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Abstract Bag-of-words model is one of the most widely

used methods in the recent studies of multimedia data

retrieval. The key idea of the bag-of-words model is to quan-

tize the bag of local features, for example SIFT, to a histogram

of visual words and then standard information retrieval tech-

nologies developed from text retrieval can be applied directly.

Despite its success, one problem of the bag-of-words model is

that the two key steps, i.e., feature quantization and

retrieval, are separated. In other words, the step of generating

bag-of-words representation is not optimized for the step of

retrieval which often leads to a sub-optimal performance. In

this paper we propose a statistical framework for large-scale

near-duplication image retrieval which unifies the two steps

by introducing kernel density function. The central idea of the

proposed method is to represent each image by a kernel den-

sity function and the similarity between the query image and

a database image is then estimated as the query likelihood. In

order to make the proposed method applicable to large-scale

data sets, we have developed efficient algorithms for both

estimating the density function of each image and comput-

ing the query likelihood. Our empirical studies confirm that

the proposed method is not only more effective but also more

efficient than the bag-of-words model.
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1 Introduction

Content-based image retrieval (CBIR) is a long standing

challenging problem in multimedia and computer vision.

The earliest use of the term content-based image retrieval

in the literature seems to have been by Hirata and Kato

[12], to describe his experiments into automatic retrieval of

images from a database by color and shape feature. The

term has since been widely used to describe the process

of retrieving desired images from a large collection on the

basis of features that can be automatically extracted from the

images themselves [5]. The main challenge of CBIR is

the semantic gap, i.e., the gap between visual similarity and

conceptual/perceptual relevance, which makes it a much

harder problem than most researchers anticipated [35]. How-

ever, recent studies have shown that near-duplicate image

retrieval [15] can be solved effectively using visual features.

Unlike general content-based image retrieval that aims to

identify images that are semantically relevant to a given

query image, the objective of near-duplicate image retrieval

is to identify images with high visual similarity (see Fig. 1),

thereby avoiding the challenge of semantic gap.

A number of recent studies [15,19,33,38,42,44] have

shown that local image features (e.g., SIFT descriptor [23]),

often referred to as keypoints, are significantly more effec-

tive for near-duplicate image retrieval than global image fea-

tures such as color [41,45,46], texture [2,14,21,25,47] and

shape [28,32]. The main idea of the keypoint-based approach

is to extract salient local patches from an image and repre-

sent each local patch by a multi-dimensional feature vector.
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Fig. 1 Examples of near-duplicate image retrieval. The first column

shows the query images and the subsequent columns are near-duplicate

images

As a result, each image is represented by a collection of multi-

dimensional vectors, which is often referred to as the bag-

of-features representation [3].

One straightforward way to measure the distance between

two images based on their bag-of-features representations

is the optimal partial matching [1,24,50] which finds the

best mapping between the keypoints in the two images that

has the overall shortest distance. It has been shown [1,9,11,

24] that despite its simplicity, the similarity based on the

optimal partial matching performs well in comparison with

the other similarity measures. The main shortcoming of the

optimal partial matching is its high computational cost: given

a query image, a linear scan is required to compute the sim-

ilarity between the query and every image in the database,

which does not scale well to a large image database. Several

methods have been proposed to improve the computational

efficiency of optimal partial matching [7,10,44]. Among

them, the bag-of-words model [44] is probably the most pop-

ular one due to its empirical success. It takes advantage of

the inverted index, which has been successfully used by web

search engines to index billions of documents. The key idea

is to quantize the continuous high-dimensional space of SIFT

features to a vocabulary of visual words, which is typically

achieved by a clustering algorithm. By treating each cluster

center as a word in a codebook, this approach maps each

image feature to its closest visual word and then represents

each image by a histogram of visual words.

A number of studies have shown promising performance of

this approach for image retrieval [15,19,33,38,44] and object

recognition [3,6,37,48,51,52]. Despite its success, the bag-

of-words model suffers from the following drawbacks:

1. High computational cost in visual vocabulary construc-

tion. One of the key steps in constructing the bag-of-

words model is to cluster a large number of keypoints

into a relatively smaller number of visual words. For

large-scale image retrieval, we often need to cluster bil-

lions of keypoints into millions of clusters. Although sev-

eral efficient algorithms [4,8,19,22,31,38,43] have been

developed for large-scale clustering problems, it is still

expensive to generate a vocabulary with millions of visual

words.

2. High computational cost in keypoint quantization. Given

the constructed visual vocabulary, the next step in bag-

of-words model is to map each keypoint in a database

image to a visual word, which requires finding the nearest

neighbor of every keypoint to the visual words. Since

the computational cost for keypoint quantization is linear

in the number of keypoints, it is expensive to quantize

keypoints for a very large image database to a visual

vocabulary. Even with the help of approximate nearest

neighbor search algorithms, this step is still costly when

good approximation is desired.

3. Inconsistent mapping of keypoints to visual words. The

radius of clusters (i.e., the maximum distance between

the keypoints in a cluster and its center) could vary sig-

nificantly from cluster to cluster. As a result, for clusters

with large radius, two keypoints can be mapped to the

same visual word even if they differ significantly in visual

features, leading to an inconsistent criterion for keypoint

quantization and potentially poor performance in image

matching.

4. Lack of a theoretic analysis. Most published studies on

the bag-of-words model are motivated by efficiency con-

siderations and are primarily focused on its empirical

performance. Although [13] showed that the similarity

between two bag-of-features representations can be inter-

preted as a matching algorithm between descriptors, it did

not establish the relationship between the bag-of-words

model and the optimal partial matching. Without a the-

oretical analysis, the success of the bag-of-words model

may only be demonstrated based on empirical perfor-

mance.

5. In this paper, we highlight another fundamental problem

with the bag-of-words model for image retrieval that is

usually overlooked by most researchers. In almost all

the methods developed for large-scale image retrieval,

the step of keypoint quantization is separated from the

step of image matching that is usually implemented by

a text search engine. In other words, the procedure used

to quantize keypoints into visual words is independent

of the similarity measure used by the text search engine
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to find visually similar images which could result in the

sub-optimal retrieval performance.

