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Abstract

Robust dialogue belief tracking is a key

component in maintaining good quality di-

alogue systems. The tasks that dialogue

systems are trying to solve are becoming

increasingly complex, requiring scalabil-

ity to multi-domain, semantically rich dia-

logues. However, most current approaches

have difficulty scaling up with domains

because of the dependency of the model

parameters on the dialogue ontology. In

this paper, a novel approach is introduced

that fully utilizes semantic similarity be-

tween dialogue utterances and the ontol-

ogy terms, allowing the information to

be shared across domains. The evalua-

tion is performed on a recently collected

multi-domain dialogues dataset, one order

of magnitude larger than currently avail-

able corpora. Our model demonstrates

great capability in handling multi-domain

dialogues, simultaneously outperforming

existing state-of-the-art models in single-

domain dialogue tracking tasks.

1 Introduction

Spoken Dialogue Systems (SDS) are computer

programs that can hold a conversation with a hu-

man. These can be task-based systems that help

the user achieve specific goals, e.g. finding and

booking hotels or restaurants. In order for the

SDS to infer the user goals/intentions during the

conversation, its Belief Tracking (BT) component

maintains a distribution of states, called a belief

state, across dialogue turns (Young et al., 2010).

The belief state is used by the system to take ac-

tions in each turn until the conversation is con-

cluded and the user goal is achieved. In order to

extract these belief states from the conversation,

traditional approaches use a Spoken Language

Understanding (SLU) unit that utilizes a seman-

tic dictionary to hold all the key terms, rephras-

ings and alternative mentions of a belief state. The

SLU then delexicalises each turn using this seman-

tic dictionary, before it passes it to the BT compo-

nent (Wang and Lemon, 2013; Henderson et al.,

2014b; Williams, 2014; Zilka and Jurcicek, 2015;

Perez and Liu, 2016; Rastogi et al., 2017). How-

ever, this approach is not scalable to multi-domain

dialogues because of the effort required to de-

fine a semantic dictionary for each domain. More

advanced approaches, such as the Neural Belief

Tracker (NBT), use word embeddings to alleviate

the need for delexicalisation and combine the SLU

and BT into one unit, mapping directly from turns

to belief states (Mrkšić et al., 2017). Nevertheless,

the NBT model does not tackle the problem of

mixing different domains in a conversation. More-

over, as each slot is trained independently without

sharing information between different slots, scal-

ing such approaches to large multi-domain sys-

tems is greatly hindered.

In this paper, we propose a model that jointly

identifies the domain and tracks the belief states

corresponding to that domain. It uses semantic

similarity between ontology terms and turn

utterances to allow for parameter sharing between

different slots across domains and within a single

domain. In addition, the model parameters are

independent of the ontology/belief states, thus

the dimensionality of the parameters does not

increase with the size of the ontology, making

the model practically feasible to deploy in multi-

domain environments without any modifications.

Finally, we introduce a new, large-scale corpora

of natural, human-human conversations providing

new possibilities to train complex, neural-based

models. Our model systematically improves upon

state-of-the-art neural approaches both in single

and multi-domain conversations.
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2 Background

The belief states of the BT are defined based

on an ontology - the structured representation of

the database which contains entities the system

can talk about. The ontology defines the terms

over which the distribution is to be tracked in

the dialogue. This ontology is constructed in

terms of slots and values in a single domain set-

ting. Or, alternatively, in terms of domains, slots

and values in a multi-domain environment. Each

domain consists of multiple slots and each slot

contains several values, e.g. domain=hotel,

slot=price, value=expensive. In each

turn, the BT fits a distribution over the values of

each slot in each domain, and a none value is

added to each slot to indicate if the slot is not

mentioned so that the distribution sums up to 1.

The BT then passes these states to the Policy Op-

timization unit as full probability distributions to

take actions. This allows robustness to noisy envi-

ronments (Young et al., 2010). The larger the on-

tology, the more flexible and multi-purposed the

system is, but the harder it is to train and maintain

a good quality BT.

3 Related Work

In recent years, a plethora of research has been

generated on belief tracking (Williams et al.,

2016). For the purposes of this paper, two pre-

viously proposed models are particularly relevant.

