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ABSTRACT

Motivation: How to find motifs from genome-scale functional

sequences, such as all the promoters in a genome, is a challenging

problem. Word-based methods count the occurrences of oligomers

to detect excessively represented ones. This approach is known to

be fast and accurate compared with other methods. However, two

problems have hampered the application of such methods to large-

scale data. One is the computational cost necessary for clustering

similar oligomers, and the other is the bias in the frequency of fixed-

length oligomers, which complicates the detection of significant

words.

Results: We introduce a method that uses a DNA Gray code and

equiprobable oligomers, which solve the clustering problem and

the oligomer bias, respectively. Our method can analyze 18 000

sequences of ∼1 kbp long in 30 s. We also show that the accuracy

of our method is superior to that of a leading method, especially for

large-scale data and small fractions of motif-containing sequences.

Availability: The online and stand-alone versions of the application,

named Hegma, are available at our website:

http://www.genome.ist.i.kyoto-u.ac.jp/~ichinose/hegma/
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1 INTRODUCTION

The technological development of next-generation sequencing has

enabled us to obtain genome-scale promoter sequences (Wakaguri

et al., 2008). The first step toward unraveling the regulatory

mechanisms from such large-scale data is to identify cis-regulatory

motifs. Existing computational algorithms used for motif finding

may be categorized into three classes: (1) motif discovery from

promoter sequences in a single genome (Sandve and Drabløs, 2006);

(2) phylogenetic footprinting that uses promoter sequences from

multiple species (Das and Dai, 2007); and (3) motif search relying

on known motif models, such as JASPAR (Sandelin et al., 2004)

and TRANSFAC (Wingender, 2004). To predict the locations of

motifs, each class adopts a distinct strategy: Class (1) tries to find

particular words or sets of similar words significantly enriched

in promoters; Class (2) aligns orthologous genomic sequences

and extracts the sites that are well-conserved among species; and

Class (3) finds the sites that match a list of known motifs cataloged

∗To whom correspondence should be addressed.

in a library. Although the latter two classes are applicable to genome-

scale promoter sequences in principle, the high computational cost

prohibits application of the first class to large-scale data, despite

the fact that motif discovery is the only way if we have no prior

knowledge of other species or known motifs.

Of the several different approaches adopted in motif discovery,

word-based methods are much more scalable than other approaches

(Das and Dai, 2007), such as expectation maximization (Bailey and

Elkan, 1994) or Gibbs sampling (Lawrence et al., 1993). In principle,

a word-based method exhaustively counts all the oligomers in a

given set of sequences and detects the ones that are represented

more abundantly than the background frequencies. However, there

are two problems hindering the application of this method to large-

scale data. First, it is not trivial to cluster similar oligomers into

fewer groups. Fundamentally, a word-based method initially detects

interesting oligomers without allowing any substitutions, whereas

a motif is typically a set of similar oligomers that contain some

variations among them. Hence, we need to apply a clustering

method to gather similar oligomers. However, the computational

cost rapidly increases with the number of initial oligomers or the

degree of allowed variations. Second, the detection of significantly

abundant oligomers is complicated by the variable background

frequencies of different oligomers with a fixed length. For example,

the background frequencies of AT-rich and GC-rich oligomers

can differ extensively in human promoter sequences. Moreover,

the difference becomes more remarkable for longer oligomers.

Thus, we have to carefully evaluate the statistical significance of

over-representation of particular oligomers in large-scale data.

Here, we report a new motif discovery method that can analyze

tens of thousands of DNA sequences each ∼1 kbp long. We solve

the first problem by using a DNA Gray code [originally proposed by

Gray (1947), see also Er (1984)]. The DNA Gray code is an ordering

of oligomers in which adjacent oligomers differ from each other by

only one nucleotide. Since neighboring oligomers in the DNA Gray

code are similar to one another, we can solve the first problem by

searching only neighborhoods within the DNA Gray code. To solve

the second problem, we use ‘equiprobable’ oligomers, the lengths

of which are variably adjusted so that every oligomer should have

an approximately equal background probability. It is easily shown

that the equiprobable oligomers can be naturally combined with the

DNA Gray code.