In this paper, we develop a statistical framework that not

only overcomes the shortcomings of the bag-of-words model

but also unifies the two steps mentioned earlier. The key

idea of the proposed method is to view the bag of features

extracted from each image as random samples from an under-

lying unknown distribution. We estimate, for each image, its

underlying density function from the observed bag of fea-

tures. The similarity of an image in the database to a given

query image is then computed by the query likelihood, i.e.,

the likelihood of generating the observed bag of features with

the given density function of an image. Thus, the keypoint

quantization step is essentially related to the estimation of

kernel density function, and the image matching step is essen-

tially related to the estimation of query likelihood. Hence, the

introduction of kernel density function allows us to link the

two steps coherently.

We emphasize that although the idea of modeling a bag-

of-features by a statistical model has been studied by many

authors (e.g., [16–18,30,51]), there are two computational

challenges that make them difficult to scale to image retrieval

problems with large databases:

• How to efficiently compute the density function for each

image? This is particularly important given the large size

of image database and the large number of keypoints to

be processed.

• How to efficiently identify the subset of images in the

database that are visually similar to a given query? In

particular, the retrieval model should explicitly avoid the

linear scan of image database, which is a fundamental

problem with many existing methods for image similarity

measurements.

We have developed efficient algorithms which solve the

two challenges. We verified both the efficiency and effi-

cacy of the proposed framework by an empirical study with

three large image databases. Our study shows that the pro-

posed framework reduces the computational time for key-

point quantization by a factor of 8 when compared with the

hierarchical clustering methods, and by a factor of 30 when

compared with the flat clustering methods. For all the exper-

iments, we observe that the proposed framework yields sig-

nificantly higher retrieval accuracy than the state-of-the-art

approaches for image retrieval.

The rest of the paper is organized as follows: Sect. 2

presents the proposed framework for large-scale near-

duplicate image retrieval and efficient computational algo-

rithms for solving the related optimization problems. In

Sect. 3 we give a detailed analysis between the proposed

method and the bag-of-words model. In Sect. 4 we presents

our empirical study with large-scale near-duplicate image

retrieval and Sect. 5 concludes this work.

2 Kernel density framework for image retrieval

Let G = {I1, . . . , IC } be the collection of C images, and

each image Ii be represented by a set of ni keypoints {xi
1, . . . ,

xi
ni

}, where each keypoint xi ∈ R
d is a d dimensional vector.

Similarly, the query image Q is also represented by a bag of

features, i.e., {q1, . . . , qm}, where qi ∈ R
d .

To facilitate the development of a statistical model for

image retrieval, we assume that keypoints of an image Ii are

randomly sampled from an unknown distribution p(x|Ii ).

Following the framework of statistical language models for

text retrieval [27], we need to efficiently compute (1) the

density function p(x|Ii ) for every image Ii in gallery G,

and (2) the query likelihood p(Q|Ii ), i.e., the probability of

generating the keypoints in query Q given each image Ii . In

the following, we discuss the details of the algorithms for the

two problems.

2.1 Kernel density based framework

Given the keypoints {x1, . . . , xn} observed from image I, we

need to efficiently estimate its underlying density function

p(x|I). The most straightforward approach is to estimate

p(x|I) by a simple kernel density estimation, i.e.,

p(x|I) =
1

n

n∑

i=1

κ(x, xi ) (1)

where κ(·, ·) : R
d ×R

d �→ R+ is the kernel density function

that is normalized as
∫

dzκ(x, z) = 1. Given the density

function in (1), the similarity of I to the query image Q is

estimated by the logarithm of the query likelihood p(Q|I),

i.e.,

log p(Q|I)=
m∑

i=1

log p(qi |I)=
m∑

i=1

log

⎛
⎝1

n

n∑

j=1

κ(x j , qi )

⎞
⎠

Despite its simplicity, the major problem with the density

function in (1) is its high computational cost when applied to

image retrieval. This is because using the density function in

(1), we have to compute the log-likelihood p(Q|Ii ) for every

image in G before we can identify the subset of images that

are visually similar to the query Q, making it impossible for

large scale image retrieval.

In order to make efficient image retrieval, we consider an

alternative approach of estimating the density function for

image I. We assume that for any image I in the gallery G, its

density function p(x|I) is expressed as a weighted mixture

models:
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p(x|I) =
N∑

i=1

αiκ(x, ci ) (2)

where ci ∈ R
d , i = 1, . . . , N is a collection of N points

(centers) that are randomly selected from all the keypoints

observed in G. The choice of randomly selected centers,

although may seem to be naive at the first glance, is in fact

strongly supported by the consistency results of kernel den-

sity estimation [34]. In particular, the kernel density function

constructed by randomly selected centers is almost “optimal”

when the number of centers is very large. The number of cen-

ters N is usually chosen to be very large, to cover the diverse

visual content of images. α = (α1, . . . , αN ) is a probability

distribution used to combine different kernel functions. It is

important to note that unlike (1), the weights α in (2) are

unknown and need to be determined for each image. As will

be shown later, with an appropriate choice of kernel function

κ(·, ·), the resulting weights α will be sparse with most of

the elements being zero. This is ensured by the fact that in a

high-dimensional space, almost any two randomly selected

data points are far away from each other. It is the sparsity

of α that makes it possible to efficiently identify images that

are visually similar to the query without having to scan the

entire image database.

2.2 Efficient kernel density estimation

In order to use the density function in (2), we need to effi-

ciently estimate the combination weights α. By assuming

keypoints x1, . . . , xn are randomly sampled from p(x|I),

our first attempt is to estimate α by a maximum likelihood

estimation, i.e.,

α = arg max
α∈∆

L(I,α) =
n∑

i=1

log

⎛
⎝

N∑

j=1

α jκ(xi , c j )

⎞
⎠ (3)

where ∆ = {α ∈ [0, 1]C :
∑C

i=1 αi = 1} defines a sim-

plex of probability distributions. It is easy to verify that the

problem in (3) is convex and has a global optimal solution.

Although we can directly apply the standard optimization

approaches to find the optimal solution α for (3), it is in

general computationally expensive because

• We have to solve (3) for every image. Even if the opti-

mization algorithm is efficient and can solve the prob-

lem within one second, for a database with a million of

images, it will take more than 277 h to complete the com-

putation.

