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Summary. The paper considers the problem of multiple testing under dependence in a com-
pound decision theoretic framework. The observed data are assumed to be generated from an
underlying two-state hidden Markov model.We propose oracle and asymptotically optimal data-
driven procedures that aim to minimize the false non-discovery rate FNR subject to a constraint
on the false discovery rate FDR. It is shown that the performance of a multiple-testing proce-
dure can be substantially improved by adaptively exploiting the dependence structure among
hypotheses, and hence conventional FDR procedures that ignore this structural information are
inefficient. Both theoretical properties and numerical performances of the procedures proposed
are investigated. It is shown that the procedures proposed control FDR at the desired level,
enjoy certain optimality properties and are especially powerful in identifying clustered non-null
cases. The new procedure is applied to an influenza-like illness surveillance study for detecting
the timing of epidemic periods.

Keywords: Compound decision problem; False discovery rate; Hidden Markov models; Local
significance index; Multiple testing under dependence

1. Introduction

Observations arising from large-scale multiple-comparison problems are often dependent. For
example, in microarray experiments, different genes may cluster into groups along biologi-
cal pathways and exhibit high correlation. In public health surveillance studies, the observed
data from different time periods and locations are often serially or spatially correlated. Other
examples include the analysis of data from functional magnetic resonance imaging and multi-
stage clinical trials, where the observations are also dependent in some fashion. Multiple-
testing procedures, especially the false discovery rate FDR (Benjamini and Hochberg, 1995)
analyses, have been widely used to screen over these massive data sets to identify a few inter-
esting cases. However, these procedures rely heavily on the independence assumption, and the
correlation between hypotheses, which is often treated as a nuisance parameter, is typically
ignored.

The outcomes of a multiple-testing procedure can be summarized as in Table 1. FDR is defined
as E.N10=R|R > 0/Pr.R > 0/. To compare the power of different FDR procedures, we define
the false non-discovery rate FNR (Genovese and Wasserman, 2002), equal to E.N01=S|S >

0/Pr.S > 0/. We call an FDR procedure valid if it controls FDR at a prespecified level α, and
optimal if it has the smallest FNR among all FDR procedures at level α. The marginal false
discovery rate mFDR=E.N10/=E.R/ is asymptotically equivalent to the FDR measure in the
sense that mFDR=FDR+O.m−1=2/ under weak conditions (Genovese and Wasserman, 2002).
Similarly, the marginal false non-discovery rate is given by mFNR=E.N01/=E.S/.
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Table 1. Classification of tested hypotheses

Hypothesis Claimed Claimed Total
non-significant significant

Null N00 N10 m0
Non-null N01 N11 m1
Total S R m

The effects of correlation on FDR procedures have been discussed by Benjamini and Yekutieli
(2001), Finner and Roters (2002), Owen (2005), Sarkar (2006) and Efron (2007), among others.
Efron (2007) noted that correlation may result in overly liberal or overly conservative testing
procedures and so must be accounted for in deciding which hypotheses should be reported
as non-null hypotheses. Qiu et al. (2005) showed that the correlation effects can substantially
deteriorate the performance of many FDR procedures. However, the works by Benjamini and
Yekutieli (2001), Farcomeni (2007) and Wu (2008) show that FDR is controlled at the nom-
inal level by the Benjamini and Hochberg (1995) step-up procedure and the adaptive p-value
procedure (Benjamini and Hochberg, 2000; Genovese and Wasserman, 2004) under different
dependence assumptions, supporting the universal use of the conventional FDR procedures
that were developed for independent tests without any adjustments.

In dealing with the effects of correlation on an FDR procdure, the validity issue has been over-
emphasized, and the efficiency issue is largely ignored. The FDR procedures that are developed
under the independence assumption, even valid, may suffer from substantial loss of efficiency
when the dependence structure is highly informative. The works by Yekutieli and Benjamini
(1999), Genovese et al. (2006) and Benjamini and Heller (2007) showed that incorporating sci-
entific, spatial information into a multiple-testing procedure may greatly improve the efficiency.
However, these approaches are either based on resampling the p-values or rely on prior infor-
mation, such as well-defined clusters or prespecified weights. The correlation structure is not
modelled and the optimality essentially remains unknown.

A hidden Markov model (HMM) is an effective tool for modelling the dependence struc-
ture and has been widely used in areas such as speech recognition, signal processing and DNA
sequence analysis; see Rabiner (1989), Churchill (1992), Krogh et al. (1994) and Ephraim and
Merhav (2002), among others. In the context of multiple testing, an HMM assumes that the
sequence of the unobservable states forms a Markov chain .θi/

m
1 = .θ1, . . . , θm/, where θi = 1 if

hypothesis i is non-null, and θi = 0 otherwise. The observed data x = .x1, . . . , xm/ are indepen-
dently generated conditionally on the hidden states .θi/

m
1 . When positive dependence exists in

an HMM, one expects that the non-null hypotheses (θi =1) appear in clusters or clumps. This
is a natural feature of many data sets arising from time series analysis and spatial data analysis.
For example, in the influenza-like illness (ILI) study that we analyse in Section 5, the epidemic
periods (measured weekly) tend to last for weeks and thus to cluster temporally; this dependence
structure can be well described by using an HMM.

In this paper, the problem of multiple testing under HMM dependence is studied in a com-
pound decision theoretic framework. We first propose an oracle testing procedure in an ideal
setting where the HMM parameters are assumed to be known. Under mild conditions, the
oracle procedure is shown to be optimal in the sense that it minimizes mFNR subject to a con-
straint on mFDR. Our approach is distinguished from the conventional methods in that the
procedure proposed is built on a new test statistic (the local index of significance, LIS) instead
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of the p-values. Unlike p-values, LIS takes into account the observations in adjacent locations
by exploiting the local dependence structure in the HMM. The precision of individual tests is
hence improved by pooling information from different samples.

As a motivating example, we generate a Markov chain of Bernoulli variables .θi/
m
1 and obser-

vations .xi/
m
1 according to the mixture model xi|θi ∼ .1−θi/N.0, 1/+θi N.μ, 1/, i=1, . . . , 1000.

A comparison of the Benjamini and Hochberg (1995) step-up procedure BH, adaptive p-value
procedure AP (assuming that the proportion of non-null hypotheses is known) and the oracle
procedure OR, which is developed in Section 3, is shown in Fig. 1. We can see that all three
procedures control FDR at the nominal level, and BH is conservative. In addition, OR has
much lower FNR level than BH and AP, and the gain in efficiency is substantial when μ is
small to moderate. It is important to note that, comparing with AP, the gain in efficiency of
OR is not at the price of a higher FDR. To show how this power is achieved, we present in
Table 2 the outcomes of BH, AP and OR in testing two clusters of significant hypotheses in one
experiment (μ= 2), where ‘◦’ denotes a null hypothesis and ‘•’ denotes a non-null hypothesis.
It can been seen that BH and AP can only reject individual hypotheses with extremely small
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Fig. 1. Comparison of BH (�), AP (4) and OR (+) in an HMM (the FDR level is set at 0.10): (a) FDR versus
μ; (b) FNR versus μ

Table 2. Comparison of procedures BH and OR in an HMM

Sequence State p-value BH AP OR
procedure procedure procedure

121 • 0.07 ◦ ◦ •
122 • 0.001 • • •
123 • <0:001 • • •
124 • 0.02 ◦ ◦ •
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

177 • 0.01 ◦ ◦ •
178 • <0:001 • • •
179 • 0.13 ◦ ◦ •
180 • <0:001 • • •
181 • 0.004 ◦ • •
182 • 0.15 ◦ ◦ ◦
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p-values, whereas OR tends to identify the entire cluster of non-null hypotheses. We demonstrate
in Section 3 that this is a typical phenomenon that can be expected, because, in deciding the
level of significance of a particular hypothesis, OR pools information from adjacent locations
by exploiting the local dependence structure in the observed sequence.

We then develop a data-driven procedure that mimics the oracle procedure by plugging in
consistent estimates of the unknown HMM parameters. The data-driven procedure is shown
to be asymptotically optimal in the sense that it attains both the FDR and the FNR levels of
the oracle procedure asymptotically. The oracle and data-driven procedures are compared with
the conventional p-value-based procedures by using simulation studies in Section 4. The results
indicate the favourable performance of the newly proposed procedures. Our findings show that
the correlation between hypotheses is highly informative in simultaneous inference and can be
exploited to construct more efficient testing procedures. Our procedure is especially powerful in
identifying weak signals if they are clustered in large groups. This indicates that dependence can
make the testing problem easier and is a blessing if incorporated properly in a testing procedure.

The paper is organized as follows. Section 2 studies the problem of multiple testing under
dependence in a compound decision theoretic framework. In Section 3 we propose an oracle
procedure and a data-driven procedure for FDR control under dependence and investigate their
theoretical properties. Simulation studies are performed in Section 4 to compare the proposed
procedures with conventional FDR procedures in various settings. In Section 5, the new pro-
cedure is applied to an ILI surveillance study for identifying epidemic periods. The proofs are
given in Appendix A and Appendix B.

2. Compound decision problem in a hidden Markov model

In this section, we develop a compound decision theoretic framework for both the weighted
classification and the multiple-testing problems in an HMM. It is shown in Section 2.1 that
these two problems are essentially equivalent under mild conditions. Therefore we first study
the optimal rule in a weighted classification problem in Section 2.2 and then use the results to
solve the multiple-testing problem in Section 3.

Let x = .x1, . . . , xm/ be a vector of observed values with associated unknown states θ =
.θ1, . . . , θm/. Assume that, conditionally on θ, the xis are independent. Suppose that we are
interested in inference of the unknown θis based on the observed x. This involves solving m
component problems simultaneously and is called a compound decision problem (Robbins, 1951).
Different state space and correlation structure can be assumed for θis. In this paper, we consider
an HMM, where θis are Bernoulli variables and distributed as a Markov chain. We assume that
.θi/

m
1 = .θ1, . . . , θm/ is stationary, irreducible and aperiodic. Specifically, the transition probabil-

ities are homogeneous and bounded away from 0 and 1, i.e. ajk =P.θi =k|θi−1 = j/, 0� j, k �1,
do not depend on i, with the standard stochastic constraints 0 < ajk < 1, aj0 + aj1 = 1. The
convergence theorem of a Markov chain (theorem 5.5.1 in Durrett (2005)) implies that

1
m

m∑
i=1

I.θi = j/→πj

almost surely as m→∞. The Bernoulli variables θ1, . . . , θm are identically distributed (but cor-
related) with P.θi = j/ =πj. Let Xi|θi ∼ .1 − θi/F0 + θiF1. Denote by A= {ajk} the transition
matrix, π= .π0, π1/ the stationary distribution, F ={F0, F1} the observation distribution and
ϑ= .A, π, F/ the collection of all HMM parameters.

In a compound decision problem where the goal is to separate the non-null hypotheses (θi =1)
from the null hypotheses (θi = 0), the solution can be represented by a general decision rule
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δ= .δ1, . . . , δm/∈{0, 1}m, with δi =1 indicating that hypothesis i is rejected and δi =0 otherwise.
When the relative cost of a false positive (type I error) to a false negative (type II error) result is
specified, we can study a weighted classification problem where the goal is to construct δ that
minimizes the expectation of the loss function

Lλ.θ, δ/= 1
m

∑
i

{λ.1−θi/δi +θi.1− δi/}, .1/

with λ> 0 the weight for a false positive result. Alternatively, if the goal is to discover as many
true findings as possible while incurring a relatively low proportion of false positive findings,
we can study a multiple-testing problem where the goal is to find δ that has the smallest FNR
among all FDR procedures at level α. The multiple-testing and weighted classification prob-
lems are closely connected. Specifically, the solutions to both problems can be represented by a
binary decision rule δ ∈{0, 1}m. In addition, if a stricter constraint on the false positive results
is desirable, we can either set a smaller FDR level or put a larger penalty λ in loss function
(1). The next subsection introduces a so-called monotone ratio condition under which the two
problems are ‘equivalent’.