We implement our motif discovery method in C to produce the

computer program named ‘Hegma’ and evaluate the performance

of Hegma by using a known database, cisRED (Robertson et al.,

2006). The benchmark test indicates that in most situations Hegma

© The Author(s) 2011. Published by Oxford University Press.
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outperforms Weeder (Pavesi et al., 2004), the best existing word-

based motif discovery tool (Tompa et al., 2005). As Hegma is three

to four orders of magnitude faster than Weeder, Hegma may be

applicable to unprecedented scales of data analyses.

2 METHODS

2.1 DNA Gray code

A Gray code is a coding system of binary numbers in which adjacent numbers

differ by only one bit. Although Gray has initially proposed this code as such

binary numbers (Gray, 1947), we can easily extend it to quaternary numbers

(Er, 1984) to be applied to a DNA sequence.

The DNA Gray code can be constructed iteratively from monomers to

arbitrary length oligomers. Consider a monomer code (A,G,C,T). This code is

obviously a Gray code because adjacent monomers differ by one nucleotide.

Note that we regard the last monomer to be adjacent to the first monomer,

and this circularity holds for longer oligomers. We prepare four copies of the

monomer Gray code and concatenate them with each nucleotide, but in the

cases of G and T, the copies are arranged in the reverse order. This procedure

yields the dimer Gray code as illustrated in Figure 1. In the same manner

as the dimers, we can construct the DNA Gray code of k-mers (k >1) by

preparing four copies of the (k−1)-mer Gray code, two of which are reversed

and concatenating them to each nucleotide.

In general, if the (k−1)-mer code is a Gray code, the k-mer code

constructed by the above procedure is also a Gray code. This fact can be

understood from the following observations. We can partition the k-mer

Gray code into four regions in which the first nucleotides in each region are

identical. Inside each region, the oligomers are arranged in Gray code order

because the first nucleotides are identical and the others are the (k−1)-mer

Gray code. On the other hand, two oligomers at both sides of a boundary

between neighboring regions are identical except for the first nucleotides

because of the reverse copy. Consequently, the k-mer code is inductively a

Gray code as the monomer code is a Gray code.

The DNA Gray code has an ordered tree structure as a consequence of the

construction process mentioned above (Er, 1984). This implies that we can

apply the depth-first search algorithm to the tree to naturally order oligomers

of variable lengths. This feature is important in combining the DNA Gray

code with the equiprobable oligomers, as discussed later in Section 2.3.

The Hamming distance between oligomers located at a distance d in the

DNA Gray code is smaller than or equal to d. In this regard, when we extract

some consecutive oligomers from the DNA Gray code, those oligomers are

similar to one another. However, all similar oligomers are not necessarily in

a neighborhood in the DNA Gray code, i.e. two oligomers having a small

Hamming distance can be located at distant positions. Nevertheless, we can

show that the property of the neighboring similarity is beneficial for efficient

data processing compared with conventional methods (Section 3).

Fig. 1. Construction process of the DNA Gray code of dimers. The ordinary

and reverse copies in the second row are copied from the monomer Gray

code in the first row. The concatenation of the first and second rows yields

the dimer Gray code shown in the third row.

2.2 Shift detection

Two oligomers with a shift relation, for example ACGGT and CGGTC, are

similar to each other in the sense of edit distance, although the Hamming

distance between them is large. Because of the large Hamming distance,

we cannot immediately detect the similarity between such oligomers in the

DNA Gray code. Fortunately, however, we can detect the shift relations of

the oligomers at a low cost by taking advantage of the feature that the DNA

Gray code is left shift continuous.

