 1)]Ω − iκ2(Γ − iΛ/κ) = 0, (33)

where

σ ≡ (α + µ)/α. (34)

A dimensionless static stability which takes into account the effects of both latent

heat release and cloud-radiation interactions is defined

Γ = (ΓE + εΓQ)/ΓB . (35)

If we ignore the effects of radiation, then our choice of parameters makes Γ = 0.1. On

the other hand, if we include radiation and set ε = 0.2, then we find that Γ = −0.1.

Physically, this means that large scale ascent causes sufficient heating via cloud-radiative

feedbacks to more than overcome any residual adiabatic cooling not countered by latent

heat release, resulting in reinforcement of the ascent.

Finally, the effects of wind-induced variations in surface heat fluxes are contained in

the parameter

Λ = δ(1 + ε)/(αΓ
1/2

B ). (36)

If we take ∆r ≈ 6 g kg−1, then we find δ = 5 × 10−8η s−2 and Λ ≈ 0.5η. Recalling that

η = −uO/ueff = −uO/(u2

O + W 2)1/2, we see that −1 < η < 1. The value η = 0 occurs

when the ambient wind is zero, whereas η = ±1 occurs for strong ambient easterly

(η = −1) or westerly winds (η = 1).

The dispersion relation may be rewritten in terms of a dimensionless phase speed

φ = Ω/κ = ωm/(kΓ
1/2

B ). Eliminating ω in favor of φ in (33) results in

φ3 + (iσ/κ)φ2 −

[

1 −
ε(σ − 1)

κ2

]

φ − (i/κ)(Γ − iΛ/κ) = 0. (37)
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2.4 Analytical solutions

The behavior of the model under a horizontally homogeneous relaxation toward radiative-

convective equilibrium leads to a way of estimating the parameter σ. This behavior may

be investigated by setting κ = 0 in (33). The resulting simplified dispersion relation is

Ω3 + iσΩ2 + ε(σ − 1)Ω = 0, which has the solutions

Ω = 0,−i{σ ± [σ2 + 4ε(σ − 1)]1/2}/2. (38)

Let us first consider the situation in which there are no cloud-radiation interactions,

i. e., ε = 0. In this case there are two stationary neutral modes with Ω = 0, and a single

stationary decaying mode with Ω = −iσ. In dimensional terms, ω = Ωα = −iσα for

the decaying mode. Thus, the time constant for this decay is (σα)−1.

It is instructive to compare this result with the cumulus ensemble radiative-convective

equilibrium calculations of Tompkins and Craig (1998). In this work the evolution toward

radiative-convective equilibrium is a process with two very different time scales. The

shorter time scale is of order a few days, and represents the evolution of the temperature,

humidity, convective mass flux, and precipitation rate toward stable values in a manner

that nearly conserves the integrated vertical profile of equivalent potential temperature.

The second time scale is much longer, approximately 15 d, and represents the evolution

of the vertically averaged equivalent potential temperature to equilibrium. These results

have been confirmed by Xiping Zeng (personal communication) using a different cumulus

ensemble model. The short adjustment time in Zeng’s model is roughly 2 d.

We identify the decaying mode in the present model with with the short-time-scale

relaxation in the models of Tompkins and Craig and Zeng. The long-time-scale relax-

ation in the cumulus ensemble model does not exist in our scheme when ε = 0, because

the vertically averaged equivalent potential temperature cannot change with time in

this case. This is because radiative cooling and horizontally averaged total surface heat

fluxes do not change with time, and must balance each other for consistency. Thus, the

long-time-scale relaxation time in our model is infinite.

14



As noted above, we estimate that α−1 ≈ 1 d, which by itself is roughly comparable to

the short time scale of Tompkins and Craig as well as that of Zeng. Since our relaxation

time is (σα)−1, equating it with their short time scale implies that σ ≈ 1. Thus, σ values

greatly exceeding unity are not consistent with the results of cumulus ensemble models,

as they would cause the short-time-scale relaxation to be much shorter than indicated

by cumulus ensemble computations. The constraint imposed by ensemble model results

needs to be subjected to much more scrutiny. However, taken at face value, it is hard to

justify the much smaller moisture adjustment times implied by the Betts-Miller cumulus

parameterization.

The radiative-convective equilibrium solution in our case is unstable when ε > 0.

However, this is an artifact of the model which arises from the neglect of surface moisture

anomalies. As noted above, the assumed sinusoidal vertical structure of anomaly profiles

forces potential temperature and moisture anomalies to be zero at the surface. Since

the surface potential temperature and mixing ratio cannot change, the domain-averaged

surface heat flux cannot change in response to changes in the radiative heat loss. Thus,

a domain-wide radiative heating anomaly, represented by a non-zero ε in the case with

κ = 0, cannot be compensated by a corresponding change in surface heat fluxes, and

runaway heating or cooling therefore results when ε > 0.