3.1 Neural Belief Tracker (NBT)

The main idea behind the NBT (Mrkšić et al.,

2017) is to use semantically specialized pre-

trained word embeddings to encode the user ut-

terance, the system act and the candidate slots and

values taken from the ontology. These are fed to

semantic decoding and context modeling modules

that apply a three-way gating mechanism and pass

the output to a non-linear classifier layer to pro-

duce a distribution over the values for each slot. It

uses a simple update rule, p(st) = βp(st−1)+λy,

where p(st) is the belief state at time step t, y is

the output of the binary decision maker of the NBT

and β and λ are tunable parameters.

The NBT leverages semantic information

from the word embeddings to resolve lexi-

cal/morphological ambiguity and maximize the

shared parameters across the values of each slot.

However, it only applies to a single domain and

does not share parameters across slots.

3.2 Multi-domain Dialogue State Tracking

Recently, Rastogi et al. (2017) proposed a multi-

domain approach using delexicalized utterances

fed to a two layer stacked bi-directional GRU net-

work to extract features from the user and the sys-

tem utterances. These, combined with the candi-

date slots and values, are passed to a feed-forward

neural network with a softmax in the last layer.

The candidate set fed to the network consists of

the selected candidates from the previous turn and

candidates from the ontology to a limit K, which

restricts the maximum size of the chosen set. Con-

sequently, the model does not need an ad-hoc be-

lief state update mechanism like in the NBT.

The parameters of the GRU network are de-

fined for the domain, whereas the parameters of

the feed-forward network are defined per slot, al-

lowing transfer learning across different domains.

However, the model relies on delexicalization to

extract the features, which limits the performance

of the BT, as it does not scale to the rich variety of

the language. Moreover, the number of parameters

increases with the number of slots.

4 Method

The core idea is to leverage semantic similarities

between the utterances and ontology terms to com-

pute the belief state distribution. In this way, the

model parameters only learn to model the interac-

tions between turn utterances and ontology terms

in the semantic space, rather than the mapping

from utterances to states. Consequently, informa-

tion is shared between both slots and across do-

mains. Additionally, the number of parameters

does not increase with the ontology size. Do-

main tracking is considered as a separate task but

is learned jointly with the belief state tracking of

the slots and values. The proposed model uses

semantically specialized pre-trained word embed-

dings (Wieting et al., 2015). To encode the user

and system utterances, we employed 7 indepen-

dent bi-directional LSTMs (Graves and Schmid-

huber, 2005). Three of them are used to encode

the system utterance for domain, slot and value

tracking respectively. Similarly, three Bi-LSTMs

encode the user utterance while and the last one

is used to track the user affirmation. A variant of

the CNNs as a feature extractor, similar to the one

used in the NBT-CNN (Mrkšić et al., 2017) is also

employed.
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Figure 1: The proposed model architecture, using Bi-LSTMs as encoders. Other variants of the model

use CNNs as feature extractors (Kim, 2014; Kalchbrenner et al., 2014).

4.1 Domain Tracking

Figure 1 presents the system architecture with two

bi-directional LSTM networks as information en-

coders running over the word embeddings of the

user and system utterances. The last hidden states

of the forward and backward layers are concate-

nated to produce h
d
usr,h

d
sys of size L for the user

and system utterances respectively. In the second

variant of the model, CNNs are used to produce

these vectors (Kim, 2014; Kalchbrenner et al.,

2014). To detect the presence of the domain in the

dialogue turn, element-wise multiplication is used

as a similarity metric between the hidden states

and the ontology embeddings of the domain:

dk = h
d
k ⊙ tanh(Wd ed + bd),

where k ∈ {usr, sys}, ed is the embedding vector

of the domain and Wd ∈ RL×D transforms the

domain word embeddings of dimension D to the

hidden representation. The information about se-

mantic similarity is held by dusr and dsys, which

are fed to a non-linear layer to output a binary de-

cision:

Pt(d) = σ(wd {dusr ⊕ dsys}+ bd),

where wd ∈ R2L and bd are learnable parameters

that map the semantic similarity to a belief state

probability Pt(d) of a domain d at a turn t.

4.2 Candidate Slots and Values Tracking

Slots and values are tracked using a similar archi-

tecture as for domain tracking (Figure 1). How-

ever, to correctly model the context of the system-

user dialogue at each turn, three different cases are

considered when computing the similarity vectors:

1. Inform: The user is informing the system

about his/her goal, e.g. ’I am looking for a

restaurant that serves Turkish food’.

2. Request: The system is requesting informa-

tion by asking the user about the value of

a specific slot. If the system utterance is:

’When do you want the taxi to arrive?’ and

the user answers with ’19:30’.