Let S be a semi-infinite sequence, S =s0s1 ···si ··· ,si ∈{A,G,C,T}. The left

shift σ of the sequence is defined by:

σ(S)=σ(s0s1 ···)=s1s2 ··· . (1)

Note that the left shift is the inverse of the construction of the DNAGray code;

in the construction process, we concatenate oligomers with each nucleotide,

whereas we remove the first nucleotides from the oligomers in the left shift.

To explain the left shift continuity, we introduce a real-valued

representation of the sequence in the DNA Gray code. Let Gk =

{g0,g1,...,gi,...,gN−1} be a DNA Gray code with N =4k oligomers,

where gi is an oligomer of length k, gi =si0si1 ···sik−1. The real-valued

representation φk of gi is defined by:

xi =φk(gi)=
i

4k
,xi ∈[0,1). (2)

In general, there is also a real-valued representation φ of a semi-infinite

sequence S, x=φ(S) as k →∞. Our aim here is to show the function f that

corresponds to the left shift σ in the real-valued domain x.

In order to understand the left shift function f , we consider the construction

process of the DNA Gray code in the real-valued domain, as shown

in Figure 2. The copies and reverse copies in the construction process

correspond to the linear maps that have positive and negative slopes in

the real-valued domain, respectively. Therefore, the process is expressed

as shown in Figure 2a. Since the left shift is the inverse process of the

construction, we can obtain the left shift function as the inverse map, as

shown in Figure 2b. This function is equivalent to the composition map of

the tent map well known in chaos theory (Alligood et al., 1997).

It should be noted that the function f is continuous. The left shift continuity

implies that the image mapped from a contiguous region in the DNA Gray

code, which corresponds to a set of similar oligomers, is also contiguous.

If the functions were discontinuous, a contiguous region would be mapped

to scattered regions. The left shift continuity ensures that we can obtain a

single region whenever a contiguous region is mapped.

Figure 3 illustrates two examples of contiguous regions r1 and r2, and their

images r′
1 and r′

2. The region r2 overlaps with the image r′
1 (Fig. 3b), which

corresponds to the left shifts of oligomers in r1 (Fig. 3a). Since this implies

that r2 is included in the left shifts of r1, we can judge that those regions

have a shift relation. Thanks to the left shift continuity, a shift relation can

be detected by mapping only two oligomers at the beginning and end of the

region even though the contiguous region is composed of many oligomers.

To detect overlapped pairs in a set of contiguous regions, we compare

the regions with a sorted list of their images. We can compare those lists in

(a) (b)

Fig. 2. Construction process and left shift of the DNA Gray code in the

real-valued domain. (a) The construction process can be expressed as linear

maps that have positive (A and C) and negative (G and T) slopes. (b) The left

shift function f can be understood as the inverse of the construction process.
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(a) (b)

Fig. 3. Mappings from two contiguous regions (r1 and r2) to their images (r′
1

and r′
2). (a) The relations between the contiguous regions and their images are

indicated on the left shift function f . (b) All contiguous regions are illustrated

on the same unit line. Since the region r2 overlaps with the image r′
1, there

is a shift relation between r1 and r2.

Fig. 4. An example of equiprobable oligomers arranged in the order of Gray

code. We use the 0-th order Markov model with I(A)=2 and I(C)=3. We

fix the threshold parameter θ=8. The height of a box corresponds to its

information content.

a linear order of the number of regions. Consequently, we can detect shift

relations of oligomers quite efficiently.

2.3 Equiprobable oligomers

The background probability is a model that represents an intrinsic property

of DNA sequences regardless of the presence of motifs. We can statistically

detect an oligomer as a motif when the frequency of its occurrence is

significantly higher than the background probability. In this work, we use

the m-th order Markov model of the given sequences as the model of the

background probability.

As we mentioned in Section 1, a variation among the background

probabilities causes statistical bias in the significance detection. To overcome

this problem, we propose equiprobable oligomers whose lengths are variable,

but whose background probabilities are adjusted to be nearly identical to one

another.