2.1. Connection between multiple testing and weighted classification
Consider a stationary, irreducible and aperiodic Markov chain .θi/

m
1 and observations x =

.x1, . . . , xm/ generated according to the conditional probability model

P.x|θ, F/=
m∏

i=1
P.xi|θi, F/, .2/

where .θi/
m
1 ∈ {0, 1}m, P.xi < x|θi = j/ = Fj.x/, j = 0, 1 and F = .F0, F1/. Denote by f0 and f1

the corresponding densities. Suppose that δ is a general decision rule which is defined in terms
of a statistic T.x/ = .T1.x/, . . . , Tm.x// and vector c = c1 such that δ.T, c/ = I.T < c/ = [I.Ti <

c/ : i=1, . . . , m]. Let G
j
i .t/=P.Ti < t|θi = j/, j =0, 1, be the conditional cumulative distribution

functions (CDFs) of Ti.x/. Recall that P.θi = j/=πj; the marginal CDF of Ti.x/ is then given
by Gi.t/=P.Ti < t/=π0 G0

i .t/+π1 G1
i .t/. Define the average conditional CDFs of T,

Gj.t/= 1
m

m∑
i=1

G
j
i .t/

and average conditional probability density functions (PDFs) of T, gj.t/= .d=dt/Gj.t/, j =0, 1.
For a vector x= .xi/

m
1 with associated unknown states .θi/

m
1 , we consider a class of test statistics

T such that, for each T.x/ ∈ T , g0.t/ and g1.t/, the average conditional PDFs of T, satisfy a
monotone ratio condition (MRC):

g1.t/=g0.t/ is monotonically decreasing in t: .3/

The MRC generalizes the monotone likelihood ratio condition in Sun and Cai (2007) in that it
reduces to the monotone likelihood ratio condition when the tests are independent.

The MRC class T is fairly general. For example, the condition in Genovese and Wasserman
(2002, 2004) and Storey (2002) that the non-null CDF of p-value G1.t/ is concave and twice
differentiable implies that the p-value vector P = .P1, . . . , Pm/ and the weighted p-value vector
Pw = .P1=w1, . . . , Pm=wm/ (Genovese et al., 2006), where Σi wi = m, belong to the MRC class
T . This can be shown by first calculating the average conditional PDFs of the weighted p-value
vector, g0.t/=1 (the null distribution is uniform) and g1.t/; then noting that
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d
dt

{
g1.t/

g0.t/

}
=

m∑
i=1

(
w2

i

m

)
G1′′.wit/< 0:

In addition, test statistics that are defined on the basis of the z-values, such as the local false
discovery rate (Efron et al., 2001), and the oracle test statistic in an HMM, which is defined in
Section 3, also belong to MRC class T (see corollary 1). The following theorem shows that the
MRC is a desirable condition for inference in an HMM.

Theorem 1. Consider an HMM defined as in model (2). Let δ be a decision rule such that
δ.T, c/= I.T <c1/ with T∈T . Then

(a) mFDR of δ.T, c/ is strictly increasing in the threshold c,
(b) mFNR of δ.T, c/ is strictly decreasing in c and
(c) in the weighted classification problem, the optimal cut-off c (for classification statistic T)

that minimizes the classification risk is strictly decreasing in λ, the relative weight for a
false positive result.

The following theorem makes the connection between the multiple-testing and weighted clas-
sification problems.

Theorem 2.Consider an HMM defined as in model (2). Suppose that the classification risk
with the loss function

Lλ.θ, δ/= 1
m

m∑
i=1

{λ.1−θi/δi +θi.1− δi/}

is minimized by δλ{Λ, c.λ/}= I{Λ<c.λ/1}, so that Λ is the optimal statistic in the weighted
classification problem. If Λ belongs to T , then Λ is also the optimal statistic in the multiple-
testing problem in the sense that, for each mFDR level α, there is a unique c.α/ such that
δα{Λ, c.α/}= I{Λ< c.α/1} controls mFDR at level α with the smallest mFNR among all
testing rules in D, where D is the collection of all testing rules of the form δ = I.T <c1/ with
T∈T .

Theorem 2 highlights two fundamental problems in the development of an optimal testing
procedure: deriving the optimal test statistic Λ and setting the threshold for Λ. The first prob-
lem is studied in Section 2.2 by solving an equivalent weighted classification problem. The
second problem, which has been the focus of the FDR literature (mainly in terms of p-values),
is discussed in terms of the optimal test statistic Λ in Section 3.

2.2. Oracle classification rule
We shall derive an optimal classification rule δλ in an HMM as stated in theorem 2 and describe
a recursive procedure for its implementation. We begin by considering an ideal set-up in which
an oracle knows the HMM parameters ϑ= .A, π, F/. Then the oracle’s response to the weighted
classification problem is given by the following theorem.

Theorem 3.Consider an HMM defined as in model (2). Suppose that the true parameter in
the HMM, ϑ= .A, π, F/, is known. Then the classification risk with loss function defined in
equation (1) is minimized by the oracle classification rule δ.Λ, 1=λ/= .δ1, . . . , δm/, where

Λi.x/= Pϑ.θi =0|x/

Pϑ.θi =1|x/
.4/

and δi = I{Λi.x/< 1=λ} for i=1, . . . , m.
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Remark 1. Given ϑ, the oracle classification statistic Λi.x/ can be expressed in terms of
the forward and backward density variables, which are defined as αi.j/=fϑ{.xt/

i
1, θi = j} and

βi.j/ = fϑ{.xt/
m
i+1|θi = j} respectively (note that the dependence of αi.j/ on .xt/

i
1 has been

suppressed, and similarly for βi.j/). It can be shown that Pϑ.x, θi = j/ =αi.j/βi.j/ and hence
Λi.x/ =αi.0/βi.0/=αi.1/βi.1/. The forward variable αi.j/ and backward variable βi.j/ can be
calculated recursively by using the forward–backward procedure (Baum et al., 1970; Rabiner,
1989). Specifically, we initialize α1.j/=πj fj.x1/ and βm.j/=1; then by induction we have

αi+1.j/=
{

1∑
k=0

αi.k/akj

}
fj.xi+1/

and

βi.j/=
1∑

k=0
ajk fk.xi+1/βi+1.k/:

Corollary 1. Consider the oracle classification statistic Λ that is given in theorem 3. Let
G

j
i .t/=P.Λi < t|θi = j/,

Gj.t/= 1
m

m∑
i=1

G
j
i .t/

and gj.t/ = .d=dt/Gj.t/, i = 1, . . . , m, j = 0, 1, be the conditional CDFs, average conditional
CDFs and average conditional PDFs of Λ respectively. Then g1.t/=g0.t/= .1=t/π0=π1. In par-
ticular, the oracle classification statistic Λ.x/ belongs to the MRC class T .

3. Oracle and data-driven procedures for multiple testing under dependence

Theorems 2 and 3, together with corollary 1, imply that Λ.x/ is the optimal statistic for multiple
testing. Since Λi.x/ is increasing in Pϑ.θi = 0|x/, an optimal multiple-testing rule in an HMM
can be written in the form of δ = [I{Pϑ.θi = 0|x/ < t} : i = 1, . . . , m]. Define the local index of
significance, LIS, for hypothesis i by

LISi =Pϑ.θi =0|x/: .5/

LIS depends only on xi and reduces to Efron’s local false discovery rate Lfdr in the indepen-
dent case, i.e. LISi.x/ simplifies to Lfdr.xi/= .1−p/f0.xi/=f.xi/, where p is the proportion of
non-null hypotheses and f is the marginal PDF.

It is important to note that the traditional framework for multiple testing confines attention
to procedures that essentially involve ranking and thresholding p-values, whereas under our
framework the optimal statistic is LIS. In this section, we first give some intuition on why LIS is
more appropriate for testing correlated hypotheses by comparing the use of the p-value, Lfdr and
LIS from a compound decision theoretical view. We then turn to the development of an oracle
procedure that is based on LIS and a data-driven procedure that mimics the oracle procedure.
Theoretical properties of these procedures are investigated, showing that both procedures enjoy
certain optimality properties. Simulation studies are performed in Section 4, demonstrating that
the procedures proposed are superior to conventional FDR approaches for testing correlated
hypotheses.

3.1. p-value, Lfdr and LIS
Sun and Cai (2007) studied the multiple-testing problem in a compound decision theoretic
framework and showed that the FDR procedures that threshold p-values are in general ineffi-
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cient, and a testing procedure that thresholds Lfdr is optimal for independent tests. The gain
in efficiency of the Lfdr approach is due to the fact that it produces more efficient rankings of
the hypotheses than traditional p-value-based approaches. When determining the level of sig-
nificance of a hypothesis, a p-value approach considers each hypothesis separately, whereas an
Lfdr approach considers the m hypotheses simultaneously by incorporating the distributional
information of the z-values in the Lfdr statistic. However, the validity of the Lfdr procedure is
questionable in the dependent case because the marginal distribution of z-values is no longer
well defined; see Qiu et al. (2005). In addition, both p-value and Lfdr approaches are inefficient
when the tests are correlated, as we shall explain shortly.

Let δ be a general decision rule; then δ is symmetric if δ{τ .x/}= τ{δ.x/} for all permutation
operators τ (Copas, 1974). In situations where we expect the non-null hypotheses to appear
in clusters, it is natural to treat differently a hypothesis surrounded by non-null from one sur-
rounded by null hypotheses. However, these two hypotheses are exchangeable when a symmetric
rule is applied. The FDR procedures that threshold p-value or Lfdr are symmetric rules, so they
are not desirable when hypotheses are correlated. Storey (2007) considered an optimal discovery
procedure, which maximizes the expected number of true positive results subject to a constraint
on the expected number of false positive results. The optimal discovery procedure is also a sym-
metric rule and is only optimal in a subclass of testing rules. Therefore it is inefficient in testing
hypotheses arising from an HMM.

By contrast, we consider decision rule δ.LIS, λ/={I{LISi.x/<λ} : i=1, . . . , m}. It is easy to
see that δ.LIS, λ/ is asymmetric, and the order of the sequence .xi/

m
1 is accounted for in deciding

the level of significance of hypothesis i. In particular, the local dependence structure is captured
by the HMM, and the operation of the forward–backward procedure implies that a large or
small observation will respectively increase or decrease the level of significance of its neighbours.
The performance of the testing procedure is hence improved by pooling information from adja-
cent locations. In addition, the signal-to-noise ratio is increased since the information from the
whole sequence is integrated to calculate the LIS value of a single hypothesis. Therefore, LIS
is more robust against local disturbance, which further increases the efficiency of our testing
procedure.

3.2. Oracle testing procedure
We have shown that the optimal testing procedure is of the form δ = [I.LISi <λ/ : i=1, . . . , m].
The next step is to derive an appropriate cut-off λ for a given FDR level. We begin by considering
an ideal situation in which an oracle knows the HMM parameter ϑ. The MRC, which is defined
in expression (3), implies that mFNR is a decreasing function of mFDR; therefore, the oracle’s
response to this thresholding problem is to choose λ that ‘spend’ all mFDR so that mFNR is
minimized.

Next we derive the cut-off of LIS for a given FDR level. The general idea in the derivation,
which has been used in Genovese and Wasserman (2004), Newton et al. (2004) and Sun and Cai
(2007), is first to estimate FDR for a given cut-off; then to search for the largest cut-off c such
that ̂FDR.c/�α. Let LIS.1/.x/, . . . , LIS.m/.x/ be the ranked test statistics and H.1/, . . . , H.m/ be
corresponding hypotheses. Let Rλ =Σm

i=1I.LISi <λ/, Vλ =Σm
i=1I.LISi <λ, θi = 0/ and Q.λ/=

E.Vλ/=E.Rλ/ be the number of rejections, number of false positive results and mFDR yielded
by decision rule δ= [I.LISi <λ/ : i=1, . . . , m] respectively. It can be shown by using the double-
expectation theorem that

E.Vλ/=E

[
m∑

i=1
I{LISi.x/<λ}LISi.x/

]
:
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If k hypotheses are rejected, then the expected number of false positive results can be approxi-
mated by V̂ .k/=Σk

i=1LIS.i/.x/ and mFDR can be approximated by

Q̂.k/= 1
k

k∑
i=1

LIS.i/.x/:

Note that Q̂.k/ is increasing in k since

Q̂.k +1/− Q̂.k/= 1
.k2 +k/

k∑
i=1

{LIS.k+1/.x/−LIS.i/.x/}> 0:

We shall choose the largest k such that the mFDR level is controlled at level α. Hence we propose
the following step-up procedure:

let k =max
{

i :
1
i

i∑
j=1

LIS.j/.x/�α

}
; then reject all H.i/, i=1, . . . , k: .6/

The testing procedure that is given in expression (6) is referred to as the oracle testing procedure
OR. The next theorem shows that OR is valid for FDR control under dependence.

Theorem 4. Consider an HMM defined as in model (2). Define test statistic LISi.x/=Pϑ.θi =
0|x/, i=1, . . . , m. Let LIS.1/, . . . , LIS.m/ be the ranked LIS values and H.1/, . . . , H.m/ the cor-
responding hypotheses. Then the oracle testing procedure (6) controls FDR at α.