3. Confirm: The system wants to confirm in-

formation about the value of a specific slot. If

the system asked: ’Would you like free park-

ing?’, the user can either affirm positively or

negatively. The model detects the user affir-

mation, using a separate bi-directional LSTM

or CNN to output ha
usr.

The three cases are modelled as following:

y
s,v
inf = winf {susr ⊕ vusr}+ binf ,

ys,vreq = wreq {ssys ⊕ vusr}+ breq,

y
s,v
af = waf {ssys ⊕ vsys ⊕ h

a
usr}+ baf ,
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where sk,vk for k ∈ {usr, sys} represent seman-

tic similarity between the user and system utter-

ances and the ontology slot and value terms re-

spectively computed as shown in Figure 1, and w

and b are learnable parameters.

The distribution over the values of slot s in do-

main d at turn t can be computed by summing the

unscaled states, yinf , yreq and yaf for each value

v in s, and applying a softmax to normalize the

distribution:

Pt(s, v) = softmax(ys,vinf + ys,vreq + y
s,v
af ).

4.3 Belief State Update

Since dialogue systems in the real-world operate

in noisy environments, a robust BT should utilize

the flow of the conversation to reduce the uncer-

tainty in the belief state distribution. This can

be achieved by passing the output of the deci-

sion maker, at each turn, as an input to an RNN

that runs over the dialogue turns as shown in Fig-

ure 1, which allows the gradients to be propagated

across turns. This alleviates the problem of tun-

ing hyper-parameters for rule-based updates. To

avoid the vanishing gradient problem, three net-

works were tested: a simple RNN, an RNN with

a memory cell (Henderson et al., 2014a) and a

LSTM. The RNN with a memory cell proved to

give the best results. In addition to the fact that it

reduces the vanishing gradient problem, this vari-

ant is less complex than an LSTM, which makes

training easier. Furthermore, a variant of RNN

used for domain tracking has all its weights of the

form: Wi = αiI, where αi is a distinct learn-

able parameter for hidden, memory and previous

state layers and I is the identity matrix. Similarly,

weights of the RNN used to track the slots and val-

ues is of the form: Wj = γjI+ λj(1− I), where

γj and λj are the learnable parameters. These two

variants of RNN are a combination of Henderson

et al. (2014a) and Mrkvsić and Vulić (2018) previ-

ous works. The output is P1:T (d) and P1:T (s,v),
which represents the joint probability distribution

of the domains and slots and values respectively

over the complete dialogue. Combining these to-

gether produces the full belief state distribution of

the dialogue:

P1:T (d, s,v) = P1:T (d)P1:T (s,v).

4.4 Training Criteria

Domain tracking and slots and values tracking are

trained disjointly. Belief state labels for each turn

are split into domains and slots and values. Thanks

to the disjoint training, the learning of slot and

value belief states are not restricted to a specific

domain. Therefore, the model shares the knowl-

edge of slots and values across different domains.

The loss function for the domain tracking is:

Ld = −

N∑

n=1

∑

d∈D

tn(d)logPn
1:T (d),

where d is a vector of domains over the dialogue,

tn(d) is the domain label for the dialogue n and

N is the number of dialogues. Similarly, the loss

function for the slots and values tracking is:

Ls,v = −
N∑

n=1

∑

s,v∈S,V

tn(s,v)logPn
1:T (s,v),

where s and v are vectors of slots and values over

the dialogue and tn(s,v) is the joint label vector

for the dialogue n.

5 Datasets and Baselines

Neural approaches to statistical dialogue develop-

ment, especially in a task-oriented paradigm, are

greatly hindered by the lack of large scale datasets.

That is why, following the Wizard-of-Oz (WOZ)

approach (Kelley, 1984; Wen et al., 2017), we

ran text-based multi-domain corpus data collec-

tion scheme through Amazon MTurk. The main

goal of the data collection was to acquire human-

human conversations between a tourist visiting a

city and a clerk from an information center. At the

beginning of each dialogue the user (visitor) was

given explicit instructions about the goal to ful-

fill, which often spanned multiple domains. The

task of the system (wizard) is to assist a visitor

having an access to databases over domains. The

WOZ paradigm allowed us to obtain natural and

semantically rich multi-topic dialogues spanning

over multiple domains such as hotels, attractions,

restaurants, booking trains or taxis. The dialogues

cover from 1 up to 5 domains per dialogue greatly

varying in length and complexity.