Let I(S) be the background information content of an oligomer S, where

I(S)=−log2 P(S) and P(S) is the background probability. Let S′ be the

oligomer in which the right-most nucleotide is removed from S. We define

the equiprobable oligomer S such that it has the following property,

I(S′)<θ and I(S)≥θ, (3)

where θ is a threshold parameter.

As an example, we consider equiprobable oligomers that consist of only

A and C with the 0-th order Markov model as the background probability.

In the 0-th order Markov model, the background information content I(S)

of an oligomer S is expressed as the sum of the background information

contents of individual nucleotides, i.e. I(S)= I(s0s1 ···sk−1)=
∑k−1

i=0 I(si).

Figure 4 illustrates such equiprobable oligomers. Each box corresponds to

a nucleotide and its height is drawn to be proportional to the information

content of that nucleotide. Therefore, when the (downwardly) heaped boxes

exceed the threshold θ, the column of those nucleotides becomes an

equiprobable oligomer. All the equiprobable oligomers do not have exactly

the same probability; for example, I(AAAA)=8 and I(CCC)=9. However,

the equiprobability is considerably improved compared with fixed-length

oligomers, especially in the cases of longer oligomers and a higher order

Markov model. The validity of the digitizing approximation is discussed in

Section S.1 in Supplementary Material.

Consider two oligomers, S1 and S2, such that S1 is shorter than S2. If S2

is an equiprobable oligomer and S1 matches a prefix of S2, S1 cannot be

an equiprobable oligomer because I(S1) should be smaller than θ under the

property of Equation (3). This observation implies that the set of equiprobable

oligomers is a prefix code in which no oligomer matches a prefix of any other

oligomer. Recall the feature that the DNA Gray code has the ordered tree

structure. In the prefix code, a code word is always located at a leaf of the

tree. Therefore, the equiprobable oligomers can be ordered on the tree and

hence we can naturally combine the equiprobable oligomers with the DNA

Gray code so that adjacent oligomers differ from each other by just one

nucleotide up to the length of the shorter oligomer.

Algorithm 1 Display equiprobable oligomers with DNA Gray code

procedure equigraycode(string S,boolean f )

if I(S)≥θ then

print S

else

if f then

equigraycode(S+”A”,true)

equigraycode(S+”G”,false)

equigraycode(S+”C”,true)

equigraycode(S+”T”,false)

else

equigraycode(S+”T”,true)

equigraycode(S+”C”,false)

equigraycode(S+”G”,true)

equigraycode(S+”A”,false)

end if

end if

Algorithm 1 shows the recursive procedure that performs the depth-first

search on the tree of the DNA Gray code. By calling equigraycode(””,true),

one can display all of the equiprobable oligomers with the DNA Gray code.

If we use the i.i.d. uniform distribution as the background model, we can

obtain the DNA Gray code with a fixed length of θ/2, because I(S)=2|S|

in this case. Therefore, Algorithm 1 can generate the DNA Gray code as a

special case.

2.4 Significance detection

We have now obtained the DNA Gray code of equiprobable oligomers.

To detect significant motifs from a given set of sequences, we count the

occurrences of equiprobable oligomers. Let C be a set of occurrence counts

of equiprobable oligomers:

C ={c0,c1,...,ci,...,cM−1}, (4)

where M is the number of equiprobable oligomers and ci is the count of the

i-th oligomer in the DNA Gray code. We define a contiguous region [i,j] as

a cluster if it satisfies the following conditions,

i≤ j,ci−1 =cj+1 =0 and ck >0,k ∈[i,j]. (5)

The cluster is a set of similar oligomers that appear in the given sequences.