• The number of weights α to be determined is very large.

To achieve the desired performance of image retrieval, we

often need a very large number of centers, for example,

one million. As a result, it requires solving an optimization

problem with million variables even for a single optimiza-

tion problem in (3).

In order to address the computational challenge, we choose

the following local kernel function for this study:

κ(x, c) ∝ I (|x − c|2 ≤ ρ) (4)

where I (z) is an indicator function that outputs 1 if z is true

and zero otherwise. The parameter ρ > 0 is a predefined

constant that defines the locality of the kernel function and

its value is determined empirically. The proposition shown

below shows the sparsity of the solution α for (3).

Proposition 1 Given the local kernel function defined in (4),

for the optimal solution α to (3), we have α j = 0 for center

c j if max1≤i≤n |c j − xi |2 > ρ.

Proposition 1 follows directly from the fact thatκ(c j , xi )=
0, i = 1, . . . , n if max1≤i≤n |c j − xi |2 > ρ. As implied by

Proposition 1, α j will be nonzero only if the center c j is

within a distance ρ of some keypoints. By setting ρ to a small

value, we will only have a small number of non-zero α j . We

can quickly identify the subset of centers with non-zero α j

by an efficient range search, for example using k-d tree [22].

In our study, this step reduces the number of variables from

1 million to about 1,000.

Although Proposition 1 allows us to reduce the number of

variables dramatically, we still have to find a way to solve (3)

efficiently. To this end, we resort to the bound optimization

strategy that leads to a simple iterative algorithm for opti-

mizing (3): we denote by α
′ the current solution and by α

the updated solution for (3). It is straightforward to show that

{L(I,α) − L(I,α′)} is bounded as follows:

L(I,α) − L(I,α′) =
n∑

i=1

log

∑N
j=1 α jκ(xi , c j )

∑N
j=1 α′

jκ(xi , c j )

≥
n∑

i=1

N∑

j=1

α′
jκ(xi , c j )

∑N
l=1 α′

jκ(xi , cl)
log

α j

α′
j

(5)

By maximizing the lower bound in (5), we have the following

updating rule for α:

α j =
1

Z

n∑

i=1

α′
jκ(xi , c j )

∑N
l=1 α′

lκ(xi , cl)
(6)

where Z is the normalization factor ensuring
∑N

j=1 α j = 1.

Note that α obtained by iteratively running the updating equa-

tion in (6) is indeed globally optimal because the optimization

problem in (3) is convex.

We can further simplify the computation of α as following:

we first initialize α j = 1/N , i = 1, . . . , N , and then obtain
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the solution α by only running the iteration once, i.e.,

α j =
1

n

n∑

i=1

κ(xi , c j )∑N
l=1 κ(xi , cl)

(7)

We emphasize that although the solution in (7) is approxi-

mated in only one update, it is, however, the exact optimal

solution when the keypoints {xi }N
i=1 are far apart from each

other, as shown by the following theorem:

Theorem 1 Let the kernel function be (4). Assume that all

the keypoints x1, . . . , xn are separated by at least 2ρ. The

solution α in (7) optimizes the problem in (3).

Proof When any two keypoints xi and x j are separated by at

least 2ρ, we have κ(xi , ck)κ(x j , ck) = 0 for any center ck .

This implies that no keypoint could contribute to the estima-

tion of weight αk simultaneously for two different centers in

(6). As a result, the expression in (6) could be rewritten as

α j =
1

Z

n∑

i=1

I (|xi − c j | ≤ ρ)
α′

j∑N
l=1 α′

lκ(xi , cl)

=
1

Z

n∑

i=1

I (|xi − c j | ≤ ρ)
α′

j

α′
jκ(xi , c j )

=
1

Z

n∑

i=1

I (|xi − c j | ≤ ρ)

As a result, the updating equation will give the fixed solution,

which is the global optimal solution.

In Algorithm 1, we summarize the procedure of comput-

ing αi for each image Ii in the image collection. The key

step of computing each αi is how to efficiently compute the

value of kernel function in (4). In the algorithm, we resort

to the k-d tree based range search to achieve the goal. More

specifically, we first build a k-d tree for all the keypoints in

the collection. For each center, we then search the keypoints

which are within the distance ρ of that center using the k-d

tree. For all the keypoints that are within the distance ρ of that

center, their values to the kernel function (4) for this center

is 1 and for other keypoints the value is 0. After we conduct

the range search for every centers, we obtain the value of (4)

for every pair of keypoints and centers for all the images in

the collection which can be used directly for computing αi

for each image.

2.3 Regularization

Although the sparse solution resulting from the local kernel

is computationally efficient, the sparse solution may lead to

a poor estimation of query-likelihood, as demonstrated in

the study of statistical language model [27]. To address this

challenge, we introduce α
g = (α

g
1 , . . . , α

g
N ), a global set of

weights used for kernel density function. α
g plays the same

Algorithm 1 Compute weight vector αi of each image Ii in

the image collection

1: INPUT:

– Image collection G = {I1, . . . , IC } with each image Ii repre-

sented by a set of keypoints

– Number of random centers N

– Distance threshold ρ

2: Randomly select N keypoints as the centers z1, . . . , zN from X that

consists of all the keypoints detected from images in G

3: Construct a randomized k-d tree T for all the keypoints in X

4: for l = 1 to N do

5: Using k-d tree T , search keypoints which are within the distance

ρ of the center zl .

6: For all the returned keypoints, set their values of the kernel func-

tion (4) to be 1. For all other keypoints, set the value to be 0.

7: end for

8: for i = 1 to C do

9: Compute each element in the weight vectorαi of imageIi using (7)

10: end for

role as the background langauge model in statistical language

models [27]. We defer the discussion of how to compute αg

to the end of this section. Given the global set of weights α
g,

we introduce KL(αg‖α), the Kullback–Leibler divergence

[30] between α
g and α, as a regularizer in (3), i.e.,

α = arg max
α∈∆

L(I,α) − λKL(αg‖α) (8)

where λ > 0 is introduced to weight the importance of the

regularizer. As indicated in (8), by introducing the KL diver-

gence as the regularizer, we prefer the solution α that is sim-

ilar to α
g . Note that (8) is equivalent to the MAP estimation

of α by introducing a Dirichlet prior Dir(α) ∝
∏N

i=1[αi ]βi ,

where βi = λα
g
i . Similar to the bound optimization strat-

egy used for solving (3), we have the following approximate

solution for (8):

α j =
1

n + λ

(
λα

g
j +

n∑

i=1

κ(xi , c j )∑N
l=1 κ(xi , c j )

)
(9)

It is important to note that, according to (9), the solution for

α is no longer sparse if α
g is not sparse, which could poten-

tially lead to a high computational cost in image matching.