Each multiple-testing procedure involves two steps: ranking the hypotheses and then choos-
ing a cut-off along the rankings. The LIS and p-value usually produce different rankings of the
hypotheses. To illustrate this, we revisit the example that was presented in Table 2 of Section 1
and contrast the levels of significance of each hypothesis given by the p-value and LIS in Table 3.
It is interesting to note that BH ranks hypothesis 177 higher than hypothesis 179, whereas OR
ranks hypothesis 179 higher than hypothesis 177 (note that hypothesis 179 has a smaller LIS
value because it is surrounded by two very significant observations). We set the FDR level at
0.10; then the cut-off for the p-value given by BH is 0.003, and the cut-off for LIS given by OR
is 0.334. We can see that, among the six non-null hypotheses in the second cluster (hypotheses
177–182), two are identified by BH, and five are identified by OR. This illustrates the benefit of
taking into account the local dependence structure when ranking the hypotheses. The gain in

Table 3. Levels of significance suggested by p-value and LIS

Sequence State p-value LIS BH OR
procedure procedure

121 • 0.07 0.296 ◦ •
122 • 0.001 0.011 • •
123 • <0:001 <0:001 • •
124 • 0.02 0.159 ◦ •
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

177 • 0.01 0.092 ◦ •
178 • <0:001 <0:001 • •
179 • 0.13 0.017 ◦ •
180 • <0:001 <0:001 • •
181 • 0.004 0.046 ◦ •
182 • 0.15 0.473 ◦ ◦
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efficiency of OR is substantial when there are many structured weak signals, as we shall see in
the simulation studies that are performed in Section 4.

3.3. A data-driven testing procedure
In practice, the HMM parameters ϑ are unknown. We can first estimate the unknown quantities
by ϑ̂, and then plug-in ϑ̂ to obtain LÎSi. The maximum likelihood estimate (MLE) is commonly
used and is strongly consistent and asymptotically normal under certain regularity conditions
(Baum and Petrie, 1966; Leroux, 1992; Bickel et al., 1998). The MLE can be computed by using
the EM algorithm or other standard numerical optimization schemes, such as the gradient
search, or downhill simplex algorithm. These methods were reviewed by Ephraim and Merhav
(2002).

Let ϑ̂ be an estimate of the HMM parameter ϑ. Define the plug-in test statistic LÎSi.x/ =
Pϑ̂.θi = 0|x/. For given ϑ̂, LÎSi can be computed by using the forward–backward procedure.
Denote by LÎS.1/.x/, . . . , LÎS.m/.x/ the ranked plug-in test statistics and H.1/, . . . , H.m/ the cor-
responding hypotheses. In light of the oracle procedure (6), we propose the following data-driven
testing procedure:

let k =max
{

i :
1
i

i∑
j=1

LÎS.j/.x/�α

}
; then reject all H.i/, i=1, . . . , k: .7/

The testing procedure that is given in expression (7) is referred to as the local index of significance
testing procedure LIS. We shall show that the performance of OR is asymptotically attained by
LIS under the following standard assumptions on the HMM. These assumptions guarantee
that good estimates of the model parameters can be constructed on the basis of the observed
data. In particular, assumptions 1–3 were assumed by Bickel et al. (1998) to show that the MLE
for HMM parameters is asymptotically normal. Leroux (1992) showed that assumption 4 is
satisfied by the MLE in an HMM under some additional regularity conditions. Assumption 5
is satisfied when, for example, a Gaussian mixture model is assumed.

Assumption 1. {θi}m
1 is an irreducible, aperiodic and stationary Markov chain that is charac-

terized by ϑ0 = .A0, π0, F0/. ϑ0 is an interior point of the parameter space Θ.

Assumption 2. Denote by Aϑ = .aij.ϑ// the transition matrix and πϑ = .π0.ϑ/, π1.ϑ// the sta-
tionary distribution when the underlying HMM parameters are ϑ. There are γ > 0 and "0 > 0
such that, for all |ϑ−ϑ0|<γ and all i, j =0, 1, aij.ϑ/� "0 > 0 and πi.ϑ/� "0 > 0.

Assumption 3. Let f0 and f1 be the conditional PDFs of xi. There is a γ > 0 such that
Pϑ0{ρ0.X1/=∞|θ1 = i}< 1 for all i, where

ρ0.x/= sup
|ϑ−ϑ0|<γ

max
0�i,j�1

{fi.x/=fj.x/}:

Assumption 4. ϑ̂ is a consistent estimate of ϑ0.

Assumption 5. f0 and f1 are continuous and positive over the real line, and infx{f0.x/=f1.x/}=
0 for all |ϑ−ϑ0|<γ.

Without loss of generality, we assume that the γs in assumptions 2, 3 and 5 agree.
We now turn to the asymptotic properties of the plug-in procedure. Theorem 5 shows that

the rejection sets that are yielded by OR and LIS are asymptotically equivalent in the sense that
the ratio of the number of rejections and the ratio of the number of true positive results yielded
by the two procedures approach 1 as m→∞.
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Theorem 5. Consider an HMM defined as in model (2). Let R and R̂, and V and V̂ be the
number of rejections and number of false positive results that are yielded by the OR and LIS
procedures respectively. If assumptions 1–5 hold, then R̂=R→p 1 and V̂ =V →p 1.

Theorem 6 below, together with theorem 4, implies that FDR is controlled at level α+o.1/ by
LIS, so the LIS procedure is asymptotically valid. Theorem 6 also shows that the performance
of OR is attained by the LIS procedure asymptotically in the sense that the FNR level that is
yielded by LIS approaches that of OR as m→∞; therefore the LIS procedure is asymptotically
efficient.

Theorem 6. Consider an HMM defined as in model (2). Let FDROR and FDRLIS, and
FNROR and FNRLIS be the FDR levels and FNR levels that are yielded by OR and LIS
respectively. If assumptions 1–5 hold, then FDROR −FDRLIS →0. In addition, if at least a
fixed proportion of hypotheses are not rejected, then FNROR −FNRLIS →0 as m→∞.

4. Simulation studies

In this section, we investigate the numerical performance of the OR and LIS procedures and
compare them with traditional FDR procedures that have been developed for independence
tests, including the Benjamini and Hochberg (1995) step-up procedure BH and the adaptive
p-value procedure AP. BH and AP are considered for comparison because they are known to
control FDR when the hypotheses are generated from an underlying HMM (Wu, 2008). The
validity of AP requires a conservative or consistent estimate of p0, the proportion of true null
hypotheses. For an HMM defined as in model (2) with stationary distribution π= .π0, π1/, we
have p0 →p P.θi =0/=π0 and πA=π. The transition matrix A={aij} can be consistently esti-
mated by its MLE Â= âij; therefore, a consistent estimate of p0 is given by p̂0 = â10=.â01 + â10/.
This estimate is used for AP in our simulation study.

In our simulation, we assume that Xi|θi =0∼N.0, 1/ and Xi|θi =1∼F1, where F1 is a normal
mixture. The normal mixture model can be used to approximate a large collection of distri-
butions and is used in a wide range of applications; see Magder and Zeger (1996) and Efron
(2004). The MLE of the HMM parameters in a normal mixture model can be obtained by using
the EM algorithm. General methods for estimating HMM parameters in other mixture mod-
els such as exponential and Poisson mixtures were discussed in Ephraim and Merhav (2002).
One difficulty is that these algorithms assume that L, the number of components in the non-
null mixture, is known, but in many applications this is not so. Consistent estimates of L can
be obtained by using the method that was proposed by Kiefer (1993) and Liu and Narayan
(1994), among others. Alternatively, we can use likelihood-based criteria, such as the Akaike or
Bayesian information criterion BIC to select the number of components in the normal mixture.

In this section, we first introduce the EM algorithm for estimating the HMM parameters
in a normal mixture model; then we perform simulations to investigate the numerical perfor-
mance of OR, LIS, BH and AP for testing correlated hypotheses that are generated from an
HMM. Finally, we investigate the robustness of LIS under model misspecification and give
some practical recommendations for the choice of L when it is unknown.

4.1. EM algorithm in a hidden Markov model for a normal mixture model
The likelihood function for complete data [.xi/

m
1 , .θi/

m
1 ] in an HMM is

P{ϑ|.xi/
m
1 , .θi/

m
1 }=πθ1

m∏
i=2

aθi−1θi

m∏
i=1

fθi .xi/:
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Table 4. EM algorithm for normal mixtures in an HMM

1. Take initial guesses for model parameters: π
.0/
i , a

.0/
ij , μ

.0/
0 , σ

2.0/
0 , c

.0/
l , μ

.0/
l , σ

2.0/
l

2 (E-step). Compute the following quantities:

(a) the forward variable αi.j/=Pϑ{.xk/i
1, θi = j};

(b) the backward variable βi.j/=Pϑ{.xk/m
i+1|θi = j};

(c) the LIS variable γi.j/=αi.j/βi.j/={αi.0/ βi.0/+αi.1/βi.1/};
(d) the transition variable ξi.j, k/=Pϑ.θi = j, θi+1 =k|xm

1 /=γi.j/ajk fk.xi+1/ βi+1.k/=βi.j/;
(e) the weight variable wi.l/=Pϑ.xi ∼f1l|xm

1 /=γi.1/cl f1l.xi/=f1.xi/

3 (M-step). Update the model parameters:

(a) π
.t/
j =γ

.t−1/
1 .j/;

(b) a
.t/
jk ={Σm−1

i=1 ξ
.t−1/
i .jk/}=Σm−1

i=1 γ
.t−1/
i .j/;

(c) μ
.t/
0 ={Σm

k=1γ
.t−1/
k .0/xk}=Σm

k=1γ
.t−1/
k .0/;

(d) σ
2.t/
0 ={Σm

k=1γ
.t−1/
k .0/.xk −μ

.t/
0 /2}Σm

k=1γ
.t−1/
k .0/;

(e) c
.t/
l ={Σm

i=1ω
.t−1/
i .l/}=Σm

i=1γ
.t−1/
i .1/;

(f) μ
.t/
l ={Σm

i=1ω
.t−1/
i .l/xi}=Σm

i=1ω
.t−1/
i .1/;

(g) σ
2.t/
l ={Σm

i=1ω
.t−1/
i .l/.xi −μ

.t/
l /2}=Σm

i=1ω
.t−1/
i .1/.

4. Iterate the E-step and M-step until convergence

Let f0 be N.0, 1/ and f1.xi/=ΣL
l=1clN.xi|μl, σ2

l /, where Σ cl = 1. Note that, although many
software packages are available for estimating normal mixtures in an HMM, the settings are
somewhat different from ours because the L-components in the alternative are usually treated
as different states, whereas we consider the normal mixture f1 as one single state (non-null). The
EM algorithm for estimating the HMM parameters in our setting is summarized in Table 4. In
a normal mixture model, the likelihood function is unbounded when a parameter approaches
a boundary point (Kiefer and Wolfowitz, 1956), which may result in non-convergence of the
EM algorithm. A restrained parameter space or penalized method should be used when this
happens (Hathaway, 1985; Ciuperca et al., 2003).

4.2. Comparison in a normal mixture model
We first assume that L, the number of components in a non-null mixture, is known or estimated
correctly from the data. The situation where L is misspecified is considered in Section 4.3. In
all simulations, we choose the number of hypotheses m=3000 and the number of replications
N =500. The software for implementing the EM algorithm and OR and LIS procedures is avail-
able at http://stat.wharton.upenn.edu/∼tcai/paper/html/FDR-HMM.html.

4.2.1. Simulation study 1: L=1
The Markov chain .θi/

m
1 is generated with the initial state distribution π0 = .π0, π1/= .1, 0/ and

transition matrix

A=
(

0:95 0:05

1−a11 a11

)
:

The observations .xi/
m
1 are generated conditionally on .θi/

m
1 : xi|θi = 0 ∼ N.0, 1/; xi|θi = 1 ∼

N.μ, 1/. Fig. 2 compares the performance of BH, AP, OR and LIS. In Figs 2(a)–2(c) we choose
μ= 2 and plot FDR, FNR and the average number of true positives ATP yielded by BH, AP,
OR and LIS as functions of a11. In Figs 2(d)–2(f) we choose a11 =0:8 and plot FDR, FNR and
ATP as functions of μ. The nominal FDR in all simulations is set at level 0.10.



Multiple Testing under Dependence 405

0.
2

0.
3

0.
4

0.
5

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

0.
6

0.
7

0.
8

0.0800.0850.0900.0950.100

a
11

FDR

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.040.060.080.100.120.14

a
11

FNR

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

100200300400500

a
11

ATP

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

0.0750.0850.0950.105

µ

FDR

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

0.000.050.100.150.20

µ

FNR

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

0100200300400500600

µ

ATP

F
ig

.2
.