We detect the significance of the cluster by using its width w= j− i+1

and the total count o=
∑j

k=i ck . The null hypothesis is that the cluster is
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obtained from random sequences generated by the background model. In

the background model, the occurrence probability p of each oligomer can

be approximated by p=1/M because oligomers are equiprobable. Let q

be the probability of an oligomer that occurs at least once. Thus, q is

expressed as q=1−(1−p)T , where T is the total number of oligomers in

the given sequences. The random width W against w can be understood as

Bernoulli trials where there are W -successes with the probability q between

two failures. Therefore, the probability distribution of W is a geometric

distribution represented by:

P(W )=qW (1−q)2. (6)

Since O≥w, the random total count O against o is conditioned by the width

w. If there is no constraint, the probability distribution of O is a binomial

distribution with the success probability wp and the number of observations

T . The conditional probability distribution is represented by:

P(O|w)=Bin(O)/Bin(O≥w), (7)

where Bin is the binomial distribution:

Bin(O)=

(

T

O

)

(wp)O(1−wp)T−O. (8)

Using these distributions, we define the p-value pv of a cluster by:

pv=P(W ≥w)P(O≥o|w). (9)

Since there are many clusters in the set of occurrence counts C, a large

number of significance tests must be involved. To reduce the false discovery

rate, we use the e-value ev instead of the p-value, which is adjusted by the

number of equiprobable oligomers M as follows,

ev=P(W ≥w)P(O≥o|w)M. (10)

If ev is smaller than a significance level α, the null hypothesis is rejected and

hence the corresponding cluster is judged to be significantly enriched.

2.5 Summary of methods

The flowchart shown in Figure 5 summarizes our motif discovery procedure.

The parameter that characterizes each process is presented beneath the

description of the process.

(1) Threshold parameter θ: the threshold parameter θ is critical in

our method because it regulates the probability of equiprobable

oligomers p. Empirically, we can obtain good results when we set

p=1/L, where L is the total sum of the lengths of the input sequences.

Therefore, in the application, θ is automatically adjusted in accordance

with the input sequences, such that θ= log2(L)−ǫ (empirically, ǫ=1).

The rationale behind this estimation is discussed in Section S.2 in

Supplementary Material.

Fig. 5. Flowchart of the motif discovery. Each box that corresponds to a

process presents the description (upper) and the parameter (lower) within it.

(2) Order of Markov model m: the background Markov model is

constructed from the input sequences that include the motifs

themselves. Since the regions occupied by the motifs are much smaller

than the rest of the sequences, the background model can be properly

estimated if m is small. The default value of m is fixed at 3.

(3) Significance level α: the significance level α is not crucially influential

in our method. We set the default value at 0.01 as a typical value.

(4) Number of shifts: after finding significant clusters, we sort them in the

ascending order of their e-values. We pick up each cluster in this order

and look for other clusters that have a shift relation with it. The clusters

thus found are merged into a single motif. This process is recursively

performed. The depth of this recursion defines the number of shifts

allowed. We set the default value for the depth at 3.

2.6 Data and statistics

As the benchmark data, we use the set of human promoter sequences in

the cisRED database (Human v9.0, Robertson et al., 2006). The cisRED

database consists of a set of promoter sequences and a set of motifs defined

in those sequences, where each motif is conserved among several species and

annotated according to the known motif database TRANSFAC (Wingender,

2004). The number of promoter sequences is 18 779. The total number of

nucleotides is ∼47 Mbp, of which valid (unmasked) nucleotides amount to

∼31 Mbp. After removal of redundancy, the number of conserved motifs is

236 208 and the number of nucleotides occupied by the motifs is ∼2.3 Mbp.

By comparing the sites predicted by our method with those listed in the

cisRED database, we assess the performance of our method at two distinct

levels, the nucleotide level and the site level. The statistics we use are

essentially the same as those adopted by Tompa et al. in their assessment

strategy (Tompa et al., 2005). At the nucleotide level, each dataset consists

of pairs (i,p), where i is the sequence ID and p is the nucleotide position

within the site. We denote the sets of known sites and predicted sites by nK

and nP, respectively. At the site level, each set consists of triples (i,s,e),

where i is the sequence ID, and s and e are the start and end positions of the

site, respectively. We denote the sets of known and predicted sites by sK and

sP, respectively.