We will discuss a method later that explicitly addresses this

computational challenge.

The remaining question is how to estimate α
g, the global

set of weights. To this end, we search for the weight α
g that

can explain all the keypoints observed in all the images of

gallery G, i.e.,

α
g = arg max

αg∈∆

C∑

i=1

L(Ii ,α
g) (10)

Although we can employ the same bound optimization strat-

egy to estimate α
g, we describe below a simple approach

that directly utilizes the solution α for individual images to
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construct α
g . We denote by α

i = (αi
1, . . . , α

i
N ) the optimal

solution that is obtained by maximizing the log-likelihood

L(Ii ,α
i ) of the keypoints observed in image Ii . Given α

i

that maximizes L(Ii ,α
i ), we have

L(Ii ,α
g) ≈ L(Ii ,α

i )

+
1

2
(αg − α

i )⊤∇2L(Ii ,α
i )(αg − α

i ) (11)

Hessian matrix ∇2L(Ii ,α) is computed as ∇2L(Ii ,α) =
−

∑ni

k=1 uk
i [u

k
i ]

⊤, where uk
i ∈ R

N is a vector defined as

[uk
i ] j = κ(xi

k, c j )/(
∑N

l=1 α jκ(xi
k, c j )). The lemma below

allows us to bound the Hessian matrix ∇2L(Ii ,α
i ).

Lemma 1 N I 
 −∇2L(Ii ,α
i ).

Proof To bound the maximum eigenvalue −∇2L(Ii ,α
i ),

we consider the quantity γ ⊤∇2L(Ii ,α
i )γ with |γ |2 = 1.

γ ⊤∇2L(Ii ,α
i )γ =

ni∑

k=1

[
∑N

j=1 γ jκ(xi
k, c j )]2

[
∑N

j=1 α jκ(xi
k, c j )]2

≤

(
ni∑

k=1

∑N
j=1 |γ j |κ(xi

k, c j )
∑N

j=1 α jκ(xi
k, c j )

)2

Defineη j = |γ j |/(
∑N

j=1 |γ j |) andη = (η1, . . . , ηN ). Define

t =
∑N

j=1 |γ j |. We have

γ ⊤∇2L(Ii ,α
i )γ ≤ t2

(
ni∑

k=1

∑N
j=1 η jκ(xi

k, c j )
∑N

j=1 α jκ(xi
k, c j )

)

Since α
i maximizes L(Ii ,α), we have

(η − α
i )⊤∇L(Ii ,α) ≤ 0,

which implies

ni∑

k=1

∑N
j=1 η jκ(xi

k, c j )
∑N

j=1 α jκ(xi
k, c j )

≤ 1

Since t ≤
√

N , we have ∇2L(Ii ,α
i ) 
 −N I .

Using the result in Lemma 1, the objective function in (10)

can be approximated as

C∑

i=1

L(Ii ,α
g) ≈

C∑

i=1

L(Ii ,α
i ) −

N

2

C∑

i=1

|αi − α
g|22 (12)

The global weights α
g maximizing (12) is α

g = 1
C

∑C
i=1 α

i

which shows that α
g can be computed as an average of

{αi }C
i=1 that are optimized for individual images.

2.4 Efficient image search

Given the kernel density function p(x|Ii ) for each image in

gallery G and a query Q, the next question is how to effi-

ciently identify the subset of images that are likely to be

visually similar to the query Q and furthermore rank those

images in the descending order of their similarity. Follow-

ing the framework of statistical language models for text

retrieval, we estimate the similarity by the likelihood of gen-

erating the keypoints {qi }m
i=1 observed in the query Q, i.e.,

log p(Q|Ii ) =
m∑

k=1

log

⎛
⎝

N∑

j=1

αi
jκ(qk, c j )

⎞
⎠ (13)

where α
i = (αi

1, . . . , α
i
N ) are the weights for constructing

the kernel density function for image Ii . Clearly, a naive

implementation will require a linear scan of all the images

in the database before the subset of similar ones is found. To

achieve the efficient image retrieval, we need to exploit the

sparse structure of α in (9). We define

α̂i
j =

1

ni

ni∑

k=1

κ(xi
k, c j )∑N

l=1 κ(xi
k, cl)

(14)

We then write αi
j as

αi
j =

λ

ni + λ
α

g

j +
ni

ni + λ
α̂i

j (15)

Note that although α̂i
j is sparse, αi

j is not. Our goal is to effec-

tively explore the sparsity of α̂i
j for efficient image retrieval.

Using the expression in (15), we have log p(Q|Ii ) expressed

as

log p(Q|Ii )

=
m∑

j=1

log

(
N∑

l=1

(
λ

ni + λ
α

g
l +

ni

ni + λ
α̂i

l

)
κ(x j , cl)

)

=
m∑

j=1

log

(
1 +

ni

λ

∑N
l=1 α̂i

l κ(x j , cl)∑N
l=1 α

g
l κ(x j , cl)

)
+ sQ (16)

where

sQ =
m∑

j=1

log

(
λ

ni + λ

)
+

m∑

j=1

log

(
N∑

l=1

α
g
l κ(x j , cl)

)
(17)

Note that (1) the second term of sQ is independent of the indi-

vidual images for the same query, and (2) log p(Q|Ii ) ≥ sQ

for any image Ii . Given the above facts, our goal is to effi-

ciently find the subset of images whose query log-likelihood

is strictly larger than sQ, i.e., log p(Q|Ii ) > sQ . To this end,

we consider the following procedure:

• Finding the relevant centers CQ for a given query Q

Given a query image Q with keypoints q1, . . . , qm, we

first identify the subset of centers, denoted by CQ, that

are within distance ρ of the keypoints in Q, i.e., CQ ={
c j : ∃qk ∈ Q s. t. |qk − c j |2 ≤ ρ

}
.