C
om

pa
ris

on
of

B
H

(�
),

A
P

(4
),

O
R

(+
)

an
d

LI
S

(�
)

in
an

H
M

M
w

ith
si

m
pl

e
al

te
rn

at
iv

e
(t

he
F

D
R

le
ve

li
s

se
ta

t0
.1

0)
:(

a)
F

D
R

ve
rs

us
a 1

1
;(

b)
F

N
R

ve
rs

us
a 1

1
;(

c)
AT

P
ve

rs
us

a 1
1
;(

d)
F

D
R

ve
rs

us
μ

;(
e)

F
N

R
ve

rs
us

μ
;(

f)
AT

P
ve

rs
us

μ



406 W. Sun and T. T. Cai

From Fig. 2(a), we can see that the FDR levels of all four procedures are controlled at 0.10
asymptotically, and procedure BH is conservative. From Figs 2(b) and 2(c), we can see that
the two lines of the oracle procedure and LIS procedure are almost overlapped, indicating that
the performance of the oracle procedure is attained by the LIS procedure asymptotically. In
addition, the two p-value-based procedures are dominated by the LIS procedure and the differ-
ence in FNR and ATP levels becomes larger as a11 increases. a11 is the transition probability
from a non-null case to a non-null case; therefore it controls how likely the non-null cases clus-
ter together. It is interesting to observe that the p-value procedures have higher FNR levels as
the non-null cases cluster in larger groups. In contrast, the FNR levels of the LIS procedure
decrease as a11 increases. This observation shows that, if modelled appropriately, the positive
dependence is a blessing (FNR decreases in a11); but, if it is ignored, the positive dependence
may become a disadvantage. In situations where the non-null cases are prevented from forming
into clusters (a11 < 0:5), the LIS procedure is still more efficient than BH and AP, although the
gain in efficiency is not as much as the situation where a11 > 0:5.

Fig. 2(d) similarly shows that all procedures are valid and BH is conservative. In Figs 2(e) and
2(f), we plot the FNR and ATP levels as functions of the non-null mean μ. We can see that BH
and AP are dominated by LIS, and the difference is large when μ is small to moderate. This is
because the LIS procedure can integrate information from adjacent locations, so it is still very
efficient even when the signals are weak.

4.2.2. Simulation study 2: L� 2
The initial state distribution is π0 = .1, 0/, and the transition matrix is

A=
(

0:95 0:05

0:2 0:8

)
:

The results for comparison are displayed in Fig. 3, where we plot the FDR, FNR and ATP
that are yielded by procedures BH, AP, OR and LIS as functions of μ. In Figs 3(a)–3(c), the
non-null distribution is a two-component normal mixture 0:5N.μ, 1/+0:5N.2, 1/. In Figs 3(d)–
3(f), the non-null distribution is a three-component normal mixture 0:4 N.μ, 1/+ 0:3N.1, 1/+
0:3N.3, 1/. The nominal FDR in all simulations is set at level 0.10.

We can similarly make the following observations.

(a) All procedures (BH, AP, OR and LIS) control FDR at the nominal level asymptotically,
and BH is conservative.

(b) Both BH and AP are dominated by OR and LIS, and the gain in efficiency of OR and
LIS is especially large when the signal is weak (small μ) or the average cluster size is large
(large a11).

(c) The performances of OR and LIS are similar, as suggested by theorem 6.

The results from both simulation studies show that the dependence actually makes the testing
problem ‘easier’ in the sense that a testing procedure becomes more precise as the dependence
increases. So it is desirable to estimate the correlation structure and to incorporate it into a
multiple-testing procedure.

4.3. Model misspecification and practical recommendations
In many practical applications, the number of components in the non-null mixture L is unknown,
yet the information is needed by the algorithms that are used to maximize the likelihood func-
tion. We recommend the methods that were mentioned earlier, such as Kiefer’s method or BIC,
to choose appropriate L. Meanwhile, we perform the following simulation study to investigate
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the robustness of our testing procedure when L is misspecified. Specifically, we consider the
performance of a two-component normal mixture model when the true number of components
is greater than 2.

4.3.1. Simulation study 3: misspecified alternative
π0 and A are the same as in simulation study 1. Suppose that the non-null distribution is
a three-component normal mixture 0:4 N.μ, 1/ + 0:3N.1, 1/ + 0:3N.3, 1/, but we misspecify it
as a two-component normal mixture: p1 N.μ1, σ2

1/+p2 N.μ2, σ2
2/. The comparison results are

displayed in Fig. 4.
In Figs 4(a)–4(c) we choose μ=−2 and plot the FDR, FNR and ATP that are yielded by

procedures BH, AP, OR and LIS as functions of a11. In Figs 4(d)–4(f), we choose a11 =0:8 and
plot the FDR, FNR and ATP that are yielded by procedures BH, AP, OR and LIS as functions
of μ. The nominal FDR in all simulations is set at level 0.10.

We can see that FDR is still controlled at the nominal level by LIS, except for a few cases
where a11 is small to moderate. Even in these unfavourable cases, LIS does not break down and
the actual FDR levels are acceptable. In addition, the gain in efficiency of LIS over BH and AP
is significant. Additional simulation results for the cases of L=4 and L=5 show that the LIS
procedure (with the two-component working model) is robust against model misspecification.

5. Application to epidemiologic surveillance data

The analysis and interpretation of the massive databases that are collected routinely from pub-
lic health surveillance systems are important for prevention and control of epidemic diseases.
The increased complexity and scale of these databases present new challenges in epidemiolog-
ic research. The surveillance data are typically collected at regular time intervals in the form
of epidemiologic indicators, such as incidence rates for a given period of time and in a given
population. As a motivating example, we describe the ILI data that were collected from
the Sentinelles Network, a national computerized surveillance system in France (http://
websenti.b3e.jussieu.fr/sentiweb). An ILI is defined as the combination of a sud-
den fever of at least 39 ◦C with respiratory signs and myalgia. Weekly ILI incidence rates are
standardized according to the sizes of the underlying population as well as the representative-
ness of the participating physicians. The data for incidence rates between January 1985 and
February 2008, which contain 1216 time points, are shown in Fig. 5(a).

The report of a health event based on past data can be classified into one of the two categories—
aberration or usual. However, conventional methods in time series analysis, such as auto-regres-
sive integrated moving average models, assume a single underlying probability distribution and
stationarity of the underlying sequence. This assumption may not hold in many public health
surveillance studies. For example, ILI epidemic data often present irregularly abrupt changes
over time. Strat and Carrat (1999) demonstrated that ILI data can be better described by using
a two-state HMM, with two states respectively representing a low level dynamic (usual) that
may vary according to a seasonal pattern and a high level dynamic (aberration) in which the
incidence rate increases sharply at irregular intervals.

Aberrations in the usual incidence rates may provide a signal of an epidemic or clues to pos-
sible causes. The timely and accurate detection of these aberrations is important to curtail an
outbreak or to identify important risk factors of the disease of interest. The identification of
the timing of ILI epidemics involves the simultaneous testing of a large number of hypotheses
that correspond to different time periods. Good sensitivity and low false detection rate are among
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Fig. 5. Weekly ILI (France, 1984–2008): (a) weekly ILI rate; (b) log-transformed weekly ILI rate; (c) estimated
probability of ILI epidemic over time

the top concerns when a statistical cut point is defined for the state of ‘aberration’. Specifically,
we wish to maintain good power to detect true aberrations so that interventions or investiga-
tions can be effectively put into place. At the same time, we wish to guard against too many
false positive results to avoid the waste of a large amount of human and financial resources.

The FDR approach is particularly useful as an exploratory tool to compromise these two
goals and has recently received much attention in the practice of epidemic disease surveillance
and control. For example, Castro and Singer (2006) demonstrated in a scenario of geographical
disease surveillance analysis that FDR is a better and efficient alternative to familywise error
rate and unadjusted per comparison testing procedures. However, conventional p-value-based



Multiple Testing under Dependence 411

FDR approaches that were originally developed for independent tests are inappropriate for
analysis of ILI surveillance data since they ignore the serial correlation between observations.
Another difficulty is that p-values are difficult to obtain for each time period because the ‘theo-
retical null distribution’ essentially remains unknown. In particular, the null distribution, which
corresponds to the state of low level dynamic, needs be estimated on the basis of the past data.
In this section, we describe how to use our LIS procedure for detecting aberrations in disease
incidence rates over time.

The observed data are assumed to be a mixture of two hidden dynamics—one for the low level
incidence rates, and another for high level incidence rates—and the hidden states are distributed
as a Markov chain. The goal is to identify time periods that correspond to the state of high level
dynamic. The original ILI data are highly skewed. Standard methods for transformation of
scale can be used to make the data closer to a normal sample. Both the Box–Cox procedure
and Atkinson’s score method (Box and Cox, 1964; Atkinson, 1973; Weisberg, 1985) suggest a
logarithm transformation of the data. The log-transformed data are shown in Fig. 5(b).

For the log-transformed data, we assume that the null distribution is normal N.μ0, σ2
0/ and

the non-null distribution is a normal mixture ΣL
l=1cl N.μl, σ2

l /, where μl >μ0, l = 1, . . . , L. The
number of components L in the non-null distribution can be determined by using BIC. Spe-
cifically, let L be the number of components in the mixture, ϑL be the HMM parameters,
P.ϑL|x/ be the likelihood function and ϑ̂L the corresponding MLE. BIC is then defined as
log{P.ϑ̂L|x/}− {f.L/=2} log.m/, where f.L/ is the number of parameters that are needed to
be estimated in the HMM. We vary L and compare different mixture models; the results are
summarized in Table 5. It can be seen that BIC is in favour of a two-component normal mixture
model for the non-null distribution.

The LIS procedure is then applied to the ILI data at FDR level 0.001 by assuming a
two-component normal mixture for the alternative. The estimated probabilities of ILI epidemic
over time are shown in Fig. 5(c). A total of 512 time periods are identified as the high level
dynamic, and all these time periods appear in clusters. For the years from 2000 to 2007, the
epidemic periods identified are (the durations of these epidemics are given in the parentheses)
as follows:

week 47, 1999−week 7, 2000 .13 weeks/; week 41, 2000−week 16, 2001 .28 weeks/;
week 47, 2001−week 13, 2002 .19 weeks/; week 51, 2002−week 16, 2003 .18 weeks/;
week 40, 2003−week 6, 2004 .19 weeks/; week 48, 2004−week 13, 2005 .18 weeks/;
week 40, 2005−week 14, 2006 .28 weeks/; week 51, 2006−week 11, 2007 .13 weeks/:

Table 5. Comparison of Gaussian mixture models fitted to the ILI data

L Null f0 Alternative f1 Transition log(P) f(L) BIC
matrix A

1 N.2:50, 0:812/ N.4:93, 1:002/

(
0:04 0:96
0:96 0:04

)
−1717.49 7 −1742.36

2 N.2:37, 0:762/ 0:50 N.3:97, 0:422/+0:50 N.5:57, 0:852/

(
0:04 0:96
0:96 0:04

)
−1655.92 10 −1691.43

3 N.2:21, 0:702/ 0:32 N.3:58, 0:322/+0:42 N.4:44, 0:562/+
(

0:05 0:95
0:97 0:03

)
−1646.41 13 −1692.58

0:26 N.6:10, 0:592/
4 N.2:37, 0:762/ 0:20 N.3:70, 0:252/+0:31 N.4:18, 0:432/+

(
0:04 0:96
0:96 0:04

)
−1645.41 16 −1702.24

0:27 N.5:05, 0:572/+0:22 N.6:30, 0:502/
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The epidemics usually start from the end of a year and end in the beginning of the following
year. However, the patterns of these time periods are quite irregular and unpredictable. For
example, the epidemics could start as early as week 41 and as late as week 51, and the durations
of these epidemics range from 13 weeks to 28 weeks. Comparing with testing procedures that
were proposed by Genovese et al. (2006), Benjamini and Heller (2007) and Wei and Li (2008),
our testing procedure does not rely on prior information such as prespecified weights or well-
defined clusters for different time periods. This property is attractive because the information is
usually unavailable in disease surveillance data. In addition, by contrast with the conventional
p-value-based procedures, the serial correlation between consecutive observations is exploited
by the LIS statistic and hence the significant time periods can be identified by groups. This
advantage is of great scientific interest, since a group of significant time periods, rather than
individual periods, is more informative in characterizing an outbreak of disease. Furthermore,
the LIS statistic at the current time point can be updated on the basis of upcoming observations
and can serve as an early warning statistic, which is very useful in the practice of epidemic
disease surveillance and decision making.