This flaw in the model is serious for the long-time behavior in radiative-convective

equilibrium calculations. However, it is considerably less egregious for disturbances in

which wind variations are likely to dominate the variability of surface heat fluxes.

Another hint as to the behavior of the modeled disturbances is obtained when

Γ, Λ, ε = 0, which means that WISHE modes (Yano and Emanuel, 1991) and cloud-

radiation interactions are turned off, and the effective static stability is zero. The dis-

persion relation reduces to φ3 + (iσ/κ)φ2 − φ = 0 in this case, from which we find

that

φ = 0, [−iσ ± (4κ2 − σ2)1/2]/(2κ). (39)

This solution contains a single steady, stationary mode and two other modes which
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decay with time. The latter two modes propagate when κ > σ/2 and are stationary

when κ < σ/2. For κ � σ/2 the decay rate becomes negligible and the dimensionless

phase speed goes to φ ≈ ±1. This corresponds to the case of ordinary gravity waves of

short wavelength. As the wavelength increases, these gravity waves experience decreas-

ing phase speeds as a result of wave-convection interactions, and become increasingly

damped. At long wavelengths where propagation disappears, one of the modes tends to

neutral stability, whereas the other decays. In the limit of infinite wavelength, the time

constant for decay is σ−1. Thus, at very long wavelengths there are two nearly neutral

modes and one which decays rapidly, all of which are stationary.

The transition between long wavelength and short wavelength behavior occurs at

κ = κ1 = σ/2. In dimensional terms, this corresponds to a critical wavelength

λ1 = 2π/k = 2πΓ
1/2

B /(κ1αm) = 4πΓ
1/2

B /(σαm). (40)

For α−1 = 1 d, σ = 1, and m = π/(15 km), we find λ1 = 52000 km, which is greater

than the circumference of the earth. This choice of parameters thus puts all disturbances

with physically possible wavelengths in the short wavelength regime. Increasing σ or

α significantly beyond the above values would decrease the critical wavelength, making

the long wavelength regime physically accessible. However, given the above comparison

of radiative-convective equilibrium results with those from cumulus ensemble models, it

seems unlikely that λ1 can be much shorter than the above-quoted result, at least in the

context of the present model.

The dependence on κ of the real part of the phase speed and the imaginary part of

the frequency (i. e., the growth rate) for σ = 1 and σ = 5 are illustrated in figures 2

and 3.

3 Numerical solutions

We solved (37) numerically using Newton’s method for 0.2 ≤ κ ≤ 5 with a variety of pa-

rameter values. Three general cases are studied, with both cloud-radiation interactions
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and surface flux variations turned off (stable case), with cloud-radiation interactions

turned on (radiative-convective instability case, denoted RCI), and with surface flux

variations turned on (WISHE case). In addition, a combined RCI-WISHE case is exam-

ined. Solutions are obtained in each case for σ = 1 and σ = 5.

3.1 Stable case

We begin with both RCI and WISHE turned off and with a positive effective static

stability, i. e., with Γ = 0.1, Λ = 0, and ε = 0. This situation differs from that discussed

in the previous section and illustrated in figures 2 and 3 only by the addition of non-zero

Γ. Figures 4 and 5 show the dispersion relations in this case with σ = 1 and σ = 5, so

that the results may be compared directly with those of figures 2 and 3.

The addition of an effective static stability has significant consequences only for

κ ≤ 0.57 for σ = 1 and κ ≤ 1.4 for σ = 5. In this range two of the modes are no longer

stationary, but propagate with phase speeds much less than the phase speeds of the free

gravity modes of short wavelength. These modes are convectively coupled gravity waves

responding to the reduced effective static stability. These moist gravity modes decay,

but at a rate that goes asymptotically to zero as the wavelength increases to infinity.

Two critical transitions thus occur when an effective static stability is added. As

in the case when Γ = 0, free gravity waves are limited to wavelengths less than a cer-

tain value, which we call λ1 in agreement with the previous section. The dimensionless

wavenumber for the transition from free waves to stationary modes is only a weak func-

tion of Γ, remaining near the Γ = 0 value κ1 = σ/2.