• Finding the candidates of similar images using the rel-

evant centers Given the relevant centers in CQ, we find
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the subset of images that have at least one non-zero α̂i
j

for the centers in CQ, i.e.,

RQ =

⎧
⎨
⎩Ii ∈ G :

∑

c j ∈CQ

α̂i
j > 0

⎫
⎬
⎭ (18)

Theorem 2 shows that all the images with query log-

likelihood larger than sQ belong to RQ .

Theorem 2 Let SQ denote the set of images with query log-

likelihood larger than sQ, i.e., SQ = {Ii ∈ G :
log p(Q|Ii ) > sQ}. We have SQ = RQ .

It is easy to verify the above theorem. In order to efficiently

construct RQ (or SQ) for a given query Q, we exploit the

technique of invert indexing [27]: we preprocess the images

to obtain a list for each c j , denoted V j , that includes all the

images Ii with α̂i
j > 0. Clearly, we have

RQ =
⋃

c j ∈CQ

V j (19)

Algorithm 2 summarizes the procedure of efficient image

retrieval.

Algorithm 2 Efficient image retrieval algorithm

1: INPUT:

– A query image Q with keypoints q1, . . . , qm

– Inverted indices V j , j = 1, . . . , N

– Number of images to be retrieved, k

2: OUTPUT:

– k images sorted descendingly by their similarity to the query

image

3: Construct CQ of the query Q as

CQ =
{
c j : ∃qk ∈ Q s. t. |qk − c j |2 ≤ ρ

}

4: Construct candidate image set RQ of query Q as

RQ =
⋃

c j ∈CQ

V j

5: for every image Ii in RQ do

6: Compute the likelihood log p(Q|Ii ) using (16)

7: end for

8: Sort images in RQ based on their likelihood log p(Q|Ii )

9: Return the first k images in RQ

3 Comparing with the bag-of-words model

To better understand the proposed method in (2), we com-

pare it with the bag-of-words model. More specifically, we

can view each random center ci as a different visual word and

each α as a histogram vector. One computational advantage

of the proposed method is that, while the bag-of-words model

requires clustering all the keypoints into a large number of

clusters, the proposed method only needs to randomly select

a number of keypoints from the database which is computa-

tionally efficient. Although recent progress on approximate

nearest neighbor search [4,19,22,31,43] has made it feasible

to group billions of keypoints into millions of clusters, the

computational cost is still very high. We will see this clearly

later in our empirical study.

Second, in the bag-of-words model, we need to map each

keypoint to the closest visual word(s). Since the computa-

tional cost of this procedure is linear in the number of key-

points, it is time consuming when the number of keypoints

is very large; the proposed method, however, only needs to

conduct a range search for every randomly selected centers

and the number of those centers is in general significantly

smaller than the number of keypoints, for example, one mil-

lion centers versus on billion keypoints. This computational

saving makes the proposed method more suitable for large

image databases than the bag-of-words model.

Third, in the bag-of-words model, the radius of clusters

(i.e., the maximum distance between the keypoints in a clus-

ter and its center) could vary significantly from cluster to clus-

ter. As a result, for cluster with large radius, two keypoints can

be mapped to the same visual word even if they differ signif-

icantly in visual features, leading to an inconsistent criterion

for keypoints’ quantization and potentially suboptimal per-

formance in retrieval; on the contrary, the proposed method

uses a range search for each center which ensures that only

“similar” keypoints, which are within the distance of r to the

center, will contribute to the corresponding element in the

weight α of that center.

Fourth, a keypoint is ignored by the proposed method if

its distances to all the centers are larger than the threshold.

The underlying rationale is that if a keypoint is far away

from all centers, it is very likely to be an outlier and there-

fore should be ignored, whereas in the bag-of-words model

every keypoint must be mapped to a cluster center even if the

keypoint is far away from all the cluster centers. We will see

this advantage of the proposed method clearly demonstrated

in the experiments.

We also noticed that a recently developed random seeding

keypoints quantization method [20] for generating the bag-

of-words representation utilizes the same randomly sampling

and range search strategy as the proposed method. In this ran-

dom seeding method, a large set of keypoints are first ran-

domly sampled from the whole collection of the keypoints

and those keypoints are called seeds. In the next, a range

search is performed around each seed to find out which key-

points are within certain range of the seed. If a keypoint is

found within the range of a seed, then the keypoint is quan-

tized by that seed. With this simple strategy, the bag-of-words

model can be constructed efficiently than using clustering.
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It is also clear that the random seeding method has the same

advantages of the proposed method over the clustering-based

bag-of-words methods mentioned earlier. However, one of

the major differences between the proposed method and the

random seeding is that in the random seeding method, the

keypoints quantization and the image retrieval are still two

separated components, while in the proposed method the two

steps are unified by the introduction of density function. The

second very important advantage of the proposed method

over the random seeding method is that in the retrieval step

the random seeding method uses the ad-hoc term weighting

methods, for example, TF-IDF, while the weighting scheme

of the proposed method is integrated into the estimation of

the model of each image which is actually decided by a max-

imum likelihood estimation. It has been proved in the text

retrieval that the integrated term weighting scheme is in gen-

eral superior than the ad-hoc methods [27] and our empirical

study in the Sect. 4 also clearly demonstrate that the proposed

method outperforms the random seeding method.

4 Experiments

4.1 Datasets

To evaluate the proposed method for large-scale image

search, we conduct experiments on three benchmark data

sets: (1) tattoo image dataset (Tattoo) with about 100,000

images. (2) Oxford building dataset with 5,000 images

(Oxford5K) [38] and (3) Oxford building dataset plus one

million Flickr images (Oxford5K+Flickr1M). Table 1

shows the details of the three datasets.

4.1.1 Tattoo image dataset (Tattoo)

Tattoos have been commonly used in forensics and law

enforcement agencies to assist in human identification.