6. Discussion

In the present paper we have focused on large-scale multiple testing under a special form of
dependence—an HMM for the hypotheses. Although the HMM dependence is very useful in
many applications, extensions of the LIS procedure to more general forms of dependence would
be of great interest from both the theoretical and the practical perspectives. To generalize the
optimality result of the LIS oracle procedure to other dependence structures, it is in general
required that the corresponding Bernoulli variables, which represent the unknown null and
non-null states, have a stationary distribution. Otherwise the null and non-null distributions F0
and F1 are no longer well defined.

The problem is more challenging when the goal is to develop a ‘good’ data-driven procedure
since the optimality of the oracle procedure does not guarantee good performance of the corres-
ponding data-driven procedure. The asymptotic optimality of data-driven procedures requires
that the estimates of the unknown model parameters are consistent. However, to the best of our
knowledge, such theoretical results (consistency of the estimates) for other dependence struc-
tures, such as for a higher dimensional random field, have not been developed in the literature.
Hence the optimality of the LIS procedure may be lost in the estimation step. In addition, the
implementation of the data-driven procedure for other correlation structures may be very com-
plicated. The forward–backward procedure and EM algorithm for an HMM are known to be
efficient and relatively easy to programme. However, such efficient algorithms may not exist, for
other dependence structures. Much research is needed for developing optimal multiple-testing
procedures under general dependence structure.
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Appendix A: Proofs of main results

We shall prove theorems 3–6 and corollary 1. The proofs of theorem 1 and 2 follow similar lines to those
in Sun and Cai (2007). For brevity, we omit these proofs here. Some of the technical lemmas are proved
in Appendix B.
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A.1. Proof of theorem 3
The posterior distribution of θ is Pθ|x.θ|x/∝π.θ/ P.x|θ/. The posterior risk is

Eθ|x{L.θ, δ/}= 1
m

m∑
k=1

Eθ|x{λ.1−θk/δk +θk.1− δk/}

= 1
m

m∑
k=1

{λδk P.θk =0|x/+ .1− δk/P.θk =1|x/}:

Given that ϑ = .A, π, F/ is known, Pϑ.θk = 0|x/ and Pϑ.θk = 1|x/ can be obtained by using the for-
ward–backward procedure (remark 1). The oracle classification rule is therefore given by δk = I{Λk.x/=
Pϑ.θk =0|x/=Pϑ.θk =1|x/< 1=λ}.

A.2. Proof of corollary 1
Consider a weighted classification problem with loss function

Lλ.θ, δ/= 1
m

m∑
i=1

{λδi.1−θi/+ .1− δi/θi}:

Take λ= 1=t. Let tÅ > 0. Suppose that δ.Λ, tÅ/ = .Λ< tÅ1/ is used for classification. Note that E{.1 −
θi/δi}=P.θi =0, Ti < tÅ/=π0G

0
i .t

Å/ and E{θi.1− δi/}=P.θi =1, Ti > tÅ/=π1 G̃1
i .t

Å/; the risk is

R= 1
m

m∑
i=1

{
1
t
π0 G0

i .t
Å/+π1 G̃

1
i .t

Å/

}
= 1

t
π0 G0.tÅ/+π1 −π1 G1.tÅ/:

The optimal cut-off tÅ that minimizes this risk satisfies g1.tÅ/=g0.tÅ/= .1=t/π0=π1. Meanwhile, from theo-
rem 3 we conclude that the optimal cut-off tÅ is given by tÅ =1=λ= t. Hence g1.t/=g0.t/= .1=t/π0=π1.

A.3. Proof of theorem 4
Denote by Ti.x/ = LISi.x/ = Pϑ.θi = 0|x/. Let R be the number of rejections and V the number of false
positive results that are yielded by the oracle procedure (6). It is easy to see that the threshold λ satisfies
T.R/.x/ < λ� T.R+1/.x/. We let λ= T.R+1/.x/. Define V=R = 0 if R = 0. Note that R is known given x; we
have

FDR=E

(
V

R

)
=E

{
E

(
V

R

∣∣∣x
)}

=E

{
1
R

E.V |x/

}

and

E.V |x/=E
[ m∑

i=1
I{Ti.x/<λ, θk =0}|x

]
=

R∑
i=1

T.i/.x/:

Therefore, FDR=E{.1=R/ΣR
i=1 T.i/.x/}. Since the oracle procedure (6) guarantees that .1=R/ΣR

i=1 T.i/.x/�
α for all realizations of x, FDR is controlled at level α.

A.4. Proof of theorem 5
Consider an infinite dimensional HMM: .{θi}+∞

−∞, {xi}+∞
−∞/. Let Ti =Pϑ.θi =0|{xi}m

1 /, T̂ i =Pϑ̂.θi =0|{xi}m
1 /,

T ∞
i =Pϑ.θi =0|{xi}∞

−∞/ and T̂ ∞
i =Pϑ̂.θi =0|{x}∞

−∞/, i=1, . . . , m. Let ξi be the test statistic for hypothesis
i. We consider the following testing procedure: let

k =max
{

i :
1
i

i∑
j=1

ξ.j/.x/�α

}
;

then reject all H.i/, i=1, . . . , k, where ξ.i/s are the ranked values of ξis. When ξ is replaced with T , T̂ , T ∞ and
T̂ ∞, the corresponding procedures are respectively denoted by δOR, δPI, δ∞

OR and δ∞
PI . Let the number of rejec-

tions, number of false positive and number of false negative results yielded by δOR, δPI, δ∞
OR and δ∞

PI be (R,
V , S), .R̂, V̂ , Ŝ/, .R∞, V ∞, S∞) and (R̂∞, V̂ ∞, Ŝ∞/ respectively. Note that {θi}∞

−∞ is stationary, irreducible
and aperiodic; then, according to Leroux (1992), {xi}∞

−∞ is ergodic. The generalization (to a two-sided
sequence) of theorem 6.1.3 in Durrett (2005) implies that {T ∞

i } is also ergodic.
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The proof is outlined as follows. First we establish the asymptotic equivalence between δ∞
PI and δ∞

OR
(lemma 5). It is indicated by lemma 1 that most Tis only differ from T ∞

i s by an exponentially small quan-
tity; the asymptotic equivalence of δOR and δ∞

OR as well as the asymptotic equivalence of δPI and δ∞
PI is

further established (lemmas 7–10). Then the asymptotic equivalence between δOR and δPI follows.
By definition, T ∞

i , i = 1, . . . , m, are identically distributed. Let .T ∞
i |θi = j/ ∼ G∞

j , j = 1, 2; then T ∞
i ∼

G∞ = π0G
∞
0 + π1G

∞
1 . Define R∞

λ = Σm
i=1 I.T ∞

i < λ/ and V ∞
λ = Σm

i=1 I.T ∞
i < λ/; then E.R∞

λ / = m G∞.λ/
and E.V ∞

λ / = π0m G∞
0 .λ/. Therefore, the mFDR that is yielded by δ.T∞, λ/ = [I.T ∞

i < λ/ : i = 1, . . . , m]
is Q∞

OR.λ/=π0 G∞
0 .λ/=G∞.λ/. We assume that T ∞

i ∈T ; then theorem 1 implies that Q∞
OR.λ/ is increasing

in λ. Let λ∞
OR = sup{λ : Q∞

OR.λ/�α}. The proofs of lemmas 1–7 are given in Appendix B.

Lemma 1. Let τ0.x/ = {1 + "−2
0 ρ0.x/}−1 and L < [m=2]. For a given k, let L1 = 1 ∨ .k − L/ and L2 =

m∧ .k +L/. If assumptions 1–3 hold, then, for any ϑ such that |ϑ−ϑ0|�γ, Eϑ0 |Pϑ.θk =0|xL2
L1

/−Pϑ.θk =
0|xm

1 /|<C0β
L
0 for some β0 < 1.

Lemma 2. If assumptions 1–3 hold, then the CDF G∞.t/ = P.T ∞
i < t/ is continuous. In addition

G∞.t/> 0 for any given t> 0.

Lemma 3. Let R and R̂ be the number of rejections that are yielded by δOR and δPI respectively. If
assumptions 1–3 hold, then R→∞, R̂→∞ almost surely as m→∞.

Lemma 4. Let Q∞
OR.λ/ be the mFDR that is yielded by δ = [I.T ∞

i <λ/ : i=1, . . . , m], and λ∞
OR = sup{λ :

Q∞
OR.λ/�α}. If assumptions 1–5 hold, then there is an "0 such that λ∞

OR �α+ "0.

Lemma 5. Let R∞ and R̂∞ be the number of rejections that are yielded by δ∞
OR and δ∞

PI for a given FDR
level α. If assumptions 1–3 hold, then R̂∞=R∞ →p 1. Similarly, let V ∞ and V̂ ∞ be the number of true
positive results that are yielded by δ∞

OR and δ∞
PI ; then V̂ ∞=V ∞ →p 1.

Lemma 6. Let Sk = {i : Ti � T.k/}, Ŝk = {i : T̂ i � T̂ .k/}, S∞
k = {i : T ∞

i � T ∞
.k/} and Ŝ∞

k = {i : T̂ i
∞ � T̂ .k/

∞}. If
assumptions 1–3 hold, then

E

∣∣∣∣1
k

∑
i∈Sk

Ti − 1
k

∑
i∈S∞

k

T ∞
i

∣∣∣∣→0

as k →∞. Similarly,

E

∣∣∣∣1
k

∑
i∈Ŝk

T̂ i − 1
k

∑
i∈Ŝ∞

k

T̂ ∞
.i/

∣∣∣∣→0

as k →∞.

The next several lemmas establish the asymptotic equivalence (in terms of the number of rejections and
number of false positive results) between δOR and δ∞

OR as well as δPI and δ∞
PI . Let αÅ = inf{0� t �1 :G∞.t/=

1}. We shall assume that G∞.t/ is continuous and strictly increasing in .0, αÅ/. Consider two situations:

(a) λ∞
OR �αÅ, and

(b) λ∞
OR <αÅ.

Lemma 7. Let R∞, R, V ∞ and V̂ be defined as in theorem 5. If λ∞
OR �αÅ and assumptions 1–5 hold,

then R∞=R→p 1 and V ∞=V →p 1.

Lemma 8. Assume that 0<λ∞
OR <αÅ. Let R, R∞, R̂ and R̂∞ be the number of rejections that are yielded by

δOR, δ∞
OR, δPI and δ∞

PI respectively. If conditions 1–5 hold, then E|R∞=R−1|→0, and E|R̂∞=R̂−1|→0
as m→∞.

Proof. We show the results for only δPI and δ∞
PI . The results for δOR and δ∞

OR follow similar arguments. Note
that, as R̂→∞ almost surely, the definition of δPI implies that .1=R̂/ΣR̂

j=1T̂ .j/ �α<{1=.R̂+1/}ΣR̂+1
j=1 T̂ .j/.