A second transition occurs when Γ > 0, from stationary modes to convectively

coupled gravity waves. Let us denote the wavenumber and wavelength of this transition

κ2 and λ2 = 2πΓ
1/2

B /(κ2αm). Thus, three regimes exist for positive Γ, a short wavelength

regime with λ < λ1, an intermediate regime with λ1 < λ < λ2, and a long wavelength

regime with λ > λ2. When σ = 1, λ2 = λ1, and the intermediate regime collapses to

zero size.
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At short wavelengths damped gravity waves with near-free wave propagation speeds

exist. At intermediate wavelengths the gravity modes become stationary and decay with

time. At long wavelengths convectively coupled gravity modes exist, with phase speeds

reduced from free wave phase speeds in concordance with the reduced effective static

stability. These modes decay slowly, with the decay rate going asymptotically to zero

as the wavelength goes to infinity.

In all regimes an additional stationary mode exists. In the short and intermediate

wavelength regimes the stationary mode decays slowly, whereas in the long wavelength

regime it decays rapidly.

3.2 Radiative-convective instability (RCI)

We turn on cloud-radiation interactions by setting ε = 0.2. This has the indirect con-

sequence of making the effective static stability negative as well, with Γ = −0.1 for our

current choice of parameter values.

The dispersion relations for σ = 1 and σ = 5 are shown in figures 6 and 7. As in the

case of zero effective static stability (Γ = 0: figures 2 and 3), there is no long wavelength

regime and no propagating modes exist for λ > λ1. The only significant difference

between this case and the Γ = 0 case is that the stationary mode is unstable rather than

neutral. The dimensionless growth rate is approximately 0.1 for all wavenumbers except

the very longest, so disturbances will amplify with little or no scale selection. There is

no significant change in the character of the gravity waves.

We call the unstable stationary modes radiative-convective instability (RCI) modes

since they result from the interaction between radiation and convective cloudiness. An

increase in cloudiness suppresses outgoing longwave radiation, which causes a heating

anomaly, which further enhances convection and cloudiness. A decrease in cloudiness

has the opposite effect.
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3.3 WISHE modes

If we turn off cloud-radiation interactions and set Λ = −0.4, corresponding to η = −0.8,

then WISHE instability occurs. Figures 8 and 9 show that this instability is a long

wavelength phenomenon in the current model. The instability vanishes for κ exceeding

about 1.5 for both σ = 1 and σ = 5. Maximum growth rates occur near κ = 0.5.

The phase speed of the WISHE instability is to the east in this case, as expected

by the choice of sign for η. The largest phase speeds occur at the longest wavelengths.

The phase speeds at the wavelength of maximum growth rate range between 0.3 and 0.6

times the free gravity wave speed of 50 m s−1, or 15 − 30 m s−1.

Interestingly, the stationary mode in the non-WISHE case becomes a propagating

unstable mode when WISHE is turned on. The original propagating modes decay,

with the eastward-moving propagating mode decaying particularly strongly at small

wavenumber. This appears to be in conflict with the results of Neelin and Yu (1994), who

find that their analogous eastward-propagating mode becomes unstable when WISHE is

introduced.

3.4 Combined RCI-WISHE modes

When both cloud-radiation interactions and WISHE are turned on, the result is much

as one might expect — a common unstable mode occurs which takes on the character

of a WISHE mode for small wavenumber and RCI for large wavenumber. These results

are illustrated in figures 10 and 11.

4 Discussion of results

The non-dimensionalization of the present model allows the application of the results

over a wide range of physical parameters. However, the constraints imposed by cumulus

ensemble models suggest that (σα)−1 is in the range 1 − 4 d. In individual values of

σ and α aren’t well constrained by available observations or models. However, for the
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examples presented in the previous two sections, the smallest plausible value of α−1 is

1 d if σ = 1 and 5 d if σ = 5. In either case, λ1 ≈ 52000 km, assuming that the vertical

half-wavelength of disturbances equals the depth of the troposphere. Since this value

exceeds the circumference of the earth, all physically possible equatorial waves must be

in the short wavelength regime. This has several consequences:

• Convective coupling damps gravity waves with physically possible wavelengths, but

it doesn’t significantly reduce their phase speed. The regime in which gravity waves

propagate more slowly than free waves in response to an effective static stability

reduced by convection is not physically realizable because the wavelengths would

be far too long.

• The WISHE instability exists in the model, but if the effective static stability

takes on positive values in the range suggested by Emanuel, Neelin, and Brether-

ton (1994), i. e., Γ ≈ 0.1, then WISHE instability only occurs for wavelengths

exceeding 2πΓ
1/2

B /(κmaxαm) where κmax ≈ 1.5, or about 17000 km if σ = 1 and

86000 km if σ = 5. Thus, pure WISHE modes have global-scale wavelengths for

small σ and are physically unrealizable for large σ.