The tattoo image database used in our study consist of 101,

745 images, among which 61,745 are tattoo images and the

remaining 40,000 images are randomly selected from the

ESP dataset.1 The purpose of adding images from the ESP

dataset is to verify the capacity of the algorithms in distin-

guishing tattoo images from the other images. On average,

about 100 Harris–Laplacian interesting points are detected

for each image, and each keypoint is described by a 128-

dimensional SIFT descriptor.

4.1.2 Oxford building dataset (Oxford5K)

The Oxford building dataset consists of 5,062 images.

Although it is a small data set, we use it for evaluating the

1 http://www.gwap.com/gwap/gamesPreview/espgame/.

proposed algorithm for image retrieval mainly because it is

one of the widely used benchmark datasets. When detecting

keypoints for each image, we use both Harris–Laplacian and

Hessian–Affine interesting point detectors and each keypoint

is described by a 128-dimensional SIFT descriptor. Since the

algorithms perform similarly with keypoints detected by the

two methods, we only report the results based on the Harris–

Laplacian detector. On average, about 3,000 keypoints are

detected for each image.

4.1.3 Oxford building dataset plus one million Flickr

images (Oxford5K+Flickr1M)

In this dataset, we first crawled Flickr.com to find about

one million images of medium resolution and then added

them into the Oxford building dataset. The same procedure is

applied to extract keypoints from the crawled Flickr images.

4.2 Implementation and baselines

For the implementation of the proposed method, the kernel

function (4) is used. The centers for the kernel are randomly

selected from the datasets. We employ the FLANN library2

to perform the efficient range search.

Two clustering-based bag-of-words models are used as

baselines. They are hierarchical k-means (HKM)

implemented in the FLANN library and the approximate

k-means (AKM) [38] in which the exact nearest neighbor

search is replaced by k-d tree based approximate NN search.

For HKM the branching factor is set to be 10 based on our

experience. For AKM we use the implementation supplied

by [38] for approximate nearest neighbor search. A forest

of eight randomized k-d trees is used in all experiments. We

initialize cluster centers by randomly selecting a number of

keypoints in the dataset. The number of iterations for k-means

is set to be 10 because we observed that the cluster centers

of k-means remains almost unchanged after 10 iterations.

The third baseline used in the empirical study is the ran-

dom seeding method (RS) [20] that we mentioned in the

Sect. 3 in which a large set of keypoints are first randomly

sampled as seeds and a range search with fixed radius over

each seed is then conducted to quantize the keypoints. The

bag-of-words model is finally generated using the range

search results over the seeds. There are two parameters in

the random seeding method: one is the number of seeds and

the other is the radius for the range search. Since the random

seeding method and the proposed method share the same pro-

cedures of the randomly sampling and range search, we use

the same parameters as the proposed method which yield the

bast performance.

2 http://www.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN.
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Table 1 Statistics of the

datasets
Data set # images # features Descriptor size (GB)

Tattoo 101,745 10,843,145 3.4

Oxford5K 5,062 14,972,956 4.7

Oxford5K+Flickr1M 1,002, 805 823,297,045 252.7

For all of the three baseline methods, a state-of-the-art

text retrieval method, Okapi BM25 [39] is used to com-

pute the similarity between a query image and images in

the gallery given their bag-of-words representations. The

inverted indices for both Okapi BM25 and the proposed

retrieval model are stored in memory to make the retrieval

procedure efficient.

4.3 Evaluation

In order to examine the efficiency of the proposed method, we

measure the time spent on preprocessing as well as retrieval

stage of the retrieval systems. For the proposed method, the

preprocessing stage consists of three steps, i.e., randomly

selecting a number of centers, identifying keypoints within

the predefined range of the selected centers and computing

weights α of every image; for the baseline method RS, it is

almost the same as the proposed method except without the

computation of α. For the clustering-based baseline HKM

and AKM, it consists of two steps, constructing visual vocab-

ulary by clustering and mapping keypoints to visual words.

In terms of retrieval time, we report the averaged retriev-

ing time of one query for the four methods. We emphasize

that besides the retrieval time, the preprocessing time is also

very important for an image retrieval system when it comes

to a large collection of images and the image collection is

updated frequently. Take http://Flickr.com as an example,

which is one of the most popular online photo sharing web

sites; there are about 900,000 new images uploaded every

day [26]. These images must be preprocessed in time to be

used for retrieval, which requires the preprocessing of an

algorithm be very efficient.

To evaluate the retrieval accuracy of the proposed method,

we use two different metrics for the datasets. For tattoo image

dataset, the retrieval accuracy is evaluated based on whether

a system could retrieve images that share the tattoo sym-

bol as in the query image. We adapt the evaluation metric

termed Cumulative Matching Characteristics (CMC) score

[29] in this study. For a given rank position k, its CMC score

is computed as the percentage of queries whose matched

images are found in the first k retrieved images. The CMC

score is similar to recall, a common metric used in Infor-

mation Retrieval. We use CMC score on the tattoo database

because it is the most widely used evaluation metric in foren-

sic analysis.
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Fig. 2 The CMC scores for tattoo image retrieval with one million

cluster/random centers

For the Oxford building dataset and the Oxford building

plus Flickr dataset, we follow [38] and evaluate the retrieval

performance by Average Precision (AP) which is computed

as the area under the precision–recall curve. In particular,

an average precision score is computed for each of the five

queries from a landmark specified in the Oxford building

dataset, and these results are averaged to obtain the mean

Average Precision (mAP) for each landmark.

4.4 Results on the tattoo image dataset

We select 995 images as queries and manually identify the

gallery images that have the same tattoo symbols as the query

images. We randomly select 100 images among the 995 query

images and use them to train the optimal values for both

λ and ρ. The learned parameter λ and ρ are used for the

consequential experiments. The remaining images are used

for testing.

We first show the retrieval results of both the proposed

method and the baseline methods with the parameters tuned

to achieve the best performance and then show the sensi-

tive of the proposed algorithm to the choice of parameters.

Figure 2 gives the retrieval performance of the four methods

in CMC curves for the first 100 retrieved images. It is clear

that the proposed algorithms outperform the baseline meth-

ods, especially when the number of retrieved images is small.

The efficiency of the four methods are listed in Table 2.