Also note that

E

∣∣∣∣ 1

R̂

R̂∑
j=1

T̂ .j/ − 1

R̂+1

R̂+1∑
j=1

T̂ .j/

∣∣∣∣=
∣∣∣∣∣∣

R̂∑
j=1

.T̂ .j/ − T̂ .R̂+1//

R̂.R̂+1/

∣∣∣∣∣∣�E

∣∣∣∣ 1

R̂+1

∣∣∣∣→0;

we have E|.1=R̂/ΣR̂
j=1 T̂ .j/ −α|→0. Similarly, E|.1=R̂∞/ΣR̂∞

j=1 T̂ ∞
.j/ −α|→0. Therefore,
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E

∣∣∣∣ 1

R̂

R̂∑
j=1

T̂ .j/ − 1

R̂∞
R̂∞∑
j=1

T̂ ∞
.j/

∣∣∣∣→0: .8/

Assume that E|R̂∞=R̂−1|→0 is not true; then there is an "0 >0 such that, for any M>0, E|R̂∞=R̂−1|>"0
holds for some m�M. If R̂> R̂∞, some algebra gives

∣∣∣∣ 1

R̂

R̂∑
j=1

T̂ .j/ − 1

R̂∞
R̂∞∑
j=1

T̂ ∞
.j/

∣∣∣∣=
∣∣∣∣ 1

R̂

R̂∑
j=1

T̂ .j/ − 1

R̂

R̂∑
j=1

T̂ ∞
.j/ +

1

R̂

R̂∑
j=1

T̂ ∞
.j/ −

1

R̂∞
R̂∞∑
j=1

T̂ ∞
.j/

∣∣∣∣
�

∣∣∣∣1− R̂∞

R̂

∣∣∣∣
∣∣∣∣T̂ ∞

.R̂∞+1/
− 1

R̂∞
R̂∞∑
j=1

T̂ ∞
.j/

∣∣∣∣−
∣∣∣∣ 1

R̂

R̂∑
j=1

T̂ .j/ − 1

R̂

R̂∑
j=1

T̂ ∞
.j/

∣∣∣∣:

In Appendix B we show that T̂
∞
.R̂∞+1/ � λ∞

OR + op.1/ > α + op.1/. Also note that E|.1=R̂/ΣR̂
j=1T̂ .j/ −

.1=R̂/ΣR̂
j=1T̂

∞
.j/|→0 and E|.1=R̂∞/ΣR̂∞

j=1 T̂ ∞
.j/ −α|→0; then, for any M> 0,

E

∣∣∣∣ 1

R̂

R̂∑
j=1

T̂ .j/ − 1

R̂∞
R̂∞∑
j=1

T̂ ∞
.j/

∣∣∣∣>"0|λ∞
OR −α|+o.1/

holds for some m�M. This is a contradiction to result (8).
Now consider the case R̂<R̂∞. Note that E|.1=R̂/ΣR̂

i=1 T̂ .i/−.1=R̂/ΣR̂
i=1 T̂ ∞

.i/|→0; we have .1=R̂/ΣR̂
i=1 T̂ ∞

.i/ =
α+op.1/. So T̂ ∞

.R̂+1/
�α+op.1/. Then

∣∣∣∣ 1

R̂∞
R̂∞∑
j=1

T̂ ∞
.j/ −

1

R̂

R̂∑
j=1

T̂ .j/

∣∣∣∣�
∣∣∣∣1− R̂

R̂∞

∣∣∣∣
∣∣∣∣ 1

R̂∞ − R̂

R̂∞∑
j=R̂+1

T̂ ∞
.j/ −

1

R̂

R̂∑
j=1

T̂ ∞
.j/

∣∣∣∣−
∣∣∣∣ 1

R̂

R̂∑
j=1

T̂ .j/ − 1

R̂

R̂∑
j=1

T̂ ∞
.j/

∣∣∣∣:

Let α < η < min.αÅ, λ∞
OR/, S1 = {i : T̂ ∞

.R/ < T̂ ∞
i < η} and S2 = {i : η < T̂ ∞

i < T ∞
.R̂∞/

}. Note that, as T̂ ∞
.R̂+1/

�
α+op.1/, we have

1

R̂∞ − R̂

R̂∞∑
j=R̂+1

T̂ ∞
.j/ �

1

R̂∞ − R̂

∑
j∈S1

T̂ ∞
.j/ +

1

R̂∞ − R̂

∑
j∈S2

T̂ ∞
.j/ �α+ |S2|

R̂∞ − R̂
.η −α/+op.1/,

where |S2|=Σm
i=1 I.i∈S2/. We apply the ergodic theorem to obtain .1=m/|S2|=G∞.λ∞

OR/−G∞.η/+op.1/
and .1=m/.R̂∞ − R̂/�G.λ∞

OR/−G.α/+op.1/. Hence

1

R̂∞ − R̂

R̂∞∑
j=R̂+1

T̂ ∞
.j/ �α+ G∞.λ∞

OR/−G∞.η/

G.λ∞
OR/−G.α/

.η −α/+op.1/:

Note that G∞.t/, the CDF of T ∞
i , is strictly increasing in t over the interval .0, αÅ/, implying that ν0 =

[{G∞.λ∞
OR/−G∞.η/}={G.λ∞

OR/−G.α/}].η −α/> 0. Hence

∣∣∣∣ 1

R̂∞
R̂∞∑
j=1

T̂ ∞
.j/ −

1

R̂

R̂∑
j=1

T̂ .j/

∣∣∣∣�
∣∣∣∣1− R̂

R̂∞

∣∣∣∣ν0 +op.1/:

We take expectations on both sides, and note that, as both .1=R̂∞/ΣR̂∞
j=1 T̂ ∞

.j/ and .1=R̂/ΣR̂
j=1 T̂ .j/ are

bounded, we must have E|R̂∞=R̂−1|→0.

Lemma 9. Assume that 0 < λ∞
OR < αÅ. Let λ̂OR, λ̂∞

OR, λ̂PI and λ̂∞
PI be the threshold that is yielded by

δOR, δ∞
OR, δPI and δ∞

PI respectively. If assumptions 1–5 hold, then λ̂OR − λ̂∞
OR →p 0, and λ̂PI − λ̂∞

PI →p 0.
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Proof. We shall show only the first part of the lemma; the second part follows similar arguments. We claim
that λ̂OR − λ̂∞

OR →p 0 is true for, if not, there are "0 and δ0 such that, for any M>0, P.|λ̂∞
OR − λ̂OR|�"0/>δ0

holds for some m�M, m∈Z+. We shall consider two cases.

(a) For λ̂OR � λ̂∞
OR +"0, let L=mκ, where 0<κ<1. Define set S ={i : i<L+1 or i>m−L−1} and its

complement Sc ={i : L+1� i�m−L−1}. In Appendix B we show that, for i∈S, |Ti −T ∞
i |< si,

where

si =
i−1∏

j=i−L+1
exp{−2 τ0.xj/}+

i+L−1∏
j=i+1

exp{−2 τ0.xj/}:

Denote by |S| the cardinality of S. Note that, when λ̂OR � λ̂∞
OR + "0, we have I.Ti < λ̂OR/+ I.|Ti −

T ∞
i |>"0=2/� I.T ∞

i < λ̂∞
OR + "/. It follows that

1
m

{
m∑

i=1
I.Ti < λ̂OR/

}
� 1

m

{
m∑

i=1
I
(

T ∞
i < λ̂∞

OR + "0

2

)}
− 1

m

{∑
i∈S

I
(

si >
"0

2

)}
− 1

m
|Sc|:

Recall that the sequence {si}i∈S is ergodic and that E.sk/<C0β
L
0 for some 0<β0 <1; it follows that

.1=m/Σi∈S sk =op.1/. Therefore,

1
m

R= 1
m

{
m∑

i=1
I.Ti < λ̂OR/

}
� 1

m

{
m∑

i=1
I
(

T ∞
i < λ̂∞

OR + "0

2

)}
+op.1/

=G∞
(
λ∞

OR + "

2

)
+op.1/:

However, we have that .1=m/R∞ =G∞.λ∞
OR/, so R=R∞ =G∞.λ∞

OR + "0=2/=G∞.λ∞
OR/+op.1/. Note

that, as we assume λ∞
OR < αÅ, we can choose "0 such that λ∞

OR + "0=2 < αÅ. Recall that G∞.t/ is
strictly increasing in t over .0, αÅ/; we conclude that R=R∞ �1+ν0 +op.1/ for some ν0 > 0, which
contradicts lemma 8.

(b) For λ̂OR � λ̂∞
OR + "0, we can similarly show that R=R∞ = G∞{λ∞

OR − ."0=2/}=G∞.λ∞
OR/ + op.1/ �

1−ν ′
0 +op.1/, for some ν0 > 0, which contradicts lemma 8.

Lemma 10. Assume that 0<λ∞
OR <αÅ. Let V , V ∞, V̂ and V̂ ∞ be the number of false positive results that

are yielded by δOR, δ∞
OR, δPI and δ∞

PI respectively. If conditions 1–4 hold, then V=V ∞ →p 1 and V̂ =V̂ ∞ →p 1.

Proof. Let λ̂OR, λ̂∞
OR, λ̂PI and λ̂∞

PI be the threshold that is yielded by δOR, δ∞
OR, δPI and δ∞

PI respectively. Let
S1 ={i :T ∞

i < λ̂∞
OR}, S2 ={i :Ti < λ̂OR}, S3 ={i : T̂ ∞

i < λ̂∞
PI} and S4 ={i : T̂ i < λ̂OR}. Let SA =S1 ∩S2 and SB =

S3 ∩S4. Denote by |S| the cardinality of set S. We let SÅ = .S1\S2/∪ .S2\S1/=SÅ
1 ∪SÅ

2 , where SÅ
1 ={i :T ∞

i <
λ̂∞

OR and Ti � λ̂OR} and SÅ
2 ={i :T ∞

i � λ̂∞
OR and Ti < λ̂OR}. It is shown in Appendix B that λ̂∞

OR →p λ∞
OR. The

ergodic theorem implies that .1=m/R∞ = G∞.λ∞
OR/ + op.1/. First we show that |SA|=|S1|→p 1, which is

equivalent to showing that .1=m/|SÅ
1 |→p 0, and .1=m/|SÅ

2 |→p 0. For K > 0, let SÅ
1K = {i : T ∞

i < λ̂∞
OR −

1=K and Ti > λ̂OR}. Hence

1
m

|SÅ
1 |� 1

m
|SÅ

1K|+ 1
m

m∑
i=1

I

(
λ̂∞

OR − 1
K

�T ∞
i < λ̂∞

OR

)
: .9/

Now we show that .1=m/|SÅ
1K|→p 0. Note that

I

({
T ∞

i < λ̂∞
OR − 1

K

}
∩{Ti > λ̂OR}

)
� I

(
|λ̂∞

OR − λ̂OR|> 1
2K

)
+ I

(
|T ∞

i −Ti|> 1
2K

)
;

we have

1
m

|SÅ
1K|� I

(
|λ̂∞

OR − λ̂OR|> 1
2K

)
+ 1

m

m∑
i=1

I

(
si >

1
2K

)
:

The ergodic theorem implies that .1=m/Σm
i=1 I.si > 1=2K/→p 0. Together with lemma 9 we conclude that

.1=m/|SÅ
1K|→p 0 for any K > 0. However, we can choose K sufficiently large that the second term in

inequality (9) is small. Thus we have .1=m/|SÅ
1 |→p 0. Similarly we can show that .1=m/|SÅ

2 |→p 0. There-
fore, |SA|=|S1|→p 1 and V=V ∞ →p 1. The second part of the lemma follows similar arguments.
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A.5. Proof of theorem 5 (continued)
Note that R̂=R= .R̂=R̂∞/.R̂∞=R∞/R∞=R. It follows from lemmas 5, 7 and 8 that R̂=R→p 1. The second
part of the lemma can be proved similarly.

A.6. Proof of theorem 6
By convention (e.g. Genovese and Wasserman (2002)), we define the false discovery proportion

FDP=
{

N10=R if R> 0,
0 otherwise

and the false non-discovery proportion

FNP=
{

N01=S if S> 0,
0 otherwise.

Observe that both V=R and V̂ =R̂ are bounded above by 1, and that

V

R
− V̂

R̂
= V

R

(
1− R

R̂

)
+ V̂

R̂

(
V

V̂
−1

)
;

together with theorem 5, we conclude that E.FDPOR/−E.FDRLIS/→0. Let U and Û be the number of
false negative results. To show the second part of the theorem, observe that

U

S
− Û

Ŝ
= U

S

(
1− S

Ŝ

)
+ Û

Ŝ

(
U

Û
−1

)
:

If at least a fixed proportion of hypotheses are not rejected, then it is easy to show that S=Ŝ →p 1
and U=Û →p 1. Also note that, as both U=S and Û=Ŝ are bounded above by 1, we have E.FNPOR/ −
E.FNPLIS/→0.

Appendix B: Proofs of other results

We first present four additional lemmas before giving the proof of lemma 1. Lemmas 11 and 12, which
essentially extend the results in Baum and Petrie (1966), were stated in Bickel and Ritov (1996) without
proofs. For completeness, we provide the proofs here.

Lemma 11. Let τ0.x/={1+ "−2
0 ρ0.x/}−1 and assume that conditions 1–3 hold; then, for all ϑ such that

|ϑ−ϑ0|<γ, Pϑ.θk+1 = j|θk = i, xm
1 /� τ0.xk+1/.