At the nucleotide level, the true positive nTP is simply defined by:

nTP=|nK ∩nP|, (11)

where |·| implies the size of the set. At the site level, the true positive sTP

is expressed as:

sTP=
∣

∣{u∈sK|∃v∈sP;u.i=v.i,ov(u,v)≥ len(u)/4}
∣

∣, (12)

where ov(u,v)=min(u.e,v.e)−max(u.s,v.s)+1 (overlap) and len(u)=u.e−

u.s+1 (length). This expression implies that sTP is the number of known

sites that overlap with the predicted sites by at least one-quarter of the length

of the known site.

The false positive and the false negative are defined as follows,

xFP=|xP|−xTP,xFN =|xK|−xTP, (13)

where x=n (nucleotide level) or x=s (site level). The true negative is defined

only at the nucleotide level:

nTN =L−nFP−nFN −nTP, (14)

where L is the number of valid nucleotides in the promoter sequences.

Of the above definitions, only the false positive at the site level sFP is

different from that of Tompa et al. (2005). Tompa et al. allowed overlaps

between the predicted sites and removed such sites from sFP if each site

overlapped with a known site. In contrast, we use a slightly more stringent

criterion to check whether the clustering of motifs is appropriately performed,

i.e. we include the overlaps of the predicted sites in sFP even if the sites

overlap with a known site.
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Either at the nucleotide (x=n) or at the site (x=s) level, the sensitivity

xSn and the positive predictive value xPPV are defined as usual:

xSn=xTP/(xTP+xFN), (15)

and

xPPV =xTP/(xTP+xFP). (16)

To average these quantities to give a single statistic, we adopt the correlation

coefficient nCC at the nucleotide level, which is defined by:

nCC =
nTP ·nTN −nFN ·nFP

√

(nTP+nFN)(nTN +nFP)(nTP+nFP)(nTN +nFN)
. (17)

In a similar way, we adopt the average site performance sASP at the site

level, which is defined by:

sASP= (sSn+sPPV )/2. (18)

3 RESULTS AND DISCUSSION

3.1 Performance evaluation with all motifs in cisRED

To examine the performance of our method, Hegma, we adopt

essentially the same evaluation scheme as that used by Tompa et al.

(2005). To evaluate the effects of data size on the performance, we

prepare sets of sequences that are randomly selected from the human

promoter sequences of the cisRED database. In the following results

shown in Figure 6, we prepare 10 sets for each number of sequences.

Figure 6a indicates that nPPV at the nucleotide level is insensitive

to the variation in the number of sequences. In the default setting, our

method adjusts the threshold parameter such that the equiprobable

oligomers should have the probability p=1/L under the background

(a)

(b)

Fig. 6. Prediction statistics at the nucleotide level (a) and the site level (b),

as a function of the number of sequences. The default parameter set described

in Section 2.5 is used for calculation. Each symbol indicates the average of

10 tests with the sequences randomly selected from the full data. Error bars

indicate the maximum and minimum values of the statistics. The right-most

statistics correspond to those for the full data: where nSn=0.27, nPPV =

0.11 and nCC =0.067 at the nucleotide level; sSn=0.34, sPPV =0.13 and

sASP=0.23 at the site level.

model, as discussed in Section 2.5. This adjustment maintains the

null distribution at a constant precision, which accounts for the

constant rate of false positive (or type I error) and hence nearly

constant nPPV . In contrast, nSn is improved as the number of

sequences is increased. This improvement can be explained by the

general characteristics of statistical analysis, where a larger data size

leads to more precise results.

The results at the site level are similar to those at the nucleotide

level except that sPPV decreases for larger numbers of sequences

(Fig. 6b). This decrease in sPPV originates from overlaps between

predicted sites, which augment sFP under our definition. Our

method can detect a shift relation between overlapped sites and

merge them. If this process were perfectly performed, the overlaps of

the predicted sites would be repressed. However, we fail to eliminate

all the overlaps partly because we restrict the size of shifts to 3 in

the default setting. We impose this restriction to avoid the risk of

merging unrelated motifs. Improved discrimination between related

and unrelated motifs is one task to be explored in the future.