For the preprocessing time, the proposed method is almost
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Table 2 The preprocessing and retrieval time of the four methods on

tattoo dataset

Preprocessing Retrieval

time (h) time (s)

Proposed 1.0 0.02

RS 1.0 0.01

HKM 8.8 0.01

AKM 31.1 0.01
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Number of retrieved images
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Fig. 3 Results of the proposed method for tattoo image retrieval with

different value of λ base on one million random centers with ρ = 0.6d̄

the same as random seeding method. Note that, in preprocess-

ing the only difference between the proposed method and the

random seeding method is that the proposed method needs

to compute α while the random seeding method does not.

From this result, we observe the computation of α is very

efficient and in general its computational cost can be ignored.

This result demonstrates that the proposed method is as effi-

cient as the random seeding method in preprocessing. Com-

paring with the clustering-based methods, we can clearly

observe that both the proposed method and the random seed-

ing method are significantly more efficient which is about

8 times faster than the hierarchical k-means clustering more

than 30 times faster than the approximate k-means method.

For the retrieval time, the proposed method is a little

bit slower than the three baseline methods. After carefully

checking the implementation, we found that the difference

in retrieval time is because the logarithm function used by

the proposed method in (16) takes a significantly longer time

to be computed than the simple addition and multiplication

used by baseline methods which is BM25 model. In a real

retrieval system, however, this disadvantage can be overcome

by some engineering tricks. For example, a logarithm look

up table can be built in advance and computing the logarithm

of a value can be simplified as checking the lookup table.
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Fig. 4 Results of the proposed method for tattoo image retrieval with

different value of ρ base on one million random centers

In fact, this trick is commonly used in the implementation of

automatic speech recognition systems.

4.5 Parameter λ

Figure 3 shows the CMC curves of the proposed method with

λ varied from 0.01n̄ to 100n̄, where n̄ is the average number

of keypoints in an image. In this experiment, we set the num-

ber of random centers to be one million, and ρ to be 0.6 d̄,

where d̄ is the average distance between any two keypoints

which is estimated from 1,000 randomly sampled keypoints

from the collection. This result shows the performance of the

proposed method is overall not sensitive to the choice of λ.

4.6 Parameter ρ

Figure 4 shows the CMC curves of the proposed method with

ρ varied from 0.3d̄ to 1.1d̄ . In this experiment, we again fixed

the number of centers to be one million. From the figure we

observe that with the exception of the smallest radius ρ (i.e.,

r = 0.3d̄), the retrieval system achieves similar performance

for different values of ρ. This indicates that the proposed

algorithm is in general insensitive to the choice of ρ as long

as ρ is large enough compared with the average inter-points

distance between keypoints. This result can be understood by

the fact that in a high-dimensional space, most data points are

far from each other and as a result, unless we dramatically

change the radius ρ, we do not expect the points within a

distance ρ of the centers to change significantly.

4.7 Number of random centers

Figure 5 shows the performance of the proposed method with

different number of randomly selected centers. The λ and ρ
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Fig. 5 Results of the proposed method for tattoo image retrieval with

different number of centers

Table 3 mAP results of the proposed method and baseline methods for

Oxford5K building data set and Oxford5K+Flickr1M data set

Proposed RS HKM AKM

Oxford5K 0.61 0.57 0.53 0.57

Oxford5K+Flickr1M 0.45 0.43 0.36 0.39

are selected to maximize the performance for the given num-

ber of centers. We clearly observe a significant increase in the

retrieval accuracy when the number of centers is increased

from 10K to 1M. This is not surprising because a large num-

ber of random centers usually result in a better discrimination

between different SIFT keypoints and consequently lead to

an improvement in the detection of similar images. A similar

observation is also found when we run our retrieval system

using the bag-of-words model approach which is consistent

with the observation in [38].

4.8 Results on Oxford building and Oxford

building + Flickr datasets

Based on the observation from the experiments of tattoo

image retrieval and the similar observation in [38], we use

one million cluster/random centers in this experiment. The

parameters of the proposed methods are set as the following

based on our experiments done with tattoo images. We set

ρ = 0.6d̄, where d̄ is the average inter-points distance that

was estimated based on 1,000 randomly sampled pairs. We

set the parameter λ = 10n̄ where n̄ is the average number of

keypoint in an image.

The mAP results of the proposed method and baseline

methods are listed in Table 3. Note that for the Oxford5K+
Flickr1M dataset, we follow the experimental protocol in [38]

by only using the cluster/random centers that are obtained

from the images in the Oxford5K dataset. The results clearly

show that the proposed method outperforms baselines.

As expected the performance of the proposed method

drops slightly when the 1M Flickr images are added to the

Oxford5K dataset. In contrast, the two clustering-based bag-

of-words based methods suffer from a significant loss in

the performance when we include one million images into

the Oxford5K data set. We believe this difference in the

performance is due to the fact that the visual content of

the one million Flickr images is significantly different from

that of the Oxford 5K images, i.e., the keypoints extracted

from the Flickr images are generally far away from those

in the Oxford5K images. As discussed earlier, the proposed

method is robust to the outlying keypoints which makes it

less sensitive to the inclusion of the Flickr1M dataset than

the clustering-based bag-of-words model. To verify this, we

measure the distance between keypoints and centers for both

Oxford5k data set and Oxford5k+Flickr1M data set. We find

that for the Oxford building images, there are ∼8 % keypoints

that are separated from any of the centers by a distance larger

than ρ =0.6d̄ . This percentage is increased to ∼24 % for the

Flickr images, indicating that a large portion of keypoints

from the Flickr images are significantly different from the

keypoints from the Oxford building images.

In Fig. 6, we show two examples of the queries and the

retrieved images. From the retrieval results of the first query,

we can clearly observe that the proposed method retrieves

images with different patterns to the images retrieved by the

three baseline methods. This is mainly because of the dif-

ferent term weighting scheme used in the proposed method

as we emphasized in the early sections. For example, because

the random seeding method employs different weighting

scheme to the proposed method, even if it uses the same sam-

pling and range search procedure as the proposed method, it

retrieves quite different images from the proposed method.

On the other hand, because the random seeding method uses

the same retrieval model, e.g., the same term weighting

scheme, as the other two clustering-based methods, even if it

uses quite different strategy than the clustering-based meth-

ods in generating the bag-of-words representation, they still

retrieve images with similar patterns.