Proof. Let j and j′ be two states. Then

Pϑ.θk+1 = j|θk = i, xm
1 /

Pϑ.θk+1 = j′|θk = i, xm
1 /

= Pϑ.θk+1 = j, θk = i, xm
1 /

Pϑ.θk+1 = j′, θk = i, xm
1 /

= Pϑ.θk+1 = j, xm
1 |θk = i/

Pϑ.θk+1 = j′, xm
1 |θk = i/

=

1∑
j0=0

Pϑ.θk+1 = j, θk+2 = j0, xm
k+1|θk = i/

1∑
j0=1

Pϑ.θk+1 = j′, θk+2 = j0, xm
k+1|θk = i/

=

1∑
j0=0

AijAjj0 fj.xk+1/ Pϑ.xm
k+2|θk+2 = j0/

1∑
j0=0

Aij′Aj′j0 fj′.xk+1/ Pϑ.xm
k+2|θk+2 = j0/

:

Note that Aij � "0 for all i and j and Pϑ.xk+1|j/=Pϑ.xk+1|j′/�ρ0.xk+1/; we have

Pϑ.θk+1 = j|θk = i, xm
1 /<"−2

0 ρ0.xk+1/ Pϑ.θk+1 = j′|θk = i, xm
1 /:
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Since Σ1
j=0 Pϑ.θk+1 = j|θk = i, xm

1 /=1, we conclude that for all i and j

Pϑ.θk+1 = j|θk = i, xm
1 /�{1+ "−2

0 ρ0.xk+1/}−1 ≡ τ0.xk+1/:

Lemma 12. Let M+
d .k, ϑ/ = maxi{Pϑ.θk = j|xm

1 , θk−d = i/} and define M−
d .k, ϑ/ as the corresponding

minimum. Assume that conditions 1–3 hold; then, for all ϑ such that |ϑ−ϑ0|�γ,

|M+
d .k, ϑ/−M−

d .k, ϑ/|�
k−1∏

j=k−d+1
{1−2 τ0.xj/}, .10/

and the inequality holds independently of j.

Proof.

Pϑ.θk = j|xm
1 , θk−d = i/=

1∑
j0=0

Pϑ.θk = j, θk−d+1 = j0|xm
1 , θk−d = i/

=
1∑

j0=0
Pϑ.θk = j|xm

1 , θk−d+1 = j0/ Pϑ.θk−d+1 = j0|xm
1 , θk−d = i/:

Then, according to lemma 11,

M+
d .k, ϑ/�{1− τ0.xk−d+1/}M+

d−1.k, ϑ/+ τ0.xk−d+1/M
−
d−1.k, ϑ/:

Similarly we have

M−
d .k, ϑ/�{1− τ0.xk−d+1/}M−

d−1.k, ϑ/+ τ0.xk−d+1/M
+
d−1.k, ϑ/;

thus

M+
d .k, ϑ/−M−

d .k, ϑ/�{1−2 τ0.xk−d+1/}{M+
d−1.k, ϑ/−M−

d−1.k, ϑ/}:

Note that, as τ0.xj/�1=5 (since we always have "0 � 1
2 and ρ0.x/�1), M+

1 .k, ϑ/=1 and M−
1 .k, ϑ/=0, the

proof is complete by induction. �
Complementary to lemmas 11 and 12 are results concerning the time-reversed HMM {.θ′

k, X′
k/}, which

are summarized in the following lemma. The proof is similar to those of lemmas 11 and 12 and hence is
omitted.

Lemma 13. Let τ0.x/ = {1 + "−2
0 ρ0.x/}−1. Then Pϑ.θk = j|θk+1 = i, x1

m/ � τ0.xk/ for all ϑ such that
|ϑ−ϑ0|<γ. In addition, let M ′+

d .k, ϑ/=maxi{Pϑ.θk = j|x1
m, θk+d = i/} and define M ′−

d .k, ϑ/ as the cor-
responding minimum. If assumptions 1–3 hold, then

|M ′+
d .k, ϑ/−M ′−

d .k, ϑ/|�
k+1∏

j=k+d−1
{1−2 τ0.xj/} .11/

for all ϑ such that |ϑ−ϑ0|�γ, and the inequality holds independently of j. τ0.x/ can be chosen to be
the same for the original and the time-reversed HMMs.

Lemma 14. Let τ0.x/ = {1 + "−2
0 ρ0.x/}−1 and L < [m=2]. For a given k, let L1 = 1 ∨ .k − L/ and L2 =

m∧ .k +L/. Assume that conditions 1–3 hold; then, for any ϑ such that |ϑ−ϑ0|�γ,

Pϑ.θk =0|xL2
L1

/−Pϑ.θk =0|xm
1 /<

L2−1∏
i=k+1

exp{−2 τ0.xi/} if L1 =1,

and

Pϑ.θk =0|xL2
L1

/−Pϑ.θk =0|xm
1 /<

k−1∏
i=L1+1

exp{−2 τ0.xi/} if L2 =m:

For L1 > 1 and L2 <m, we have

Pϑ.θk =0|xL2
L1

/−Pϑ.θk =0|xm
1 /<

k−1∏
i=L1+1

exp{−2 τ0.xi/}+
L2−1∏
i=k+1

exp{−2 τ0.xi/} .12/
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Proof. Note that

|Pϑ.θk =0|xL2
L1

/−Pϑ.θk =0|xm
1 /|� |Pϑ.θk =0|xL2

L1
/−Pϑ.θk =0|xL2

1 /|+ |Pϑ.θk =0|xL2
1 /−Pϑ.θk =0|xm

1 /|;

we only need to show that

|Pϑ.θk =0|xL2
L1

/−Pϑ.θk =0|xL2
1 /|�

k−1∏
i=L1+1

exp{−2 τ0.xi/}

and

|Pϑ.θk =0|xL2
1 /−Pϑ.θk =0|xm

1 /|�
L2−1∏
i=k+1

exp{−2 τ0.xi/}:

The case of L1 =1 is trivial, so we assume that L1 > 1. Then

|Pϑ.θk =0|xL2
L1

/−Pϑ.θk =0|xL2
1 /|=

∣∣∣∣
1∑

j=0
Pϑ.θk =0|θk−L = j, x

L2
L1

/ Pϑ.θk−L = j|xL2
L1

/

−
1∑

j′=0
Pϑ.θk =0|θk−L = j′, x

L2
L1

/ Pϑ.θk−L = j′|xL2
1 /

∣∣∣∣
�max

j,j′ |Pϑ.θk =0|θk−L = j, x
L2
L1

/−Pϑ.θk =0|θk−L = j′, x
L2
L1

/|

�
k−1∏

i=L1+1
{1−2 τ0.xj/}

�
k−1∏

i=L1+1
exp{−2 τ0.xi/}:

Similarly we can show that |Pϑ.θk =0|xL2
1 /−Pϑ.θk =0|xm

1 /|�ΠL2−1
i=k+1 exp{−2 τ0.xi/}.

B.1. Proof of lemma 1
We consider the case such that L1 > 1 and L2 < m; other cases are simpler and can be proved in a simi-
lar manner. The proof essentially exploits the conditional independence of {xi} given {θi}. According to
lemma 14, we have

E0|Pϑ.θk =0|xL2
L1

/−Pϑ.θk =0|xm
1 /|�E0

[
k−1∏

i=L1+1
exp{−2 τ0.xi/}+

L2−1∏
i=k+1

exp{−2 τ0.xi/}
]

=E0 E0

[
k−1∏

i=L1+1
exp{−2 τ0.xi/}+

L2−1∏
i=k+1

exp{−2 τ0.xi/}|θm
1

]

=E0

(
k−1∏

i=L1+1
E0[exp{−2 τ0.xi/}|θi]+

L2−1∏
i=k+1

E0[exp{−2 τ0.xi/}|θi]
)

:

The definition of τ0.x/ and assumption 3 imply that Pϑ0{τ0.Xk/ > 0|θk = i} > 0 for all i. Let β0 =
maxi.Eϑ0 [exp{−τ0.X1/}|θ1 = i]/. Then β0 < 1 and hence E0|Pϑ.θk =0|xL2

L1
/−Pϑ.θk =0|xm

1 /|�C0β
L
0 :

B.2. Proof of lemma 2
The joint PDF of {xi}N

−N is continuous; then the PDF and hence CDF of P.θ0 = 0|{xi}N
−N/ are contin-

uous. According to the martingale convergence theorem, we have P.θ0 = 0|{xi}N
−N/ → T ∞

0 almost surely.
Therefore the CDF of T ∞

0 is also continuous. To show the second part of the lemma, observe that, for
t ∈ .0, 1/,
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P.0 <T ∞
0 <t/=P

[
0 <

P{θ0 =0|.xi/
∞
−∞}

P{θ0 =1|.xi/∞−∞} <
t

1− t

]

=P

[
0 <

π0 P{.xi/
∞
−∞|θ0 =0}

π1 P{.xi/∞−∞|θ0 =1} <
t

1− t

]

=P

⎡
⎢⎣0 <

π0 f0.x0/

π1 f1.x0/

∑
j1j2

P{.xi/
1
−∞|θ−1 = j1}aj10a0j2 P{.xi/

∞
1 |θ1 = j2}

∑
j1j2

P{.xi/1−∞|θ−1 = j1}aj11a1j2 P{.xi/
∞
1 |θ1 = j2}

<
t

1− t

⎤
⎥⎦:

Condition 2 implies that

"2
0 �

∑
j1,j2

P{.xi/
1
−∞|θ−1 = j1}aj10a0j2 P{.xi/

∞
1 |θ1 = j2}

∑
j1,j2

P{.xi/1−∞|θ−1 = j1}aj11a1j2 P{.xi/
∞
1 |θ1 = j2}

� "−2
0 ,

Also observe that minx{f0.x/=f1.x/}=0; we conclude that there are some xÅ and " such that P.0<T ∞
0 <b/

is satisfied by S" ={{xi}∞
−∞ :x0 ∈ .xÅ −", xÅ +"/}. Note that f.x/ is continuous and positive over the sample

space, so we have P.0 <T ∞
0 <b/�P.S"/> 0.

B.3. Proof of lemma 3
We consider only the case that there are some hypotheses that are not rejected. Note that, as the threshold
is always greater than α, it would be sufficient to prove that Σm

k=1I.Tk <α/→∞ almost surely. Take L=mκ,
where 0 <κ< 1. For L+1 <k<m−L−1, we have

|Tk −T ∞
k |<

k−1∏
i=k−L+1

exp{−2 τ0.xi/}+
k+L−1∏
i=k+1

exp{−2 τ0.xi/}:

Denote the last quantity by sk.{xi}m
1 /; then sk.{x}m

1 / is ergodic. We apply the ergodic theorem to sk.{xi}m
1 /

to obtain .1=m/Σm−L−1
i=L+1 I.sk > α=2/ − P.sk > α=2/→p 0. We have shown in lemma 1 that E.sk/ < C0β

L
0 ;

hence P.sk >α=2/→0 as L=mκ →∞. Therefore,

1
m

m∑
i=1

I
(
|Tk −T ∞

k |> α

2

)
� 2L

m
+ 1

m

m−L−1∑
i=L+1

I
(

sk >
α

2

)
p→0:

Note that I.Tk <α/+ I.|Tk −T ∞
k |>α=2/� I.T ∞

k <α=2/. We have

1
m

m∑
k=1

I.Tk <α/+ 1
m

m∑
k=1

I.|Tk −T ∞
k |<α/>

1
m

m∑
k=1

I
(

T ∞
k <

α

2

)
→G∞

(α

2

)
almost surely:

Therefore it holds almost surely that .1=m/Σm
k=1 I.Tk < α/ � G∞.α=2/. In lemma 2 we have shown that

G∞.α=2/> 0; hence the result follows. Similarly we can prove the second part of the lemma.

B.4. Proof of lemma 4
Let 0 <γ < 1. Note that λ̂OR >α, so we have

Q̂∞
OR.λ̂∞

OR/= 1
R∞

m∑
i=1

T ∞
i I.T ∞

i �γα/+ 1
R∞

m∑
i=1

T ∞
i I.γα<T ∞

i < λ̂
∞
OR/

�γα

m∑
i=1

I.T ∞
i �γα/

m∑
i=1

I.T ∞
i < λ̂

∞
OR/

+ λ̂∞
OR

m∑
i=1

I.γα<T ∞
i < λ̂∞

OR/

m∑
i=1

I.T ∞
i < λ̂∞

OR/

:
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In lemma 16 we show that λ̂∞
OR →p λ∞

OR; hence P.T ∞
i < λ̂∞

OR/→P.T ∞
i <λ∞

OR/. The ergodic theorem implies
that .1=m/Σm

i=1 I.T ∞
i < λ̂∞

OR/→G∞.λ∞
OR/ almost surely. Therefore,

Q̂∞
OR.λ̂∞

OR/�γα
G∞.γα/

G∞.λ∞
OR/

+λ∞
OR

G∞.λ∞
OR/−G∞.γα/

G∞.λ∞
OR/

+op.1/:

Recall that Q̂∞
OR.λ̂∞

OR/= .1=R∞/ΣR∞
i=1 T ∞

.i/ =α+op.1/; we have

λ∞
OR � sup

γ∈.0,1/

{
α+ .1−γ/ G∞.γα/

G∞.λ∞
OR/−G∞.γα/

}
:

Note that the threshold λ̂∞
OR is always greater than α, and λ̂∞

OR →p λ∞
OR, so we have λ∞

OR �α. From lemma
2 we have G∞.γα/> 0, and G∞.λ∞

OR/−G∞.γα/> 0. The proof is complete by choosing 0 <γ <αÅ.