5.1 Data Structure

The data consists of 2480 single-domain dialogues

and 7375 multi-domain dialogues usually span-

ning from 2 up to 5 domains. Some domains con-

sists also of sub-domains like booking. The aver-

age sentence lengths are 11.63 and 15.01 for users



436

WOZ 2.0 New WOZ (only restaurants)

Slot NBT-CNN Bi-LSTM CNN NBT-CNN Bi-LSTM CNN

Food 88.9 96.1 96.4 78.3 84.7 85.3

Price range 93.7 98.0 97.9 92.6 95.6 93.6

Area 94.3 97.8 98.1 78.3 82.6 86.4

Joint goals 84.2 85.1 85.5 57.7 59.9 63.7

Table 1: WOZ 2.0 and new dataset test set accuracies of the NBT-CNN and the two variants of the

proposed model, for slots food, price range, area and joint goals.

and wizards respectively. The combined ontol-

ogy consists of 5 domains, 27 slots and 663 val-

ues making it significantly larger than observed in

other datasets. To enforce reproducibility of re-

sults, we distribute the corpus with a pre-specified

train/test/development random split. The test and

development sets contain 1k examples each. Each

dialogues consists of a goal, user and system ut-

terances and a belief state per turn. The data and

model is publicly available.1

5.2 Evaluation

We also used the extended WOZ 2.0 dataset (Wen

et al., 2017).2 WOZ2 dataset consists of 1200 sin-

gle topic dialogues constrained to the restaurant

domain. All the weights were initialised using nor-

mal distribution of zero mean and unit variance

and biases were initialised to zero. ADAM op-

timizer (Kingma and Ba, 2014) (with 64 batch

size) is used to train all the models for 600 epochs.

Dropout (Srivastava et al., 2014) was used for reg-

ularisation (50% dropout rate on all the intermedi-

ate representations). For each of the two datasets

we compare our proposed architecture (using ei-

ther Bi-LSTM or CNN as encoders) to the NBT

model3 (Mrkšić et al., 2017).

6 Results

Table 1 shows the performance of our model in

tracking the belief state of single-domain dia-

logues, compared to the NBT-CNN variant of the

NBT discussed in Section 3.1. Our model outper-

forms NBT in all the three slots and the joint goals

for the two datasets. NBT previously achieved

state-of-the-art results (Mrkšić et al., 2017). More-

over, the performance of all models is worse on the

new dataset for restaurant compared to WOZ 2.0.

1http://dialogue.mi.eng.cam.ac.uk/index.php/corpus/
2Publicly available at https://mi.eng.cam.ac.

uk/˜nm480/woz_2.0.zip.
3Publicly available at https://github.com/

nmrksic/neural-belief-tracker.

New WOZ (multi-domain)

Model F1 score Accuracy %

Uniform Sampling 0.108 10.8

Bi-LSTM 0.876 93.7

CNN 0.878 93.2

Table 2: The overall F1 score and accuracy for the

multi-domain dialogues test set.4

This is because the dialogues in the new dataset

are richer and more noisier, as a closer resem-

blance to real environment dialogues.

Table 2 presents the results on multi-domain di-

alogues from the new dataset described in Sec-

tion 5. To demonstrate the difficulty of the multi-

domain belief tracking problem, values of a the-

oretical baseline that samples the belief state uni-

formly at random are also presented. Our model

gracefully handles such a difficult task. In most

of the cases, CNNs demonstrate better perfor-

mance than Bi-LSTMs. We hypothesize that this

comes from the effectiveness of extracting local

and position-invariant features, which are crucial

for semantic similarities (Yin et al., 2017).

7 Conclusions

In this paper, we proposed a new approach that

tackles the issue of multi-domain belief tracking,

such as model parameter scalability with the ontol-

ogy size. Our model shows improved performance

in single-domain tasks compared to the state-of-

the-art NBT method. By exploiting semantic sim-

ilarities between dialogue utterances and ontology

terms, the model alleviates the need for ontology-

dependent parameters and maximizes the amount

of information shared between slots and across do-

mains. In future, we intend to investigate introduc-

ing new domains and ontology terms without fur-

ther training thus performing zero-shot learning.

4F1-score is computed by considering all the values in
each slot of each domain as positive and the ”none” state of
the slot as negative.

https://mi.eng.cam.ac.uk/~nm480/woz_2.0.zip
https://mi.eng.cam.ac.uk/~nm480/woz_2.0.zip
https://github.com/nmrksic/neural-belief-tracker
https://github.com/nmrksic/neural-belief-tracker
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