• RCI and the combined RCI-WISHE instability both have a dimensionless growth

rate of order 0.1 for all physically realizable wavelengths with the estimates of

model parameters used in this paper. For α−1 = 1 d, this corresponds to an e-

folding time for amplification of 10 d, whereas for α−1 = 5 d, the e-folding time is

50 d.

The results of this work are in disagreement with those of Neelin and Yu (1994), in

that gravity modes responding to the reduced static stability provided by deep convection

occur for physically realizable wavelengths in their model. This is doubtless due to their

use of the Betts-Miller cumulus parameterization, which assumes an adjustment time of

≈ 2 h rather than ≥ 1 d, as assumed in our model.
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Two caveats need to be mentioned concerning the present work. First, the com-

putations need to be extended to an equatorial beta-plane in order for comparisons to

be made with, e. g., the observational results on large scale tropical modes of Wheeler

and Kiladis (1999). However, given that equatorial Kelvin waves propagate at the same

speed as free gravity waves of the same equivalent depth, and that the propagation

speeds of all other modes typically scale with the propagation speed of Kelvin waves,

it seems probable that the spectrum of convectively coupled wave modes predicted by

our model on an equatorial beta plane will be more consistent with free gravity wave

propagation speeds rather than the reduced speeds inferred by Wheeler and Kiladis.

Work on this extension is in progress.

The second caveat is the assumption that the dominant vertical mode has a half-

wavelength equal to the tropospheric depth. This has been the conventional assumption

for many years in studies of tropical dynamics, but Mapes (1993, 2000) has challenged

this idea, suggesting that the vertical structure of stratiform rain regions, which have a

half-wavelength roughly equal to half the depth of the troposphere, may play a critical

role in tropical atmospheric dynamics. If this is so, then we need to completely rethink

the basis of the model.

5 Conclusions

The model presented in this paper attempts to make the simplest assumptions about

the interaction between deep convective clouds, atmospheric stability and humidity, and

radiation which are consistent with our current understanding of the subject. Compar-

isons with observations and the results of cumulus ensemble models constrain certain

model parameters. As a result, the tendency of convection to reduce the effective static

stability and thus reduce gravity wave propagation speeds only works for gravity waves

with wavelengths greater than the circumference of the earth. The model assumption

that the dominant vertical wavelength of convectively coupled disturbances is twice the
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depth of the troposphere is crucial to the above conclusions, and needs further exami-

nation. In addition, the results need to be extended from the non-rotating case to an

equatorial beta-plane.
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Figure 1: Plot of precipitation rate in the tropics versus precipitable water. Figure

courtesy of Chris Bretherton.
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Figure 2: Neutral effective stability with σ = 1: Dispersion relation for all modes which

occur with Γ = 0, Λ = 0, and ε = 0, presented as (a) the real part of the dimensionless

phase speed φ and (b) the imaginary part of the dimensionless frequency Ω. Solid, short-

dashed, and long-dashed modes correspond between the phase speed and the growth rate

panels. Note that solid lines hide dashed lines in some cases.
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Figure 3: Neutral effective stability with σ = 5: Otherwise as in figure 2.
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Figure 4: Statically stable with Γ = 0.1 and σ = 1: Otherwise as in figure 2.
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Figure 5: Statically stable with Γ = 0.1 and σ = 5: Otherwise as in figure 2.
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Figure 6: RCI case with Γ = −0.1, ε = 0.2, and σ = 1: Otherwise as in figure 2.
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Figure 7: RCI case with Γ = −0.1, ε = 0.2, and σ = 5: Otherwise as in figure 2.
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Figure 8: WISHE case with Γ = 0.1, Λ = −0.4, and σ = 1: Otherwise as in figure 2.
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Figure 9: WISHE case with Γ = 0.1, Λ = −0.4, and σ = 5: Otherwise as in figure 2.
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Figure 10: Combined RCI-WISHE case with Γ = −0.1, Λ = −0.4, ε = 0.2, and σ = 1:

Otherwise as in figure 2.

35



0 1 2 3 4 5
-1.5

-1

-0.5

0

0.5

1

1.5

R
e(

ph
i)

A - phase speed
sigma = 5

Gamma = -0.1, Lambda = -0.4, epsilon = 0.2

0 1 2 3 4 5
kappa

-6

-4

-2

0

2

Im
(O

m
eg

a)

B - growth rate

Figure 11: Combined RCI-WISHE case with Γ = −0.1, Λ = −0.4, ε = 0.2, and σ = 5:

Otherwise as in figure 2.
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