B.5. Proof of lemma 5
We first present several lemmas. Lemma 15 shows that the estimated mFDRs that are yielded by δ∞

OR and
δ∞

PI converge to Q∞
OR.λ/ almost surely. Lemma 16 shows that the threshold that is yielded by δ∞

OR and δ∞
PI

converges to λ∞
OR in probability.

Lemma 15. Let R∞
λ and R̂∞

λ be the number of rejections that are yielded by δ.T∞, λ/ = [I.T ∞
i < λ/ :

i= 1, . . . , m] and δ.T̂∞, λ/= [I.T̂ ∞
i <λ/ : i= 1, . . . , m] respectively. Define the corresponding estimated

false discovery proportion Q̂∞
OR.λ/= .1=R∞

λ /Σ
R∞

λ
i=1 T ∞

.i/ and Q̂∞
PI.λ/= .1=R̂∞

λ /Σ
R̂∞

λ
i=1 T̂ ∞

.i/. If assumptions 1–5
hold, then Q̂∞

OR.λ/→Q∞
OR.λ/ almost surely and Q̂∞

PI.λ/→Q∞
OR.λ/ almost surely.

Proof. We show the second part of the theorem; the first part follows simpler arguments. If follows from
the continuous mapping theorem that T̂ ∞

1 →p T ∞
1 . Therefore, E{I.T̂ ∞

1 < λ/}→ E{I.T ∞
1 < λ/}. Observe

that, for given " > 0, I.T̂ ∞
1 <λ/= I.T̂ ∞

1 <λ/ holds on the event A={|T̂ ∞
1 −T ∞

1 |� "} unless λ− "�T ∞
1 �

λ + ". We have that E{T̂ ∞
1 I.T̂ ∞

1 < λ/ − T ∞
1 I.T ∞

1 < λ/} � P.|T̂ ∞
1 − T ∞

1 | � "/ + E.T̂ ∞
1 − T ∞

1 / + P.λ − " �
T ∞

1 �λ+"/. The first term goes to 0 since T̂ ∞
1 →p T ∞

1 . The second term goes to 0 by lemma 2.2 of van der
Vaart (1998). The third term goes to 0 by the continuity of G∞.t/. Therefore, we have E{T̂ ∞

1 I.T̂ ∞
1 <λ/}→

E{T ∞
1 I.T ∞

1 <λ/}. The ergodic theorem implies that .1=m/{Σm
i=1 I.T̂ ∞

i <λ/}−E{I.T̂ ∞
1 <λ/}→0 almost

surely; hence .1=m/{Σm
i=1 I.T̂ ∞

i < λ/} → G∞.λ/ almost surely. Similarly we have .1=m/{Σm
i=1T̂

∞
i I.T̂ ∞

i <
λ/}→E{T ∞

1 I.T ∞
1 <λ/} almost surely. Note that Q̂∞

PI.λ/ can be written as

Q̂∞
PI.λ/=

{
m∑

i=1
T̂ ∞

i I.T̂ ∞
i <λ/

}/ m∑
i=1

I.T̂ ∞
i <λ/

and that

E{T ∞
i I.T ∞

i <λ/}=E[I.T ∞
i <λ/ E{I.θi =0|{xi}∞

−∞/}]=P.T ∞
i <λ, θi =0/=π0 G∞

0 .λ/;

the result follows from the definition of Q∞
OR.

Lemma 16. Denote by λ̂∞
OR and λ̂∞

PI the thresholds that are yielded by δ∞
OR and δ∞

PI respectively. Assume
that conditions 1–4 hold; then λ̂∞

OR→pλ∞
OR and λ̂∞

PI →p λ∞
OR.

Proof. Let

Q̂
∞
OR.t/=

{
m∑

i=1
I.T ∞

i � t/T ∞
i

}/ m∑
i=1

I.T ∞
i � t/:

Note that Q̂
∞
OR.t/ is a step function with jump at T.i/; for T.k/ < t < T.k+1/, we construct an envelope for

Q̂∞
OR.t/ by using two continuous functions Q̂∞

OR
.t/ and ¯̂Q∞

OR.t/:

Q̂∞
OR

.t/= T ∞
.k+1/ − t

T ∞
.k+1/ −T ∞

.k/

Q̂∞
OR.T ∞

.k−1//+ t −T ∞
.k/

T ∞
.k+1/ −T ∞

.k/

Q̂∞
OR.T ∞

.k//;

¯̂Q∞
OR.t/= T ∞

.k+1/ − t

T ∞
.k+1/ −T ∞

.k/

Q̂∞
OR.T ∞

.k//+ t −T ∞
.k/

T ∞
.k+1/ −T ∞

.k/

Q̂∞
OR.T ∞

.k+1//:
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Note that

Q̂∞
OR.T.k+1//− Q̂∞

OR.T.k//=
(

kT.k+1/ −
k∑

i=1
T.i/

)/
k.k +1/> 0,

so we have ¯̂Q∞
OR.t/�Q̂

∞
OR.t/� ¯̂Q∞

OR.t/, and both ¯̂Q∞
OR.t/ and Q̂∞

OR
.t/ are strictly increasing in t. Also note that

| ¯̂Q∞
OR.t/−Q̂∞

OR
.t/|�1=R∞.t/, where R∞.t/ is the number of rejections that are yielded by δ.T ∞, t/={I.T ∞

i <
t/, i= 1, . . . , m}. It is easy to see that R∞.t/→∞ in probability. Therefore ¯̂Q∞

OR.t/− Q̂∞
OR

.t/→p 0. Recall
that Q̂∞

OR →p Q∞
OR; we have Q̂∞

OR
.t/→p Q∞

OR, and ¯̂Q∞
OR.t/→p Q∞

OR. Let λ̂∞
OR = sup{t ∈ .0, 1/ : Q̂∞

OR
.t/ �α}

and ¯̂λ∞
OR = sup{t ∈ .0, 1/ : ¯̂Q∞

OR.t/�α}; then ¯̂λ∞
OR � λ̂∞

OR � λ̂∞
OR.

We claim that λ̂∞
OR →p λ∞

OR. If not, there are "0 and η0 such that, for any M>0, P.|λ̂∞
OR −λ∞

OR|>"0/�4η0
holds for some m�M, m∈Z+. Suppose that

P.K1
m/=P.λ̂∞

OR >λ∞
OR + "0/�2η0: .13/

Let 2δ0 =Q∞
OR.λ∞

OR + "0/−α> 0. Recall that Q̂
∞
OR

.t/→p Q∞
OR.t/; there is an M ∈Z+ such that

P.K2
m/=P{|Q̂∞

OR
.λ∞

OR + "0/−Q∞
OR.λ∞

OR + "0/|< δ0}�1−η0 .14/

holds for all m�M. Let Km =K1
m ∩K2

m; then equations (13) and (14) imply that there is an m∈Z+ such that
P.Km/ � η0. However, note that Q̂∞

OR
.t/ is strictly increasing in t; on Km we must have α= Q̂∞

OR
.λ̂∞

OR/ >
Q̂∞

OR
.λ∞

OR + "0/ > Q∞
OR.λ∞

OR + "0/ − δ0 = α + δ0. Hence Km cannot have positive measure. This is a con-
tradiction. Therefore, we must have λ̂∞

OR →p λ∞
OR. Similarly, we can show that ¯̂λ∞

OR →p λ∞
OR. Note that

¯̂λ∞
OR � λ̂∞

OR � λ̂∞
OR, so we have λ̂∞

OR →p λ∞
OR. Similarly we can prove that λ̂∞

PI →p λ∞
OR.

B.6. Proof of lemma 5 (continued)
Note that .1=m/R̂∞=.1=m/Σm

k=1 I.T̂ ∞
k < λ̂∞

PI/; the ergodic theorem implies that .1=m/R̂∞−E.T̂ ∞
1 �λ̂∞

PI/→p 0.
Also, observe that T̂ ∞

1 →p T ∞
1 and λ̂∞

OR →p λ∞
OR; we have E.T̂ ∞

1 � λ̂∞
PI/→E.T ∞

1 <λ∞
OR/=G∞

OR.λ∞
OR/. There-

fore, .1=m/R̂∞ →p G∞
OR.λ∞

OR/. It is easy to show that .1=m/R∞ →p G∞
OR.λ∞

OR/. Therefore, R̂∞=R∞ →p 1.
The second part of the proof can be shown similarly, by noting that .1=m/V̂ ∞ −E.T̂ ∞

1 < λ̂∞
PI, θ1 = 0/→ 0

almost surely, E.T̂ ∞
1 <λ∞

OR, θ1 =0/→G∞
0 .λ∞

OR/ and .1=m/V ∞ →p G∞
0 .λ∞

OR/.

B.7. Proof of lemma 6
We take L=kκ, where 0 <κ< 1. Let S̃k ={i : i∈Sk and L+1 <i<m−L−1}, S̃

∞
k ={i : i∈S∞

k and L+1 <
i<m−L−1} and

sk =
k−1∏

i=k−L+1
exp{−2 τ0.xi/}+

k+L−1∏
i=k+1

exp{−2 τ0.xi/}:

The definitions of Sk and S∞
k imply that∑

i∈Sk

Ti −
∑
i∈Sk

T ∞
i � ∑

i∈Sk

Ti −
∑

i∈S∞
k

T ∞
i � ∑

i∈S∞
k

Ti −
∑

i∈S∞
k

T ∞
i :

Therefore,

E

∣∣∣∣1
k

∑
i∈Sk

Ti − 1
k

∑
i∈S∞

k

T ∞
.i/

∣∣∣∣�E

∣∣∣∣1
k

∑
i∈Sk

Ti − 1
k

∑
i∈Sk

T ∞
i

∣∣∣∣+E

∣∣∣∣1
k

∑
i∈S∞

k

Ti − 1
k

∑
i∈S∞

k

T ∞
i

∣∣∣∣
� 2L

k
+E

∣∣∣∣1
k

∑
i∈S̃k

si

∣∣∣∣+E

∣∣∣∣1
k

∑
i∈S̃

∞
k

si

∣∣∣∣
�2

(
L

k
+C0β

L
0

)
→0,

and the first part of the lemma is shown. Define Aδ = {ϑ : |ϑ−ϑ0|� δ}. Denote by Ac
δ the complement

of Aδ. To show the second part of the lemma, we note that |T̂ i − T̂
∞
i | < sk holds for all ϑ̂∈ Aδ, and the

consistency of ϑ̂ implies that P.ϑ̂∈Ac
δ/→0. We follow a similar argument to that for the first part to obtain
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E

∣∣∣∣1
k

∑
i∈Ŝk

T̂ i − 1
k

∑
i∈Ŝ

∞
k

T̂ ∞
.i/

∣∣∣∣�E

{∣∣∣∣1
k

∑
i∈Ŝk

T̂ i − 1
k

∑
i∈Ŝ

∞
k

T̂ ∞
.i/

∣∣∣∣I.ϑ̂∈Aδ/

}
+P.ϑ̂∈Ac

δ/

�2
(

L

k
+C0β

L
0

)
+o.1/→0,

and the second part of the lemma is shown.

B.8. Proof of lemma 7
It follows from the ergodic theorem that .1=m/R∞ −G∞.λ∞

OR/→p 0. The definition of αÅ and the assump-
tion that λ∞

OR �αÅ imply that G∞.λ∞
OR/ = 1. Therefore, .1=m/R∞ →0 1. Now we assume that R=m→p 1

is not true. Then there are an "0 > 0 and a δ0 such that, for any M > 0, P.R=m � 1 − "/ � δ0 holds for
some m � M. It follows from lemma 6 that .1=m/Σm

i=1 Ti = .1=m/Σm
i=1 T ∞

i + op.1/ �α+ op.1/. Let S1 be
the rejection set that is yielded by δOR and S2 be its complement. Then by lemma 4 we have

1
m

m∑
i=1

Ti = 1
m

∑
i∈S1

Ti + 1
m

∑
i∈S2

Ti �
|S1|
m

α+ |S2|
m

.α+ν0/+op.1/:

Note that S2=m� "0 with positive probability, so, for any M> 0, .1=m/Σm
i=1 Ti �α+ ς0 with some positive

probability for some m�M. This is a contradiction to the fact that .1=m/Σm
i=1 Ti =α+ op.1/. Therefore

we must have R=m→p 1 and the first part of the lemma is shown. The second part of the lemma can be
easily shown by noting that the difference between the rejections sets of δOR and δ∞

OR is of a smaller order
of m, whereas the true number of rejections by δ∞

OR is proportional to m.
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