Figure 7 shows the memory usage and the calculation time.

Calculations are made on a computer with 3 GHz Intel Xeon® with

16 GB memory running under Linux® 2.6. Both time and memory

linearly increase with the number of sequences. It is noteworthy that

we need only 30 s for calculation of the full data (18 779 sequences,

31 Mb). The memory usage of 1.1 GB is also sufficiently feasible

for current conventional computers.

3.2 Performance evaluation with specific motifs

We compare the performance of our method to that of Weeder

(version 1.4.2, Pavesi et al., 2004), a representative word-based

method based on exhaustive enumeration with a limited number

of mutations. We choose Weeder because it performed best in the

assessment of Tompa et al. (2005).

Almost all the conventional tools, including Weeder, assume that

given promoter sequences are derived from coregulated genes. This

assumption implies that most of the given sequences have at least one

specific motif that contributes to the specific regulation. Therefore,

we prepare a set of sequences in which the fraction of sequences

holding the motif is variably specified. We adopt the motif AhR

as the specific motif, because it is the most frequent motif in the

TRANSFAC annotations. Let R and U be the sets of sequences

with and without the motif AhR, respectively. We select sequences

from R and U according to a predefined percentage that we control.

For example, when the total number of sequences is 1000 and the

Fig. 7. Dependence of memory usage and calculation time on the number

of sequences. Each value is the average of 10 trials. For the full data, the

memory usage is 1.1 GB and the calculation time is 30 s.
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(a)

(b)

Fig. 8. Performance comparison between Hegma and Weeder at the

nucleotide level (a) and the site level (b). The number of sequences is

fixed at 1000. Boxes show the average values of statistics of 10 sets of

sequences. Error bars show the maximum and minimum values of statistics.

The fractions of the motif-containing sequences are varied from 40% to

100%. The parameter setting of our method is default. See the text for the

parameter setting of Weeder.

percentage of motif-containing sequences is 80%, we select 800

sequences from R and 200 sequences from U. In the following

results, we fix the number of sequences at 1000. In order to evaluate

the performance of single-motif detection, we regard only the known

sites as the right sites of the motif AhR, even though the motifs may

be present at other sites in the sequence.

We run Weeder under the following settings: the species code is

HS; the minimal sequence percentage on which the motif has to

appear is 5 (to increase sensitivity); and the top 20 000 (sufficiently

large) motifs are reported. We try the following pairs of motif length

and maximal number of mutations: (6,1), (8,2) and (10,3). Although

motif length 12 is also allowed, we do not try it because of the

prohibitively long calculation time. We determine the positions of

the predicted sites with the tool locator.out included in the Weeder

tools.

Figure 8a shows the results at the nucleotide level. When the

percentage of motif-containing sequences is 100%, i.e. all the

sequences have the specific motif AhR, nCC of Weeder (0.093) is

superior to that of Hegma (0.087). However, Hegma outperforms

Weeder under all other situations. The performance of Weeder

becomes worse as the percentage of motif-containing sequences

decreases, whereas Hegma is little affected by this variation. Since

the average length of equiprobable oligomers in this evaluation is

10.7, our setting of the motif length of Weeder should be impartial.

Furthermore, Weeder also adopts statistical measures based on

Z-score, in a similar way to our method. Therefore, it is most likely

that the equiprobable oligomers adopted in Hegma contribute to

improving performance compared with the fixed-length oligomers

used in Weeder.

Fig. 9. Average statistics for the 10 most frequent motifs at the nucleotide

level. Boxes show the average values for the statistics of motifs. Error bars

show the maximum and minimum values of the statistics. The setting is the

same as that in Figure 8.

The results at the site level (Fig. 8b) are more remarkable than

those at the nucleotide level. At this level, Hegma outperforms

Weeder under all situations, including the case that 100% of the

sequences contain the motif, where sASP of Weeder is 0.23 and

that of Hegma is 0.25. We consider that the merge of shift-related

motifs introduced in Hegma has effectively reduced sFP and hence

improved sPPV , as mentioned in the previous subsection.