The preprocessing and retrieval times of the two algo-

rithms are shown in Table 4. For preprocessing, we split the

Oxford5K+Flickr1M dataset into 82 subsets and each sub-

set contains about 10,000,000 keypoints. These 82 subsets

are processed separately on multiple machines and are aggre-

gated later to obtain the final result of keypoint quantization.

The preprocessing time for Oxford5K+Flickr1M dataset

is estimated by the average processing time of each of the

82 subsets. Note that for the Oxford5K+Flickr1M dataset,

the preprocessing time of AKM is significantly shorter than

HKM. This is because we use the same cluster centers that
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Fig. 6 Examples of two queries

(the first column) and the first six

retrieved images. The first four

rows give the retrieved results

for the Oxford5K building

database, and the next four rows

give the retrieved results for

Oxford5K+Flickr1M database.

The correctly retrieved results

are outlined in green and

irrelevant images are marked in

red (color figure online)

Table 4 Preprocessing and

retrieval times of the proposed

method and the baseline

methods with one million

cluster/random centers

Oxford5K Oxford5K+Flickr1M

Preprocess (h) Retrieval (s) Preprocess (h) Retrieval (s)

Proposed 1.1 0.12 95 1.3

RS 1.1 0.07 95 0.68

HKM 11.4 0.08 685 0.84

AKM 36.8 0.08 262 0.89

are generated from the Oxford5K dataset to quantize the

keypoints in Oxford5K+Flickr1M dataset. Hence, the

processing time for the Oxford5K+Flickr1M dataset only

involves finding the nearest neighbor cluster center for each

keypoint in the Oxford5K+Flickr1M dataset. We find that

the implementation of k-d tree based approximate nearest

neighbor search employed in AKM is roughly three times

faster than that of HKM, thereby leading to a shorter process-

ing time for AKM than for HKM for the Oxford5K+
Flickr1M dataset. From the table, it shows clearly that, for
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both of the datasets, the proposed method is significantly

more efficient, for example, ten times faster, in preprocess-

ing time than the clustering-based methods. Combining the

results of preprocessing time from the previous experiment

on the tattoo image dataset, we can draw the conclusion that

the proposed method is significant more efficient than the

clustering-based methods in terms of preprocessing time,

which makes it more applicable to large-scale image retrieval.

For the retrieval time, the proposed method is a little bit

slower than the baseline methods which is similar to what we

have observed on the tattoo dataset. As we discussed earlier,

this is mainly due to the slow computation of the logarithm

function used by the proposed method in (16) which can be

easily overcome by some engineering tricks, for example, a

pre-built logarithm look up table.

5 Conclusion and future work

In this paper, we presented a statistical modeling approach for

large-scale near-duplicate image retrieval. The key idea of the

proposed method is to view the bag of features extracted from

each image as random samples from an underlying unknown

distribution. More specifically, for each image, we first esti-

mate its underlying density function from the observed bag

of features. The similarity between the given query and a data

base image is then computed by the query likelihood, i.e., the

likelihood of generating the observed bag of features of the

query image with the given density function of an database

image.

There are two major challenges when applying such idea

onto large scale datasets: how to efficiently estimate the den-

sity function of keypoint distribution for each image and how

to quickly identify the subset of images in the gallery that is

visually similar to a given query. We have developed algo-

rithms in this paper which successfully solve these two chal-

lenges. Comparing with the widely used clustering-based

bag-of-words model, the new method proposed has a cou-

ple of advantages.

First, in the bag-of-words model, the step of keypoints

quantization and step of image matching are totally sep-

arated while in the proposed method these two steps are

naturally unified with the introduction of density function

of each image. With the unification of the two steps, the

whole process can then be optimized which leads to improved

retrieval performance.

Second, because of the separation of the keypoint quan-

tization and image marching in the bag-of-words model, it

often employs ad-hoc term weighting scheme in the retrieval

step, such as TF-IDF. However, in the proposed method the

term weighting is embedded into the estimation of query

likelihood. In the field of text retrieval, this embedded term

weighting scheme, such as statistical language model, has

been shown to be more effective than the ad-hoc schemes.

Our empirical studies of the proposed method also clearly

demonstrate this advantage.

Third, the proposed method is much more efficient in pre-

processing the data than the clustering-based bag-of-words

model. This is because the proposed method first avoids the

step of clustering and simply randomly selects a number of

keypoints as centers, which is very efficient. Then the pro-

posed method only conducts the range search over the sam-

pled centers while the clustering-based bag-of-words model

needs to do the nearest neighbor search over all the key-

points. Since the number of randomly sampled centers is

much smaller than the number of overall keypoints, for exam-

ple, one millon randomly sampled centers versus one billion

keypoints, the proposed method is much more computational

efficient.

Fourth, in the clustering-based bag-of-words model, the

radius of clusters could vary significantly from cluster to

cluster which leads to an inconsistent criterion for keypoints

quantization and potentially suboptimal performance in

retrieval; on the contrary, the proposed method uses a range

search for each center which ensures that only “similar” key-

points will contribute to the corresponding element in the

weight α of that center.

Finally, the proposed method is more robust to the out-

lier keypoints than the clustering-based bag-of-words model.

This is because if a keypoint is far away from all centers it is

very likely to be an outlier and such keypoints are ignored by

the proposed method, whereas in the clustering-based bag-

of-words model, even if a keypoint is far away from all the

cluster centers, it has to be mapped to a cluster center.

In the future research, we would like to enrich the method

developed in this paper along the direction of incorporat-

ing the geometric relationship between keypoints. Several

recent studies [36,40,49,53–56] have shown that by incor-

porating the geometric relationship among the keypoints,

one can further improve the accuracy of image retrieval. For

example, in [40,49], rigid spatial information is embedded

by partitioning and quantizing the image space; in [55,56],

geometry-preserving visual phrases are introduced to model

the co-occurrences of visual words, either in the entire images

or in local neighborhoods. It is particularly interesting to

notice that the idea of visual phrases in those studies is a

very close analogy to the widely used n-gram model in the

filed of text retrieval which could gives us a good starting

point to develop statistical methods to incorporate geometry

information into image retrieval.
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