We repeat the same analysis as mentioned above for the 10

most frequent motifs in cisRED (AhR, aMEF-2, POU2F1, Pax-5,

DEAF-1, CREB, HNF-1α, DP-1, RSRFC4 and POU3F2). Figure 9

summarizes the results for these 10 motifs at the nucleotide level

by averaging their statistics. The detailed results for individual

motifs together with the results of non-parametric statistical tests are

presented in Section S.4 in Supplementary Material. Clearly, Hegma

outperforms Weeder under all the situations tested. The results at the

site level are also similar to those at the nucleotide level (data not

shown). These observations imply that the performance of Hegma

is more stable than that of Weeder regardless of the type of motif as

well as the fraction of sequences that contain the motif. An additional

examination on a smaller ChIP-seq peak dataset also supports this

conclusion as shown in Section S.3 in Supplementary Material.

The average calculation time per dataset (1000 sequences) for

Weeder is 10 h, whereas that for our method is only 1.4 s when tested

under the same condition mentioned in Section 3.1 and averaged

over 40 trials. Therefore, our method shows considerable advantage

in calculation time as well.

3.3 Analysis of unannotated motifs

In Section 3.1, we regard the predicted sites that do not match

any cisRED annotation as ‘false positives’. However, it is probable

that some of them actually represent true motifs absent from the

cisRED annotation. We then extract such unannotated motifs from

all significant motifs predicted by Hegma in the full data of the

cisRED promoters such that >95% of the sites comprising each

motif do not overlap with any annotated sites. The number of all

the predicted motifs is 7528 (composed of a total of 620 153 sites),

of which the number of unannotated motifs is 1161 (36 443 sites).

Figure 10 illustrates four examples of the unannotated motifs with

the smallest e-values in sequence logos (Schneider and Stephens,

1990).

The unannotated sites tend to be located in distal regions

compared with all the predicted sites; the average position (±SD) of

the unannotated sites is −1140±894 bp relative to the transcription
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Fig. 10. Four examples of unannotated motifs absent from the cisRED

annotation. Each motif is labeled according to the name of the most

similar motif in the JASPAR database (Sandelin et al., 2004). We selected

these motifs as the ones with the smallest e-values: (1) ev = 6.2×10−64,

(2) 1.2×10−40, (3) 1.9×10−35 and (4) 8.6×10−35.

start sites, whereas that of all the predicted sites is −737±837 bp

(p-value of t-test: ≈0). The unannotated sites are a subset of

the predicted sites and its complementary set is associated with

the cisRED annotation. Therefore, this disparity suggests that the

positions of the annotated sites in cisRED may have significant bias

toward proximal regions. These observations may be interpreted as

follows; it may be difficult for a phylogenetic footprinting approach,

including cisRED, to detect conserved motifs in the distal regions,

where the marked sequence divergence or the existence of repetitive

elements hinders reliable sequence alignment compared with more

conserved proximal regions (Suzuki et al., 2004). Therefore, our

method can complement the phylogenetic footprinting approach to

improve the overall sensitivity of motif discovery.

4 CONCLUSION

We have developed a large-scale motif discovery tool, Hegma,

and shown that Hegma is not only applicable to large-scale data,

but also can stably detect motifs even if only a small fraction

of the examined sequences contain the motifs. Thus, Hegma is

applicable to situations where the fraction of motif-containing

sequences is uncontrollable, such as the detection of splicing

enhancers or silencers in exon and intron sequences, or the detection

of microRNA binding sites in UTR sequences. A huge number of

such sequences have already been collected in databases. However,

as our knowledge of those motifs is yet far from complete, it is

difficult to know in advance the percentage of sequences holding the

motifs. We consider that the speed and precision of Hegma would

facilitate discovery of novel motifs from a heap of sequence data.
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